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Liver fibrosis represents a wound-healing response to chronic liver injury caused

by viral infections, alcohol, and chemicals agents. It is a critical step in the

progression from chronic liver disease to cirrhosis and hepatocellular carcinoma.

No chemical or biological drugs have been approved for the treatment of liver

fibrosis. Relevant studies have demonstrated that effective inhibition of hepatitis

B virus (HBV) replication by nucleoside (acid) analogs or polyethylene glycol

alpha-interferon can lead to recovery in some patients with hepatitis B liver

fibrosis, However, some patients with liver fibrosis do not show improvement,

even after achieving a complete serologic and virologic response. A similar

situation occurs in patients with hepatitis C-related liver fibrosis. The liver, with

its unique anatomical and immunological structure, is the largest immune organ

and produces a large number of cytokines in response to external stimuli, which

are crucial for the progression of liver fibrosis. cytokines can act either by directly

affecting hepatic stellate cells (HSCs) or by indirectly regulating immune target

cells. Among these, the interleukin family activates a complex cascade of

responses, including cytokines, chemokines, adhesion molecules, and lipid

mediators, playing a key role in the initiation and regulation of inflammation, as

well as innate and adaptive immunity. In this paper, we systematically summarize

recent literature to elucidate the pathogenesis of interleukin-mediated liver

fibrosis and explore potential therapeutic targets for liver fibrosis treatment.
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Introduction

Liver fibrosis is a pathological change that occurs during the course of most chronic

liver diseases. It is caused by chronic inflammation due to the persistent effects of various

etiologies such as viral hepatitis infections, non-alcoholic fatty liver disease, autoimmune

liver disease, and drug-induced liver injury. This inflammation leads to liver damage and,

consequently, to liver fibrosis (1, 2). Currently, no chemical or biological drugs have been

approved for the treatment of liver fibrosis (3). In modern medicine, the treatment of liver

fibrosis is primarily etiological. Although studies have demonstrated that liver fibrosis is a

reversible pathological process (4), without early intervention, it can progress to cirrhosis or
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even hepatocellular carcinoma. Approximately more than 2 million

people die each year from chronic liver disease (5).

The primary pathological feature of liver fibrosis is the excessive

pathological proliferation and deposition of extracellular matrix

(ECM) (2). HSCs, the main fibrotic cell type, reside in the

perisinusoidal space between hepatic sinusoidal endothelial cells

and hepatocytes (6). These cells are non-substantial hepatocytes,

accounting for about 15% of the total number of resident cells (7).

In the normal liver, HSCs maintain a nonproliferative, quiescent

phenotype. However, during liver injury, hepatocytes undergo

apoptosis or necrosis, releasing proinflammatory and profibrotic

cytokines. These cytokines stimulate the recruitment and activation

of inflammatory cells in the liver. At this point, HSCs became

activated and transform from vitamin A-storing cells into

myofibroblasts with proliferative, contractile, and chemotactic

functions. These activated HSCs produce excessive ECM

components that accumulate in liver parenchymal cells, disrupting

liver structure and forming characteristic scar tissue (8). Activation of

HSCs is central to the pathogenesis of liver fibrosis, and HSCs are the

primary cellular source of ECMproduction (7). A variety of cytokines

act as “messenger” proteins involved in regulating immunity, cell

growth, and tissue repair through paracrine and autocrine effects on

target cell-specific receptors. Several cytokines regulate liver fibrosis,

particularly through the regulation of collagen metabolism in HSCs

and intercellular matrix.

Cytokines include interleukins, interferons, growth factors,

chemokines. Among them, the role of the interleukin family in

liver fibrosis has gained increasing attention. There are 33 known

interleukins, along with numerous derivatives such as Interleukin-1

beta (IL-1b), Interleukin-36 alpha (IL-36a), and Interleukin-36

gamma (IL-36g). Interleukins are primarily secreted by various of

immune cells (e.g., macrophages, neutrophils), and are

glycoproteins that act on a variety of cells throughout the body.

They regulate immune cell activation, proliferation, secretion, and

other processes,playing an essential role in the progression of the

inflammatory response. Numerous studies have shown that the

interleukin family plays a critical role in the development of liver

fibrosis. On one hand, pro-inflammatory interleukins such as

Interleukin-1 (IL-1), Interleukin-6 (IL-6), Interleukin-17 (IL-17),

Interleukin-18 (IL-18), Interleukin-33 (IL-33), and Interleukin-36

(IL-36) enhance tissue damage and inflammation. On the other

hand, anti-inflammatory interleukins such as Interleukin-10 (IL-

10), Interleukin-35 (IL-35), and Interleukin-37 (IL-37) promote

tissue regeneration and play a protective role in the liver.

Additionally, Interleukin-4 (IL-4), Interleukin-22 (IL-22) exerts

both anti-inflammatory and pro-inflammatory roles in

liver fibrosis.

Currently, interleukins are widely recognized for their

regulatory roles in the development of liver fibrosis. However, the

overall regulatory mechanisms remain unclear, and the specific

signaling pathways and transduction links involved need further

investigated. Therefore, in this article, we systematically summarize

recent literature to elucidate the pathogenesis of interleukin-family-

mediated liver fibrosis and review fibrosis drugs currently targeting

interleukins as therapeutic candidates. We aim to provide new

insights into the treatment of liver fibrosis.
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Interleukins exerting pro-liver
fibrosis effects

Interleukin-1

IL-1 is one of the earliest cytokines discovered.It is mainly

produced by monocytes, macrophages, T lymphocytes (T cells), B

lymphocytes (B cells) and Natural Killer cells (NK cells) (9).

Additionally, almost all nucleated cells can produce IL-1. In the

liver, it is primarily expressed by Kupffer cells (KCs), hepatic

endothelial cells, and HSCs, mainly in the form of Interleukin-1

alpha (IL-1a) and IL-1b, both forms recognize a common receptor,

Interleukin-1 Receptor (IL-1R), which consists of the subunits IL-

1R1 and Interleukin-1 Receptor Accessory Protein (IL-1RacP).

These receptors mediate IL-1’s involvement in immune responses,

inflammation, and fibrogenesis (10). IL-1 is synthesized as a

precursor, pro-IL-1, which is converted to its active form. The

active cytokines promotes fibrosis by being released extracellularly,

thereby initiating a cascade of inflammatory responses in target

cells, such as HSCs (11). Among the two isoforms, IL-1a is a

bifunctional cytokine. Extracellularly, IL-1a binds to IL-1R1 on the

cell surface and recruits its co-receptor IL-1R3, initiating pro-

inflammatory signaling similar to IL-1b. Intracellularly, IL-1a can

shuttle rapidly between the nucleus and cytoplasm, enabling

distinct biological functions in different cellular compartments.

Since there is limited research on the role of IL-1a in liver

fibrosis, this review primarily focuses on IL-1b, an inducible and

highly inflammatory cytokine.IL-1b activates a complex signaling

cascade via IL-1R1, which subsequently triggers transcription

factors such as nuclear factor-kappa B (NF-kB) and induces the

production of inflammatory cytokines (12). It has been shown that

IL-1b contributes to fibrosis through the MyD88-IRAK-NF-kB
signaling pathway by forming a tripartite complex with IL-1R1

and IL-1RacP (13–15).

In patients with chronic liver disease, serum expression of IL-1b
is elevated, and IL-1b has been shown implicated of hepatic

steatosis to steatohepatitis and hepatic fibrosis (16, 17).Hepatic

tissue expression of IL-1a and IL-b is significantly increased in

diet-induced nonalcoholic steatohepatitis (NASH) models,

indicating that these cytokines are involved in the regulation of

steatosis and steatohepatitis. Despite a reduced inflammatory

response, both liver cholesterol and serum cholesterol levels were

elevated in IL-1a-deficient mice, suggesting that IL-1a may

influence hepatic fat accumulation and inflammation through

distinct pathways. However, studies using IL-1a and IL- 1b
knockout mice showed improved diet-induced steatosis,

indicating that both IL-1a and IL- 1b contribute to NASH

development (18). Furthermore, liver and non-bone marrow-

derived IL-1a/b deficiency ameliorated diet-induced liver

inflammation and fibrosis, suggesting a critical role for liver-

derived IL-1 in this context (18). High expression of the immune

checkpoint T-cell Immunoglobulin and Mucin-domain containing-

3 (Tim-3) on hepatic macrophages has been shown to attenuates

inflammation-related hepatic injury in a NASH mouse model. In

vitro assays demonstrated that Tim-3 negatively regulates reactive

oxygen species production and secretion of pro-inflammatory
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cytokines, such as IL-1b, in macrophages, thereby reducing the

severity of inflammatory injury in NASH (19). In mice with high-fat

diet-induced nonalcoholic fatty liver disease (NAFLD),

upregulation of IL-1b in hepatocytes contributes to increased fat

aggregation, liver inflammation, insulin resistance and liver fibrosis

(20). KCs play an important role in liver injury in alcohol-fed

models. Acute and chronic alcohol feeding activates KCs via the

“lipopolysaccharide-toll-like receptor 4” signaling axis (21), leading

to the production of pro-inflammatory mediators such as IL-1b and

Tumor Necrosis Factor alpha (TNF-a). This cascade ultimately

results in hepatocellular dysfunction, apoptosis, necrosis, and the

ECM production by HSCs, contributes to liver fibrosis and cirrhosis

(22). In alcoholic liver injury models using IL-1b-deficient mice,

liver damage was significantly reduced, highlighting the regulator

role of the IL-1b signaling pathway is steatosis, inflammation, and

liver fibrosis (22). In a rat model of chronic alcoholic liver disease,

elevated IL-1b exacerbated hepatocyte injury, promoted the release

of pro-fibrotic factors such as Transforming Growth Factor beta

(TGF-b) and platelet-derived growth factor, and activated HSCs.

These findings underscore the crucial role of IL-1b in alcoholic liver

injury and its progression fibrosis, suggesting that targeting the IL-

1b signaling pathway could offer therapeutic potential (18).

Caspase-1-mediated pyroptosis is a classical mechanism that

induces the maturation of inflammatory cytokines, such as IL-1b,
triggering cell lysis and death, promoting pyroptosis, activating

inflammasomes, and driving fibrosis development (23).

Experimental studies have shown that KCs activation by

Lipopolysaccharide releases pro-inflammatory cytokines and

fibrogenic factors, inducing hepatocyte pyroptosis, HSCs

activation, and ECM production (24); The NOD-like Receptor

Pyrin domain-containing 3 (NLRP3) inflammasome has been

found to induced IL-1b secretion in primary HSCs or HSCs lines

(e.g., LX-2 or HSC-T6) treated with exogenous stimulants such as

MSU or bacterial RNA (25, 26). IL-1b interacts with receptors on

HSCs membranes to activate NF-kB, leading to the production of

Alpha-Smooth Muscle Actin (a-SMA) and type I collagen, both

markers of fibrosis (25, 26).

Currently, IL-1b is being explored as a potential therapeutic

target for liver fibrosis. The regulation of the Peroxisome

Proliferator-Activated Receptor (PPAR) nuclear receptor family

plays an important role in NASH treatment. Peroxisome

Proliferator-Activated Receptor gamma (PPARg) antagonists have
demonstrated therapeutic efficacy in NASH, while Peroxisome

Proliferator-Activated Receptor Delta (PPARd) activation

improved fatty acid oxidation and inhibited hepatic liposynthesis

and gluconeogenesis (27). PPARd antagonists also alleviated liver

inflammation and fibrosis by inhibiting the production of pro-

inflammatory factors such as IL-1b. MCC950 an inhibitor of

NLRP3 inflammasome activation, downregulated IL-1b
expression and significantly reduced hepatic fibrosis (28).

Additionally, chuanxiongzine has been shown to protect against

hepatic injury by modulating the NLRP3 inflammasome pathway,

lowering IL-1b levels, and reducing fibrosis-related inflammation

(29). Polysaccharides extracted from Angelica sinensis root

attenuated hepatic fibrosis by inhibiting IL-1b secretion and

HSCs activation (30, 31). In vivo and in vivo studies revealed that
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Aspergillus extracts ameliorated carbon tetrachloride (CCl4)-

induced liver fibrosis and TGF-b-induced HSCs activation, likely

through the Nrf2-mediated inhibition of the Reactive Oxygen

Species/NOD-like Receptor Pyrin domain-containing 3/

Interleukin-1 alpha (ROS/NLRP3/IL-1b) signaling pathway (32).

Collectively, these studies highlight the therapeutic potential of

targeting IL-1b in liver fibrosis.
Interleukin-6

IL-6, initially identified as B-cell growth/stimulating factor II

(33), is produced by various cells types, including fibroblasts,

hepatocytes, monocytes/macrophages, T-cells, and endothelial

cells (34). In the liver, IL-6 is predominantly expressed in

hepatocytes, KCs, and HSCs. IL-6 is a pro-inflammatory

cytokines with pleiotropic biological activities. Numerous studies

have demonstrated that, in addition to promoting inflammatory

responses, IL-6 induces lymphocyte differentiation and

proliferation, facilitates HSCs activation, and contributes to the

development of liver fibrosis (35).

As a pro-inflammatory cytokines, IL-6 participates in liver

inflammatory responses and plays a critical role in liver fibrosis

progression by regulating the secretion of pro-fibrotic factors,

activating signaling pathway, and promoting the proliferation and

differentiation of fibroblasts. In the transformation of chronic

hepatitis B (CHB)-associated liver fibrosis to cirrhosis, significantly

elevated levels of IL-6 mRNA have been detected in liver tissues,

peripheral blood mononuclear cells, and serum of patients with

cirrhosis. Correspondingly, IL-6 protein levels are markedly higher in

cirrhosis patients compared to those with liver fibrosis (36). A positive

correlation between serum IL-6 levels and the degree of fibrosis in

NASH has also been established (37). Additionally, IL-6 levels were

observed to increase progressively in patients with varying severities of

NAFLD. These levels were significantly associated with liver enzymes,

steatosis, and fibrosis, indicating that elevated peripheral serum IL-6

may promote the progression of liver fibrosis to cirrhosis (38).

Studies have demonstrated that serum IL-6 expression increases

before hepatocyte necrosis occurs. Additionally, cytokines such as

TGF-b, IL-6, and Interleukin-8 (IL-8) are significantly elevated in

the perihepatic sinusoidal wall and interlobular septa of the liver,

correlating with the degree of inflammation and liver fibrosis (39, 40).

In one study (41), IL-6 gene knockout mice subjected to acute and

chronic liver injury models induced by CCl4 exhibited increased a-
SMA levels in HSCs, indicating the role of IL-6 in fibrosis.

Glycoprotein 130 (gp130), the signal transduction receptor subunit

for IL-6, plays a critical role in this pathway. In high-fat diet-induced

fatty liver disease models, IL-6 or gp130 gene knockout resulted in

significant improvement in liver inflammation and steatosis, as well as

varying degrees of inhibition of tissue remodeling and fibrosis (42).

However, in a CCl4-induced chronic liver injury model, selective

gp130 gene knockout in non-parenchymal liver cells aggravated liver

fibrosis, highlighting the complex role of gp130 signaling in

fibrosis (43).

Mice deficient in acetaldehyde dehydrogenase and fed ethanol

were more susceptible to liver inflammation and fibrosis, likely due
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to higher levels of malondialdehyde-acetaldehyde adducts. These

adducts activate the Interleukin-6/Signal Transducer and Activator

of Transcription 3 (IL-6/STAT3) pathway in the liver (44). The

Extracellular Signal-Regulated Kinase (ERK) pathway also plays a

significant role. ERK, a serine/threonine protein kinase with two

subtypes (ERK1 and ERK2), is activated by IL-6. IL-6 synergizes

with acetaldehyde or malondialdehyde to activate the Mitogen-

Activated Protein Kinase (MAPK) cascade through gp130, thereby

phosphorylating and initiating the ERK1/2 signaling pathway. This

activation promotes HSCs activation and liver fibrosis formation in

mice (45, 46). Additionally, IL-6 induces HSCs activation and liver

fibrosis via the Janus Kinase/Signal Transducer and Activator of

Transcription 3 (JAK/STAT3) signaling pathway (47).

Interestingly, studies have reported conflicting results regarding

IL-6’s role in liver fibrosis. For instance, in high-fat diet-fed mice

with myeloid-specific IL-6 receptor A knockout (IL-6RA-KO), liver

fibrosis was more severe compared to wild-type mice. This

phenomenon was linked to decreased levels of anti-fibrotic

microRNA-223 (miR-223). IL-6 treatment was shown to prompt

macrophages to release miR-223-rich exosomes, which

subsequently reduced the expression of the fibrosis-promoting

transcriptional coactivator with PDZ-binding motif (TAZ) in

hepatocytes, thereby ameliorating liver fibrosis (48). Moreover,

myeloid-specific IL-6Ra knockout mice (Il6raMye-/-) and IL-6-

silenced mice subjected to high-fat diets exhibited reduced

inflammation but increased liver fibrosis, further highlighting the

complex and sometimes contradictory role of IL-6 in fibrosis (48).

These discrepancies may stem from differences in experimental

models, the broad expression of transmembrane IL-6Ra and its

signaling chain gp130, and the involvement of soluble IL-6R and

soluble gp130 (49).

IL-6 plays an important role in liver fibrosis caused by various

etiologies. As a key pathway in fibrosis development, the IL-6-

related signaling cascade holds promise as a novel serum marker for

evaluating the severity of liver fibrosis. Furthermore, antibodies-

based therapies targeting the IL-6 pathway represent a potential

new approach for treating liver fibrosis.
Interleukin-17

IL-17 is a characteristic cytokines of T helper 17 cells (Th17

cells), predominantly produced by Th17 cells and primarily

expressed in Th17 cells, hepatocytes, and KCs in the liver (50).

Interleukin-17A (IL-17A), a member of the IL-17 family, is

commonly regarded as an important inflammatory mediator. It

promotes the progression of liver fibrosis by acting on HSCs and

contributing to ECM remodeling (51).

IL-17A has been shown to stimulate the activation of HSCs and

contribute to liver fibrosis by increasing the expression of pro-

inflammatory cytokines, such as IL-6, IL-1b, and TNF-a, as well as
pro-fibrotic factors like TGF-b and a-SMA. The synergistic effects of

IL-17A and TGF-b cytokines further activate HSCs, leading to

increased collagen production and exacerbating liver fibrosis (52, 53).

In a CCl4-induced mouse model of liver fibrosis, exosome-mediated

activation of Toll-like Receptor 3 in HSCs during the early stages of
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liver injury promoted the progression of liver fibrosis by enhancing the

production of IL-17A from Gamma Delta T cells (54). KCs, expressing

IL-17RA and IL-17RC are activated by IL-17A, further promoting liver

inflammation and fibrosis by secreting pro-inflammatory mediators

and pro-fibrotic cytokines such as TGF-b, which induce HSCs

activation (53, 55). In vitro studies have demonstrated that IL-17A

induces the expression of Matrix Metalloproteinase-2 and Matrix

Metalloproteinase-9 (56), and another study found that liver fibrosis

was significantly reduced in a model of IL-17A receptor-deficient mice

infected with Schistosoma haematobium (57). An analysis of 22 human

liver samples at different fibrosis stages (F0 ~ F4) suggested that IL-17A

promotes fibrosis by inducing the expression of IL-6 and other pro-

fibrotic markers such as IL-22 and TGF-b1 (58). These findings

confirm that IL-17A contributes to liver fibrosis through two

primary pathways: (1) IL-17A expressed in the liver interstitium

directly activates HSCs to produce large amounts of collagen; (2) IL-

17A stimulates endothelial cells and fibroblasts to secrete various

cytokines, chemokines, and cell adhesion factors, inhibited ECM

degradation, and promotes fibroblasts proliferation. IL-17A-mediated

immune responses significantly affect the hepatic microenvironment,

advancing liver fibrosis and correlating positively with fibrosis

severity (53).

IL-17A plays a key role in the inflammatory pathways

associated with liver injury and may serve as a potential

adjunctive diagnostic marker for liver fibrosis (59). Since

Cirrhosis can progress to Hepatocellular Carcinoma, studies have

suggested that the combined measurement of Alpha-Fetoprotein

and IL-17 levels in peripheral serum can predict the prognosis of

cirrhotic patients (60). In Hepatitis C Virus (HCV)-associated liver

fibrosis, elevated serum IL-17A levels are positively correlated with

aminotransferases levels, alpha-fetoprotein concentrations, and

fibrosis staging scores, indicating that IL-17A could serve as a

biomarker for inflammation and fibrosis progression in chronic

HCV infection (61). Therapeutically, IL-17A inhibitors have shown

promise in preclinical and clinical studies. These inhibitors suppress

HSCs activation and collagen production (51). In a mouse model of

Bile Duct Ligation (BDL)-induced liver fibrosis, IL-17A antibody

therapy reduced hepatocyte necrosis, decreased pro-inflammatory

cytokines, and mitigated neutrophil and macrophage infiltration

(62). Furthermore, IL-17A antibody therapy ameliorated hepatic

fibrosis in a NASH mouse model (63). Interestingly, IL-17A

antibody treatment improved liver fibrosis in 10 psoriasis patients

(64), highlighting its potential as a therapeutic target for anti-

fibrotic therapies.
Interleukin-18

IL-18, a member of the IL-1 superfamily originally identified as

an Interferon-gamma (IFN-g) inducer, plays a critical role in

regulating both innate and adaptive immune responses (65). IL-18

exerts its immunomodulatory effects primarily binding to the

Interleukin-18 Receptor (IL-18R) on the cell membrane (66). It is

predominantly synthesized and secreted by KCs and monocytes (67).

In mice with NASH-associated liver fibrosis induced by a high-

fat diet, Studies have shown that IL-18 promotes the progression of
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liver fibrosis. Single-cell RNA sequencing data revealed high

expression levels of IL-18 and IL-18R1 on mouse HSCs.

Treatment of primary mouse HSCs with recombinant IL-18

accelerated their differentiation into myofibroblasts. Furthermore,

the activation of HSCs triggered by NLRP3 inflammasome

activation was inhibited when IL-18 signaling was blocked by its

natural antagonist, Interleukin-18 Binding Protein (68).

A recent study found that, in a mouse model of CCl4-induced

liver fibrosis, the Citrus aurantium extract astragalin inhibited the

expression of TNF-a, IL-18, and IL-1b mRNAs in the livers of

fibrotic mice through the NF-kB/NLRP3 inflammasome pathway,

significantly ameliorating liver fibrosis (69). In the mouse model of

liver fibrosis induced by thioacetamide, ginsenoside was shown to

inhibit the entry of IL-1b and IL-18 into the extracellular matrix by

regulating ERRa-P2X7r signaling pathway, thereby reducing

inflammatory responses, improving hepatocyte damage, and

suppressing liver fibrosis (70). In clinical studies, the expression

level of IL-18 in the peripheral serum of patients with hepatitis B-

associated cirrhosis complicated by hepatorenal syndrome (HRS)

was significantly higher than in patients without this complication.

The sensitivity and specificity of IL-18 for predicting HRS were

90.32% and 71.70%, respectively, suggesting that IL-18 could

predict the prognosis of patients with hepatitis B-related cirrhosis

(71). Additionally, another study suggested a potential association

between the IL-18 -137G/C gene variant and the risk of cirrhosis

susceptibility (72). These studies indicate that traditional Chinese

medicine monomer compounds can improve liver fibrosis by

inhibiting IL-18. Furthermore, IL-18 could serve as a therapeutic

target and potential biomarker for the prognosis of liver fibrosis.

However, extensive clinical and basic research is still required to

confirm these findings.
Interleukin-33

IL-33, a member of the IL-1 cytokine superfamily, is a key

regulator in pathological inflammation, immune homeostasis, and

fibrosis. IL-33 plays a key role in innate and adaptive immunity,

contributes to tissue homeostasis, and responds to environmental

stress. It is abundantly expressed in the endothelial and epithelial

cells during both homeostasis and inflammation (73). In the liver,

IL-33 is primarily expressed in HSCs and KCs (74). Its reporter,

Suppression of Tumorigenicity 2 (ST2), also known as Interleukin-1

Receptor-Like 1, is predominantly expressed in tissue-resident

immune cells (75). Upon cellular damage, IL-33 binds to ST2,

stimulating immune cell activity (76). The IL-33/ST2 signaling axis

is pivotal in liver fibrosis, balancing inflammation with tissue

regeneration, wound healing, and tissue repair.

IL-33 has been found to correlate positively with collagen

expression, with HSCs being the primary source of IL-33 in

fibrotic liver (77). Protein and mRNA levels of IL-33 and ST2 are

elevated in fibrotic livers of both mice and humans, with these levels

significantly increasing as fibrosis progresses (78, 79). In a mouse

model of hepatic fibrosis, IL-33 knockdown led to a marked
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improvement in fibrosis (80). However, another study reported

that IL-33 deficiency did not attenuate liver fibrosis in a high-fat

diet-induced steatohepatitis model (81). In a schistosome mouse

model, both IL-33 and ST2 levels were elevated, suggesting that the

IL-33/ST2 axis might serve as a therapeutic target for liver fibrosis

(82). However, while IL-33-targeted therapy mitigates high-fat diet-

induced hepatic steatosis, it can exacerbate liver fibrosis through

ST2 signaling (79).

Numerous studies have confirmed that the Interleukin-33/T

helper 2 cells (IL-33/Th2) axis contributes to liver fibrosis (83).

Group 2 innate lymphoid cells (ILC2s), a novel type of innate

immune cell in the lymphocyte lineage, are important for liver

immune homeostasis and secrete pro-fibrotic cytokines that

mediate fibrogenesis. IL-33 attracts ILC2s and activates HSCs by

inducing cytokines such as IL-13. Animal studies have shown that

ST2 deletion reduces liver injury, inflammatory cell infiltration, and

fibrosis. IL-33 activates and aggregates ILC2 cells via ST2 in the

liver, and the activated ILC2s secrete IL-13, which in turn activates

HSCs through the IL-4Ra-STAT6 transcription factor pathway

(80). Furthermore, IL-33 recruits and activates Th2-like CD4+ T

cells, which enhance HSCs activation in an Interleukin-13 (IL-13)-

dependent manner (84). The IL-33-mediated Th2 immune

response promotes HSCs proliferation, TGF-b synthesis, and

collagen deposition, with overexpression of IL-33 inducing liver

fibrosis. This suggests that IL-33 exerts its pro-fibrotic effects

primarily through IL-13 (77).

Regulatory T cells (Tregs), which provide negative feedback

regulation of immune responses, are also influenced by IL-33.

Studies have shown that Tregs activation by IL-33 is dependent

on MyD88. IL-33 binding to ST2 on Tregs activates MyD88,

resulting in the expansion of Foxp3+ Tregs in vivo (85). In liver

fibrosis, IL-33 may play a dual regulatory role through ST2+Treg.

On one hand, activated Tregs can promote fibrogenesis. In chronic

hepatitis C, Tregs accumulate at fibrotic sites and secrete

interleukin-8, which acts on HSCs to upregulation fibrosis-related

factors and collagen (86). Additionally, Tregs may adopt a Th2-like

role, with IL-33 inducing ST2+ Foxp3+ Tregs to promote fibrosis

(87). On the other hand, Tregs exert anti-fibrotic effects via IL-10

secretion. In a BDL-induced liver fibrosis model, Treg inhibition

resulted in reduced IL-10 expression, increased fibrosis, and greater

inflammatory cell infiltration (88).

Genetic studies have identified associations between IL-33 gene

variants and susceptibility to HBV-related cirrhosis. IL33-

rs4742170C, rs1048274G, and rs10975519C variants may serve as

potential biomarkers for diagnosing HBV-associated cirrhosis (89).

In HCV-associated fibrosis, serum IL-33 levels correlate with

fibrosis stage and viral load, suggesting that IL-33 could be a

biomarker for disease progression (90). Recent research (91) has

identified a new chemokine, PSMP (PC3-secreted microprotein),

whose receptor is C-C Chemokine Receptor 2 (CCR2). PSMP

promotes hepatic fibrosis by polarizing macrophages and directly

activating HSCs via CCR2. IL-33, as a damage-associated molecular

pattern (DAMP), enhances PSMP production, highlighting its

critical role in hepatic fibrosis progression (92). In BDL-induced
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hepatic fibrosis models, injury-induced release of endogenous IL-33

triggers inflammation and fibrosis. However, acute massive liver

injury sees IL-33 activating tissue-protective mechanisms, whereas

in chronic injury, it promotes fibrosis (77). Melatonin has

demonstrated protective effects in hepatic ischemia-reperfusion

injury by inhibiting oxidative stress and apoptosis through the IL-

33 signaling pathway (93). The role of IL-33 in liver fibrosis

warrants further exploration and holds potential as a therapeutic

target for fibrosis treatment.
Interleukin-36

IL-36 is a member of the IL-1 superfamily. It Regulates immune

cell responses, and activates fibroblasts. IL-36 consists of three

receptor agonists- IL-36a, IL-36b, and IL-36g-as well as the IL-36
receptor antagonist (IL-36Ra). Initially, IL-36 was also referred to as

IL-1F6, IL-1F8, among another names. The receptors for IL-36 are

primarily IL-36 receptor alpha (IL-36Ra) and IL-1 receptor

accessory protein IL-1RAcP, which together form a complex

consisting of two subunits (94). IL-36 cytokines are expressed in

various cell types, including keratinocytes, monocytes, and

dendritic cells (DCs). In the liver, IL-36 is predominantly

expressed in macrophages, DCs, and endothelial cells. IL-36a is

expressed during embryonic development and is highly enriched in

epithelial cells, monocytes, B cells, and T cells (95, 96). IL-36b is also
expressed in epithelial cells and is regulated by epidermal growth

factor (97). IL-36g is expressed in stimulated esophageal

keratinocytes and squamous epithelium cells (96, 98). IL-36

influences inflammatory responses through multiple mechanisms,

including inducing the secretion of inflammatory mediators and

chemokines and modulating immune cell function.

Research indicates that IL-36 participates in early tissue

inflammatory responses via multiple immune pathways (99). In

an animal model of liver injury, IL-36 was implicated in the early

inflammatory response, as high levels of C-C Motif Chemokine

Ligand 20 (CCL20) expression were detected in liver tissues. CCL20

activation promotes liver fibrosis development (100). In a mouse

model of acetaminophen-induced liver injury, IL-36g and CCL20

were both highly expressed. Treatment with IL-36Ra reduced

CCL20 expression at both the mRNA and protein levels and

alleviated liver injury. This suggests that blocking IL-36 signaling

can mitigate liver inflammation by decreasing CCL20 expression

and, consequently, may intervene in the progression of liver

fibrosis (101).

IL-36 plays an important role in liver fibrosis. Studies have

shown that IL-36 exerts pro-fibrotic effects by binding to its

receptor. However, no drugs have been developed specifically

targeting IL-36 for liver fibrosis treatment. The use of

recombinant IL-36Ra or IL-36R blockers represents a potential

therapeutic strategy and warrants further investigation.

The role of interleukins in promoting liver fibrosis is shown in

Table 1. Table 2 summarizes the signaling pathways involved in the

pro-fibrotic effects of interleukins, and Figure 1 illustrates the
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mechanisms through which these pro-fibrotic interleukins act in

liver fibrosis.
Interleukins exerting anti-liver
fibrosis effects

Interleukin-10

IL-10 is a cytokines with ant i- inflammatory and

immunosuppressive effects. It reduces immune cell infiltration and

inhibits the release of inflammatory factors. The IL-10 receptor (IL-

10R) is primarily composed of two subunits: IL-10R1 and IL-10R2

(102). In the liver, IL-10 can be secreted by hepatocytes, KCs,

regulatory B (Breg) cells and Treg cells, among other cell types (103).

IL-10 promotes the translocation of phosphorylated STAT3 from the

cytoplasm to the nucleus by enhancing phosphorylation signal

transduction and STAT3 expression, thereby activating STAT3 and

inhibiting autophagy (104). It also regulates autophagy in HSC-T6 cells

through the STAT3-mTOR-p70S6K axis (105) and inhibits

autophagosome formation in HSCs induced by oxidative stress by

activating the mTOR-STAT3 pathway (106). This process suppresses

the release of inflammatory factors, inhibits immune cell activation,

and alleviates liver fibrosis.

IL-10 inhibits immune cell activation, attenuates hepatic

inflammatory, and exerts protective effects on liver fibrosis

progression (107). It effectively reduces the production of the pro-

fibrotic factor TGF-b1, inhibits macrophages synthesis and

secretion of TNF-a, downregulate the downstream effector NF-

kB, and remodels the ECM (108). During liver fibrosis, IL-10

mitigates fibrosis by suppressing inflammatory cellular immune

responses and the production of TGF-b1, TNF-a, and tissue

inhibitors of metalloproteinases (107, 109). Additionally, IL-10

inhibits ECM synthesis and promotes its degradation (110, 111).

In a mouse model of liver fibrosis induced by BDL, IL-10 was

highly expressed in HSCs (112). Elevated IL-10 expression in

human liver tissues reduces hepatocyte apoptosis and reverses

liver fibrosis (113, 114). HSCs may secrete autocrine IL-10 to

inhibit collagen synthesis, suppress liver inflammatory responses,

and slow the progression of liver fibrosis (115). A study reported

that using IL-10-modified bone marrow-derived DCs, where the

DCs were immature and infused into CCL4-induced hepatic

fibrotic mice, significantly alleviated liver fibrosis. This treatment

increased Treg cell expression in the liver while reducing

inflammatory cytokines such as Interleukin-12 (IL-12), IL-22, and

TNF-a (116). Furthermore, in vitro studies showed that IL-10

secretion by immature dendritic cells (imDCs) increased

apoptosis and inhibited the proliferation of LX-2 cells. It also

downregulated a-SMA mRNA expression and decreased TGF-b1
and Smad3 proteins levels, suggesting that IL-10 secretion by

imDCs inhibit LX-2 activation via suppressing of the TGF-b1/
Smad3 pathway (117). Recent studies indicate that IL-10 gene

intervention enhances the accumulation of NK cells in the liver
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by improving their immune functions, including activation,

cytotoxicity, development, and migration. It also increases the

expression of NKG2D, IFN-g, and CD107a in the liver tissue,

thereby alleviating liver fibrosis (118).
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The finding provide new theoretical support for the anti-fibrotic

effects of IL-10. As a key negative feedback regulator, IL-10 prevents

the onset and progression of liver fibrosis by inhibition the release of

inflammatory mediator, suppressing NF-kB activity, and acting
TABLE 1 Role of interleukins associated with liver fibrosis.

Categorization The Interleukins Primary role Role in liver fibrosis Bibliography

Interleukins exerting
pro-liver

fibrosis effects

IL-1 Pro-inflammatory, pro-fibrotic
Promote liver cell death
Promotes the release of pro-fibrotic factors TGF-b and
PDGF, activation of HSCs, and ECM production.

(9–32)

IL-6 Pro-inflammatory, pro-fibrotic
Activation of HSCs is positively correlated with the
degree of liver inflammation and liver fibrosis

(33–49)

IL-17 Pro-inflammatory, pro-fibrotic

Promotion of pro-inflammatory cytokines, neutrophil
and macrophage infiltration
Promote the expression of pro-fibrotic factor receptor
to stimulate the activation of HSCs, inhibit the
decomposition of ECM, and stimulate the proliferation
of fibroblasts.

(50–64)

IL-18 Pro-inflammatory, pro-fibrotic
Activation of HSCs, accelerated differentiation of HSCs
into myofibroblasts promote liver fibrosis

(65–72)

IL-33 Pro-inflammatory, pro-fibrotic

Attracts type 2 intrinsic lymphocytes and activates
HSCs by releasing IL-13.
Aggregation of large amounts of Treg to the site of
fibrosis caused upregulation of the expression of
fibrosis-associated factors and collagen
Promotes infiltration and polarization of inflammatory
macrophages and production of pro-
inflammatory cytokines

(73–93)

IL-36 Pro-inflammatory, pro-fibrotic

Involved in the immune-inflammatory response in the
liver, promotes the expression of the pro-inflammatory
chemokine CCL20 aggravates liver inflammation and
promotes hepatic fibrosis.

(94–101)

Interleukins exerting
anti-liver

fibrosis effects

IL-10
Regulatory cytokine,
anti-inflammatory

Inhibiting the release of pro-fibrotic factors as well as
inflammatory mediators, reducing hepatocyte
apoptosis, and inhibiting autophagy in HSCs.
Inhibits ECM synthesis and promotes its degradation

(102–118)

IL-35
Anti-inflammatory,

anti-fibrotic

Inhibits the proliferation of CD4 CD25 effector T cells
and the differentiation of Th17 cells to attenuate
liver inflammation.

(119–128)

IL-37
Anti-inflammatory,

anti-fibrotic

Promotes macrophage polarization from M1-type to
M2-type and down-regulates the expression of
associated inflammatory chemokines.
Limiting lymphocyte, macrophage and KC infiltration
into the liver and inhibiting the release of pro-
inflammatory and pro-fibrotic cytokines attenuates
liver inflammation, inhibits HSCs activation and
reduces collagen deposition.

(128–131, 132)

Interleukins that
exert bidirectional

regulation of
liver fibrosis

IL-4
Dual anti-inflammatory and
pro-inflammatory effects

Increases collagen synthesis and inhibits cell
proliferation.
Promoting macrophage polarization towards the M2
phenotype decreases pro-inflammatory cytokine
expression and increases expression of the anti-
inflammatory cytokine IL-10

(133–139)

IL-22
Dual anti-inflammatory and
pro-inflammatory effects,
promoting tissue repair

Down-regulate the level of inflammatory cytokines,
inhibit the activation of HSCs, hepatocyte autophagy,
and promote the proliferation of liver progenitor cells
and tissue repair to play a role in protecting the liver
Promotes Th17 recruitment to sites of liver
inflammation, exacerbates liver inflammation and
promotes hepatic fibrosis progression

(31, 124, 140–150)
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through other mechanisms to protect the liver. Although the anti-

fibrotic properties of IL-10 are well-recognized, its precise

mechanisms and clinical application prospects require further in-

depth research and exploration.
Interleukin-35

IL-35 is a newly identified cytokines and a member of the IL-12

cytokine superfamily. It is a heterodimer composed of EBV-

inducible gene 3 and IL-12p35, primarily secreted by Treg cells.

IL-35 enhances Treg function through positive feedback and plays a

critical role in maintaining immune homeostasis within the hepatic

microenvironment. The IL-35 receptor (IL-35R) is primarily

composed of two subunits: IL-12 receptor beta 2 (IL-12Rb2) and
IL-27 receptor alpha (IL-27Ra) (119). IL-35 inhibits the

proliferation of CD4+ CD25+ effector T cells and the

differentiation of Th17 cells, thus contributing to immune balance

in the liver (120–122).

Serum IL-35 levels are significantly elevated in patients with

HBV-associated cirrhosis compared to healthy controls and show a

positive correlation with IL-17, IL-22, and IL-33 (123, 124). In the

early stage of HBV-associated cirrhosis, the number of Th17 cells

increases, and HSCs become activated, secreting pro-inflammatory

cytokines such as IL-17 and TGF-b. To mitigate inflammatory

damage to hepatocytes, Treg cells secrete IL-35 and IL-10,

effectively suppressing Th17 differentiation and IL-17 production

in HBV-associated cirrhosis (125). Furthermore, IL-35 knockdown

increase the expression levels of IL-17 and IL-22 (126). IL-35

inhibits the binding of TGF-b to its receptor and suppresses the

phosphorylation of Smad3, a downstream effector of the TGF-b
receptor. This mechanism reduces Th17 differentiation and IL-17

synthesis in patients with HBV-associated cirrhosis (126).

Additionally, the expression of IL-35 correlates with the

histological grade and severity of PBC. serum IL-35 levels are
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higher in patients with stage III and IV disease compared to those

in stage II. Moreover, IL-35 mRNA and protein levels negatively

correlate with the Child-Pugh score for cirrhosis severity (127, 128).

IL-35 shows potential to improve liver fibrosis by inhibiting

Th17 differentiation and IL-17 synthesis. However, its precise

mechanisms remain unclear, and no anti-fibrotic drugs targeting

IL-35 have been developed. Further research is needed to elucidate

the specific roles and mechanisms of IL-35 in liver fibrosis.
Interleukin-37

IIL-37 is an important anti-inflammatory cytokines within the

IL-1 family. It plays a crucial role in the prevention and treatment of

liver fibrosis. IL-37 is expressed in various immune cells, including

NK cells, B cells, T cells, and macrophages (129). In liver tissues, IL-

37 is predominantly expressed in hepatocytes and can also be

detected in intrahepatic cholangiocytes, HSCs and KCs (130).

IL-37 mitigates liver inflammation and alleviates liver fibrosis by

inhibiting the expression of pro-inflammatory cytokines and

chemokines in hepatocytes and KCs, reducing neutrophil activity,

and acting directly on hepatocytes. Serum IL-37 levels have been

found to be higher in patients with cirrhosis compared to healthy

controls and positively correlated with cirrhosis stage score. In a BDL-

induced mouse model of liver fibrosis, IL-37 overexpression reduced

the inflammatory response and HSCs activation (131). In IL-37

transgenic mice with BDL-induced liver fibrosis, reduced expression

levels of early liver fibrosis markers, such as C-X-C Motif Chemokine

Ligand 2, were observed, along with decreased collagen deposition and

liver fibrosis. In vitro experiments further demonstrated that IL-37

inhibits IL-1-induced activation of HSCs (131). Additionally, another

study found that IL-37 promotes macrophages polarization from the

pro-inflammatory M1 type to the anti-inflammatory M2 type and

downregulates the expression of inflammatory chemokines, thereby

inhibiting liver fibrosis. This mechanismmay be associated with AMP-
TABLE 2 Signaling pathways involved in interleukins in liver fibrosis.

Categorization Interleukin Key Receptors Residence in the liver Key Signaling Pathways

Interleukin exerting pro-liver
fibrosis effects

IL-1 IL-1R1/IL-1RAcP Kupffer cells, liver endothelial cells, HSCs MyD88-IRAK-NF-kB

IL-6 IL-6R/gp130 Hepatocytes, Kupffer cells, HSCs JAK/STAT3, MAPK (ERK1/2), gp130

IL-17 IL-17RA/IL-17RC Th17 cells, hepatocytes, Kupffer cells NF-kB

IL-18 IL-18R Kupffer cells, monocytes NF-kB/NLRP3, ERRa-P2X7r

IL-33 ST2 (IL1RL1) HSCs, Kupffer cells IL-33/ST2, IL-13/STAT6

IL-36 IL-36R/IL-1RAcP
Macrophages, dendritic cells,

endothelial cells
CCL20-related signaling

Interleukin exerting anti-liver
fibrosis effects

IL-10 IL-10R (IL-10R1/IL-10R2)
Hepatocytes, Kupffer cells, regulatory B

(Breg) cells, Treg cells
STAT3-related signaling

IL-35 IL-12Rb2/IL-27Ra Regulatory T cells Smad3/TGF-b

IL-37 – Hepatocytes, HSCs, Kupffer cells AMPK-Smad3

Interleukins that exert
bidirectional regulation of

liver fibrosis

IL-4 IL-4R Kupffer cells PPARg/STAT3, MMP10

IL-22 IL-22R1/IL-10R2
CD4 and CD8 T cells, gdT cells, NK cells,

innate lymphoid cells (ILCs)
STAT3, PI3K/AKT/mTOR, IL-22BP
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activated Protein Kinase (AMPK) pathway activation induced by

Smad3 interaction (132). Recent studies have reported that IL-37

inhibits the activation of KCs and HSCs and interferes with TGF-b
signaling, thereby reducing liver fibrosis and inflammation levels (131).

Furthermore, IL-37 exerts protective effect against hepatic ischemia/

reperfusion injury by decreasing pro-inflammatory cytokines and

chemokines produced by hepatocytes and KCs, directly protecting

hepatocytes from damage. As a novel anti-inflammatory factor, IL-37

holds promise as a potential therapeutic target for liver fibrosis.

Table 1 summarizes the role of interleukins in anti-liver fibrosis.

Table 2 outlines the signaling pathways involved in the anti-fibrotic

effects of interleukins, and Figure 1 illustrates the mechanisms

through which these interleukins exert their anti-fibrotic effects.
Interleukins that exert bi-directional
regulation of liver fibrosis

Interleukin-4

IL-4 is a Th2 cytokines that regulates the immune response,

including eosinophil recruitment, parasite clearance, and IgE class

switching, which can lead to hypersensitivity reaction. Additionally,

IL-4 inhibits the activity of Th1 cells, thereby exerting some anti-

inflammatory effects (94). It is mainly expressed in KCs in the liver.

Its receptor is IL-4R (133). In the liver, IL-4 plays a dual role in liver

fibrosis by inducing KCs to transform into multinucleated giant

cells, stimulating the proliferation of HSCs, upregulating PPARg,
and regulating macrophage polarization (134).

Studies have shown that IL-4 induces hepatic KCs to transform

into multinucleated giant cells and stimulates HSCs proliferation (135).

Moreover, IL-4 can act directly on HSCs to promote their proliferation,

increase collagen production, and accelerate the progression of liver

fibrosis (136, 137). In addition, IL-4 can stimulate macrophage
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polarization toward the M2 phenotype. During this process, PPARg
binds to the matrix metallopeptidase 10 (MMP10) promoter,

upregulating MMP10 expression. This mechanism further activates

the downstream STAT3 signaling pathway, inducing M2 macrophage

polarization. As a result, pro-inflammatory cytokines such as IL-1b and
TNF-a are downregulated, while the anti-inflammatory cytokines IL-

10 is upregulated. These changes contribute to the amelioration of

hepatic steatosis and fibrosis (138). Furthermore, melatonin has been

shown to attenuate thioacetamide-induced liver fibrosis in male rats by

modulating IL-6, IL-4, apoptosis, and urokinase-type plasminogen

activator receptor-related protein/Endo180 expression (139). These

findings suggest that IL-4 could serve as a potential therapeutic

target for liver fibrosis.
Interleukin-22

IL-22,also known as IL-10-related T cell-derived inducer (IL-T1F),

belongs to the IL-10 family. IL-22 is produced by a variety of immune

cells, including CD4+ and CD8+ T cells, gdT cells, NK cells, and ILCs

(140). It exerts its biological function by binding to the heterodimeric

membrane receptor complex IL-22R1/IL-10R2, which is specifically

expressed on the surface of tissues such as the skin, kidney, and liver.

The IL-22/IL-22R1/IL-22R2 complex primarily activates the

downstream JAK-STAT signaling pathway, mainly involving STAT3.

IL-22 can also activate the p38 kinase, c-jun N-terminal kinase (JNK),

and ERK1/2 pathways (141).

IL-22 has been found to have anti-liver fibrosis effects, IL-22

overexpression attenuates hepatic fibrosis by inhibiting the activation

of HSCs and downregulating inflammatory cytokines (142). In a CCl4-

induced mouse model of liver fibrosis, IL-22 attenuated fibrosis by

regulating cell polarization, inhibiting the STAT3/Erk/Akt pathway,

and increasing the M2/M1-KCs ratio of KCs (143). In addition, in the
FIGURE 1

Mechanism of action of the interleukin family in liver fibrosis.
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CCL4 mouse model of liver fibrosis, it was found that HSCs could

expressed IL-22 receptor 1 in large quantities. IL-22 activated the

STAT3 signaling pathway by binding to its receptor, which in turn

induced senescence in HSCs and attenuated liver fibrosis (144). In the

BDL-induced mouse model of liver fibrosis, IL-22 was shown to

increase collagen type I expression while significantly reducing a-
SMA mRNA expression, suggesting its antifibrotic effect (53). In the

schistosome-induced mouse liver fibrosis model, liposomal IL-22

improved fibrosis via the miR-let7a/STAT3 signaling pathway (145).

In another study, inflammatory cells in CHB patients, which promoted

hepatic progenitor cell proliferation and tissue repair through the

STAT3 signaling pathway, suggesting that IL-22 plays a protective

role in liver repair (146). It has also been found that IL-22 binding

protein (IL-22BP), an inhibitor of IL-22, can aggravate fibrosis and

cirrhosis in chronic HCV-infected patients (147). In an alcoholic

mouse model of liver fibrosis, IL-22 ameliorated fibrosis partly by

inhibiting hepatocyte autophagy and the PI3K/AKT/mTOR

pathway (148).

However, IL-22 has also been reported to exert pro-liver fibrosis

effects. In HBV-infected cirrhotic patients and an HBV transgenic

mouse model of chronic liver inflammation and fibrosis, IL-22

induced the recruitment of Th17 cells to the sites of liver

inflammation. It promoted the production of more IL-22,

creating a positive feedback loop that exacerbated chronic

inflammation and fibrosis. In a study involving 74 CHB patients,

36 hepatitis B cirrhosis patients, and 10 healthy controls, IL-22

levels positively correlated with the degree of liver fibrosis. When

IL-22 was applied to stimulate HSCs in vitro, it produced

chemokines that attracted Th17 cells, accelerating liver

inflammation and fibrosis (124). IL-22 may lose its protective

effect in the presence of IL-17 and even have pathogenicity (149).

Studies have reported that an increase in IL-22-positive cells in the

liver of HCV-infected patients correlated with fibrosis staging

scores and clinical progression from chronic hepatitis to cirrhosis.

In vitro experiments showed that IL-22 increased a-SMA

expression and collagen production by inhibiting apoptosis and

promoting proliferation of LX-2 cells (150).

Angelica sinensis polysaccharide (ASP) has hepatoprotective

effects. In a CCl4-induced mouse model of liver fibrosis, ASP

promoted IL-22 secretion, inhibited HSCs activation, and

effectively attenuates fibrosis through the IL-22/STAT3 pathway

(31). The balance between anti-inflammatory and pro-

inflammatory effects of IL-22 may determine its role in liver

fibrosis, and its exact mechanisms require further investigation.

The relationship between IL-22 and liver fibrosis remains

controversial. These seemingly contradictory results may be due

to differences in disease models, degrees of liver injury, immune

microenvironment, and cytokines interactions, The dual anti-

inflammatory and pro-inflammatory roles of IL-22 in fibrosis

caused by HBV and HCV infections warrant in-depth exploration

to better understand its role in liver fibrosis.

Table 1 illustrates the bidirectional regulatory effects of

interleukins on liver fibrosis. Table 2 shows the signaling

pathways related to interleukins involved in liver fibrosis, and

Figure 1 explains the mechanisms through which these

interleukins act in liver fibrosis.
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Conclusions and perspectives

Liver fibrosis is a dynamic pathological process involving

multiple factors and pathways, resulting from intricate cellular

crosstalk. In recent years, significant progress has been made in

understanding the pathogenesis and exploring treatments for liver

fibrosis. However, effective anti-fibrotic therapies are still lacking in

clinical practice. The interleukin family of cytokines plays a pivotal

role in the initiation and regulation of inflammation, as well as in

innate and adaptive immunity, by activating complex cascades

involving cytokines, chemokines, adhesion molecules, and lipid

mediators. In the context of liver fibrosis, many interleukins, such

as IL-1, IL-6, IL-17, IL-18, IL-33, and IL-36, exhibit pro-fibrotic

effects. These cytokines exacerbate fibrosis by inducing the

infiltration monocytes/macrophages infiltration into liver tissues,

upregulating pro-inflammatory and pro-fibrotic cytokines, and

promoting the proliferation and activation of HSCs. Conversely,

certain interleukins, including IL-10, IL-35 and IL-37 have

protective effects against liver fibrosis. These cytokines suppress

the release of pro-inflammatory mediators, inhibit fibrosis-related

pathways and ECM synthesis, and promote ECM degradation.

Moreover, interleukins such as IL-4 and IL-22 exhibit dual roles,

functioning as both anti-inflammatory and pro-inflammatory

mediators in liver fibrosis, warranting further investigation.

Developing interleukin-targeting therapies, either inhibitors or

agonists, holds promise as a potential treatment strategy. However,

current research is predominantly at the cellular and animal model

levels. Further studies are needed to elucidate the underlying

mechanisms and evaluate the clinical applicability of these therapies.

Emerging technologies and advancements in interleukin-based

treatments are anticipated to play a positive role in managing liver

fibrosis in the future.
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