
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Maria Norte-Muñoz,
University of Murcia, Spain

REVIEWED BY

Matteo Spinelli,
University College London, United Kingdom
Paula Izquierdo-Altarejos,
Principe Felipe Research Center (CIPF), Spain

*CORRESPONDENCE

Tao Qin

12124873@qq.com

Dingyu Rao

18329037521@163.com

Defa Huang

aa3716340@163.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 07 October 2024
ACCEPTED 10 March 2025

PUBLISHED 02 April 2025

CITATION

Shen H, Chen J, Liu M, Zhao M, Hu D, Xie F,
Jin Q, Xiao D, Peng Z, Qin T, Rao D and
Huang D (2025) Research progress of
extracellular vesicles derived from
mesenchymal stem cells in the treatment
of neurodegenerative diseases.
Front. Immunol. 16:1496304.
doi: 10.3389/fimmu.2025.1496304

COPYRIGHT

© 2025 Shen, Chen, Liu, Zhao, Hu, Xie, Jin,
Xiao, Peng, Qin, Rao and Huang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 02 April 2025

DOI 10.3389/fimmu.2025.1496304
Research progress of
extracellular vesicles
derived from mesenchymal
stem cells in the treatment of
neurodegenerative diseases
Haibin Shen1†, Jie Chen2†, Meijin Liu3†, Minghong Zhao4,
Die Hu1, Fangfang Xie1, Qing Jin1, Dewang Xiao5,
Zongbo Peng5, Tao Qin4*, Dingyu Rao6* and Defa Huang1*

1Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,
2Department of Laboratory Medicine, Yongchuan Hospital of Chongqing Medical University,
Chongqing, Yongchuan, China, 3Laboratory Medicine, People’s Hospital of Ganzhou Economic
Development Zone, Ganzhou, China, 4Laboratory Medicine, Guizhou Aerospace Hospital,
Zunyi, China, 5The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China,
6Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University,
Ganzhou, China
As the world’s population ages, neurodegenerative diseases are becoming more

widely acknowledged as serious global health and socioeconomic issues.

Although many resources have been devoted to the research of these

illnesses, little progress has been made in the creation of novel diagnostic and

therapeutic approaches. Extracellular vesicles (EVs) are released by all cell types

and contain proteins, microRNAs, mRNAs, and other biologically active

molecules. EVs play an important role in intercellular communication as well as

in the regulation of neuroinflammation. Determining the mechanisms by which

EVs contribute to the pathogenesis of neurodegenerative diseases will aid in the

development of new therapeutic approaches and diagnostic tools. Mesenchymal

stem cells (MSCs) have been shown in studies to control immunological

responses, promote the growth of new brain connections, promote the

production of blood vessels, and heal damaged tissues. There is growing

evidence that MSCs’ ability to treat patients is mostly due to the neurotrophic

compounds they secrete through EVs. Since their tiny size allows them to pass

through biological barriers and reach injured parts of the central nervous system,

MSC-derived extracellular vesicles (MSC-EVs) retain many of the therapeutic

qualities of their parent MSCs. This review discusses the role of EVs in

neurodegenerative diseases and highlights the potential of MSC-EVs in the

treatment of neurodegenerative diseases. The paper also examines the

challenges that still need to be overcome and the prospects for using MSC-

EVs to treat neurodegenerative illnesses.
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Introduction

Neurodegenerative conditions are characterized by a gradual

decline in neurons within both the central and peripheral nervous

systems, leading to impaired motor and cognitive abilities (1). This

group of disorders predominantly comprises Alzheimer’s disease

(AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis

(ALS), and Huntington’s disease (HD) (2, 3). A primary

pathological hallmark of these conditions is the build-up of

incorrectly folded proteins within the brain, which results in

neurological impairment and the onset of disease (4). The World

Health Organization predicts that neurological conditions will rise

to become the second most common cause of mortality among

humans within the next two decades (5). The timely diagnosis for

the majority of patients is impeded because of the insufficient

presence of reliable biomarkers (6). Current interventions may

decelerate the advancement of the illness; however, they fail to

yield adequate outcomes and result in an unfavorable forecast. In

order to surmount the constraints of present therapeutic

approaches, innovative treatment methods must be devised to

tackle neurodegenerative disorders (7).

Adult stem cells known as MSCs possess the ability to

regenerate themselves and can differentiate into various cell

lineages (8). The main origins from which MSCs are obtained

consist of bone marrow (BM) (9), adipose tissue (ADI), as well as

umbilical cord blood (UCB) (10). MSCs, which stem from the

mesodermal layer, have been demonstrated in research to be

capable of transdifferentiating into cells not originating from the

mesoderm, including glial cells and neurons (11, 12). This is

thought to be the best source for regrowing cells lost as a result of

neurodegenerative illnesses. In addition, mesenchymal stem cells

are easily obtained, isolated, and grown; they also show decreased

immunogenicity and immunomodulatory potential, as well as

immune system modulating qualities. As such, MSCs have a great

deal of promise for the treatment of neurodegenerative diseases.

EVs are composed of a lipid bilayer and are produced and

secreted by nearly every living cell (13, 14). These vesicles

encapsulate various biologically active substances, including

proteins, noncoding RNAs, and lipids (15, 16). EVs are

acknowledged as one of the most potent means of

communication between cells during both physiological and

pathological events (17–19). Neurodegenerative disease-derived

EVs and their contents can be a good response to the

pathophysiologic state of the body (20). This characteristic

endows them with the potential to serve as diagnostic

instruments and as focal points for personalized treatment

strategies. EVs engage with recipient cells by identifying and

binding to specific receptors on the cell surface. A diverse range

of neuronal subpopulations, including microglia, astrocytes, and

Schwann cells, secrete these vesicles (21). With rapid advances in

nanotechnology, enhanced EVs therapeutic capabilities have been

developed, including targeted drug delivery. EVs are better

biocompatible and less immunogenic than liposomes as carriers

for synthetic drug delivery systems (22). EVs are functional

pharmacokinetics-related proteins that contribute to their large
Frontiers in Immunology 02
biological distribution and higher cyclic retention. EVs’ surface

molecules allow them to cross the blood-brain barrier, deliver cargo,

and cause a response in the recipient cell. Due to these properties,

EVs have considerable therapeutic potential in treating diseases of

the central nervous system. In this review, we will present advances

in MSC-derived extracellular vesicles in neurodegenerative disease

models such as AD, PD, ALS, and HD. We will study the clinical

results achieved by MSC-EVs therapy in various neurodegenerative

disease models. We will also discuss the limitations of MSC-EVs

therapy and the possibility of improving treatment efficiency to

transition to clinical trials.
Classification and biogenesis of EVs

In 2018, the International Society for Extracellular Vesicles

(ISEV) revised its research criteria and gave EVs a new meaning.

Particles in this category are a diverse mixture that typically range in

size from 50 nm to 500 nm, and occasionally they can reach 1-10 mm.

According to the ISEV, EVs should be named using a standardized

method that would categorize them based on clear-cut, measurable

characteristics such their size, unique chemical markers, and place of

genesis in cells, among other things (14, 23, 24). ISEV proposes to

categorize EVs by size into small EVs (sEVs) with diameters less than

200 nm and large EVs (lEVs) with diameters greater than 200 nm.

The majority of contemporary research classifies extracellular vesicles

into sEVs, microvesicles (MVs), and apoptotic bodies, primarily

distinguishing them by their respective sizes.

sEVs represent the smallest of the EVs, having diameters that

fall within the range of 50 to 150 nanometers (25). Typically, the

formation of sEVs (refer to Figure 1) initiates as the cell membrane

invaginates inwardly, creating endosomes within the cell (26).

Cargo is divided into early endosomes inside the endosomal

network, which later develop into late endosomes or

multivesicular bodies. Intraluminal vesicles (ILVs) are rich in

unique endosomal compartments known as late endosomes. The

endosomal sorting complexes needed for transport (ESCRT) route

and its machinery—which consists of four complexes, ranging from

ESCRT-0 to ESCRT-III—assist in the synthesis of ILV (27). By

enlisting hepatocyte growth-factor-regulated tyrosine kinase

substrate to bind ubiquitinated cargo, the ESCRT-0 complex

starts the process. Following ESCRT-II binding, ESCRT-II

interacts with tumor susceptibility gene 101 (TSG101) to recruit

ESCRT-I and start the budding of ILVs. ILV production is aided by

the ESCRT-III subunits, which include Vps20, Snf7, Vps2, and

Vps24. Lastly, Vps4 is used by ESCRT-III to separate the ILVs from

the endosomal membrane (28–31). Once ILV formation is finished,

the endosomes are effectively transformed into multivesicular

bodies (MVBs). These MVBs can then fuse with the plasma

membrane, leading to the release of ILVs from the cell as sEVs

(32). MVBs may also merge with lysosomes, leading to the

degradation of ILVs without the release of sEVs (33).

MVs are slightly larger in diameter than exosomes and are

formed directly from cytoplasmic membrane outgrowth (34). The

main process underlying the release of microvesicles (MVs) is
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contingent upon cytoskeletal modifications mediated by calpain, a

protein whose activation is triggered by the influx of calcium (Ca2+)

or its production within the endoplasmic reticulum (35, 36).

Calcium ion concentration also plays a role in modifying the

plasma membrane’s structure, suggesting that calcium ions alone

can trigger both the production and the secretion of MVs (37).

Certain studies have demonstrated that arrestin-domain-containing

protein 1 (ARRDC1) is capable of recruiting ESCRT proteins,

specifically TSG101 and Vps4, to the cell membrane, thereby

triggering the initiation of membrane budding (38).

Apoptotic vesicles, ranging in size from 500 to 2000

nanometers, are sizable vesicles derived from apoptotic cells. They

encapsulate cytoplasm, cellular organelles, and nuclear fragments

(39). The leakage of the plasma membrane during apoptosis results

in the generation of microvesicles, a form of apoptotic vesicles (40).
EVs cargo

The makeup of EVs is influenced by their cellular source and

the process of their formation. These vesicles encapsulate a diverse

array of biologically active substances, such as soluble proteins,

nucleic acids, lipids, and metabolites (41). These molecules within

the cargo are vital for cell-to-cell communication and are tasked

with transporting a variety of signaling agents to their respective

target cells (19) (Figure 2).

Proteins associated with the formation of EVs, like Alix and

Tsg101, are acknowledged as cytoplasmic constituents of EVs and

are utilized as general indicators of EVs (42). A further group

includes tetraspanins, a family of membrane-bound proteins that
Frontiers in Immunology 03
have been demonstrated to influence cargo transportation in

fibroblasts (43, 44). Several tetraspanin proteins, including CD63,

CD9, and CD81, are commonly employed as specific EVs markers

(45–47). Moreover, heat shock proteins are commonly found in

EVs due to their involvement in protein stability (48, 49). Other

exosomal proteins encompass nSMase 2 from the ceramide-

dependent pathway (50–52), actin and flotillin, SNARE

complexes, and Rab proteins (53).

EVs are repositories for various nucleic acids, including

genomic DNA (54) and mitochondrial DNA (55), and RNA

(mRNA, microRNA miRNA, lncRNA and circRNA) (30, 56).

Among these, microRNAs are identified as one of the most

prevalent RNA species within EVs (57, 58). These RNAs have

been implicated in a wide array of biological processes, including

the neurogenesis aspect of neurodegenerative conditions like PD

and AD (59–62). For instance, EVs secreted by hypoxia-

conditioned mesenchymal stromal cells have been found to

enhance cognitive function in APP/PS1 mice by addressing

synaptic impairment and modulating inflammatory reactions

(63). EVs miRNAs are encapsulated in lipid bilayers, protected

from nuclease degradation, and are extremely stable in body fluids

(e.g., blood, cerebrospinal fluid). miRNAs enter the peripheral

circulation and offer the possibility of early diagnosis of

neurodegenerative diseases. A study found that the level of miR-

132 in plasma EVs of AD patients was significantly reduced, which

can be used as an early diagnostic marker (64).

Lipids are integral to preserving the structural integrity of EVs,

including their membrane dynamics, secretion, and internalization

processes, as well as their functional role within the vesicles (65).

These lipids are not only pivotal in the synthesis and uptake of EVs
FIGURE 1

Origin of EVs. The process of endocytic generation produces sEVs. Donor cells’ plasma membranes first invaginate to create early endosomes,
which later develop into late endosomes. Intracellular vesicles (ILVs) are formed when the membrane of early endosomes folds inward during this
maturation phase. Multivesicular bodies (MVBs) are the term used to describe endosomes that include ILVs. ILVs are discharged into the extracellular
milieu and are referred to as single-cell EVs when MVBs fuse with the plasma membrane.
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but also serve as a class of bioactive molecules that participate in

diverse biological functions, such as immune system surveillance,

modulation of the tumor microenvironment, and the regulation of

inflammatory responses (66, 67).
Mechanism of EVs in
neurological diseases

A common feature of neurodegenerative diseases is the

misfolding, aggregation, and accumulation of pathologic amyloid

proteins within or outside brain cells. EVs are novel and important

carriers of signaling molecules in vivo, and a growing body of

literature highlights the important role of EVs in the intercellular

transmission of pathogenic protein aggregates, thus contributing to

the understanding of the pathology and clinical progression of

neurodegenerative diseases (68). These EVs can carry and protect a

range of proteins, lipids and nucleic acids from degradation in the

extracellular space. Recently, several studies have shed light on the

physiological role of EVs in neurodegenerative diseases, including

the regulation of glutamatergic synaptic activity during nerve cell

development. Astrocytes maintain brain homeostasis by

internalizing miR-124 from microglia-derived EVs to regulate

levels of glutamate transporter 1 and glutamate uptake (69).

Another study showed that stimulation of 5-hydroxytryptamine
Frontiers in Immunology 04
receptors increased the release of insulin-degrading enzymes from

microglia via EV, which were able to degrade the neurotoxic peptide

amyloid b (70). EVs from human bone marrow-derived endothelial

progenitor cells have the potential to mend damaged microvessels

in the central nervous system (CNS) of symptomatic SOD1-G93A

mutant mice (71). Additionally, Guo and colleagues discovered that

microglial exosomes facilitate the transmission of a-synuclein (a-
syn) between cells, contributing to neurodegeneration in the

substantia nigra and striatum, which is a significant factor in PD

pathogenesis (72). Thus, EVs not only play an important role in the

development of neurodegenerative diseases, neuroprotection, repair

and further regulation of neuronal activity, but also participate in

the onset and progression of their diseases. EVs exert

neuroprotective effects through multiple mechanisms: Anti-

inflammatory effects; EVs inhibit neuroinflammation by

delivering anti-inflammatory molecules (e.g., miRNAs and

cytokines) and protect neurons from inflammatory damage. For

example, miR-124 carried by EVs inhibits microglia activation and

reduces the release of inflammatory mediators (73). Antioxidant

effects; EVs reduce oxidative stress by delivering antioxidant

molecules (e.g., superoxide dismutase and glutathione) that

protect neurons from oxidative damage (51). Promote neuronal

survival; EVs promote neuronal survival and growth by delivering

neurotrophic factors such as brain-derived neurotrophic factor and

glial cell-derived neurotrophic factor (74). Promoting synaptic
FIGURE 2

EVs cargo. DNA, RNA, lipids, metabolites, and a variety of membrane and intracellular proteins are all encased in a phospholipid bilayer that makes
up extracellular vesicles (EVs). EV indicators include membrane and intracellular proteins include TSG101, Alix, CD63, CD9, and CD81.
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plasticity; EVs promote synaptic plasticity and enhance neuronal

function by delivering synapse-associated proteins and miRNAs.

For example, synapsin I carried by EVs promotes the release of

synaptic vesicles and enhances synaptic transmission (75).

In addition to their application in treating various neurological

conditions, this mechanism has unlocked a plethora of potential

applications (76). EVs are pivotal in providing insights into CNS

functions and pathologies due to their critical role in intercellular

communication. EVs carry molecules (e.g., proteins, lipids, and

nucleic acids) that bind to receptors on the surface of neurons,

triggering signaling that affects neuronal activity and function. For

example, integrins on the surface of EVs bind to extracellular matrix

proteins on neurons, affecting neuronal survival and synaptic

plasticity (77). EVs carry ligands (e.g., Epidermal Growth Factor,

Fibroblast Growth Factor)) that bind to receptor tyrosine kinases on

neurons, activating downstream signaling pathways that regulate

neuronal growth and differentiation (43). In addition, It has been

proposed that EVs could serve as drug delivery systems across the

blood-brain barrier (BBB), enabling targeted therapy within the

CNS (78). MSC-EVs have been demonstrated to alleviate

neurological diseases like Parkinson’s, Alzheimer’s, strokes, and

amyotrophic lateral sclerosis, despite coming from a variety of

sources and being engineered to elicit therapeutic effects in

various diseases. MSC-EVs are attractive options for cell-based

therapeutic approaches due to their special qualities.
MSC-EVs and AD

The most common and well-known kind of dementia is AD,

which has been the focus of much research but is still not fully

understood. This neurodegenerative illness affects several facets of

brain function, including cognitive capacities, personality qualities,

the structure of mental processes, and behavioral patterns. It is

distinguished by its progressive and irreversible nature (79).

Numerous studies have pointed to the buildup of amyloid beta

peptide, a key constituent of amyloid plaques, within neurons as

the primary factor driving the onset of AD pathology (80). Research

indicates that the primary location for the synthesis of amyloid beta

(Ab) by neurons is within the MVBs (81). These bodies are made

of internal vesicles (ILVs), which have been shown in numerous

studies to have two distinct fates: either they are released into the

extracellular environment as exosomes through a process of fusion

with the plasma membrane, or they are targeted for degradation

within the lysosomal interior (82). These findings underscore the

significance of exosomes in the progression of Alzheimer’s disease,

particularly with regard to the dissemination of Ab aggregates (83).

The levels of Ab in AD brains can be markedly decreased by

interfering with the pathways that generate Ab, as well as by

introducing agents to the brain that facilitate the degradation of Ab
peptides. In this context, MSC-EVs could prove instrumental. The

amyloid-b precursor protein (APP) is cleaved by b-and g-secretases,
resulting in the production of neurotoxic Ab peptides in AD brains.

Under these circumstances, MSC-EVs can be engineered to
Frontiers in Immunology 05
release vesicles containing siRNA that targets b-and g-secretases,
thereby significantly diminishing their activity. According to a

recent study, EVs that include proteases may act as a conduit

for information between the brain and the body’s peripheral

organs. Extracellular vesicles produced from plasma have been

shown to accelerate the onset of Alzheimer’s disease in transgenic

mice by cleaving substrates such as amyloid precursor protein (APP)

in target neurons. According to this research, plasma EVs may be

harmful in the development of AD (84, 85). Furthermore, exosomes

facilitate the absorption of extracellular Ab plaque by microglial cells

(51, 86). Curiously, a significant number of research efforts have

focused on the potential therapeutic use of EVs secreted by MSCs, as

outlined in Table 1.

According to studies, MSC-EVs have been observed to mitigate

neuronal injuries and restore synaptic function (63). Within this

framework, MSC-EVs have demonstrated the ability to enhance

neuroprotection and encourage neuroregeneration (87, 88). De

Godoy et al. have proposed many plausible pathways via which

MSC-EVs and MSC transplantation might provide neuroprotective

benefits against neuronal damage caused by Ab. These include the
paracrine effects of the extracellular release of inflammatory factors

and anti-inflammatory cytokines like IL-6, IL-10, and VEGF, the

reduction of extracellular Ab oligomer levels because of the high

endocytic capacity of MSCs, and the secretion of EVs containing

antioxidant enzymes like catalase (89). likewise, in order to explore

the immune-regulatory properties, EVs released from primedMSCs

were introduced intraperitoneally (ITI) into a triple transgenic

model of Alzheimer’s disease (3xTg AD). The results of the study

showed that this therapy caused COX2 and IDO to be

overexpressed, which in turn decreased the synthesis of IL-6 and

IL-1b. On the other hand, it enhanced IL-10 production, which

supported the M2 macrophage phenotype (90). Perets et al. found

that MSC-EVs specifically targeted and accumulated in

pathologically associated brain regions in mouse models of AD

within 96 hours after administration, whereas in healthy controls,

they showed diffuse migration patterns and clearance at 24 hours.

This suggests that neuroinflammatory signaling in the pathological

brain is highly correlated with MSC-EVs accumulation, suggesting

that the homing mechanism is inflammatory driven (91). This

discovery could significantly promote the application of MSC-EVs

in the treatment and targeted drug delivery of AD.

In a parallel vein, a multitude of in vivo experiments have

indicated that MSC-EVs alleviate symptoms associated with AD. In

2018, Cui and his team investigated the recovery from cognitive

impairment in an APP/PS1 mouse model of AD through the use of

exosomes derived from mesenchymal stromal cells that had been

preconditioned under hypoxic conditions. While both MSCs and

hypoxia-preconditioned MSC-derived exosomes reduced both

intracellular and extracellular Ab oligomer deposits, the hypoxia-

preconditioned MSC-derived exosomes showed a more

pronounced effect in improving learning and memory deficits.

This was achieved by reducing serum levels of pro-inflammatory

cytokines (IL-1b and TNF-a) and concurrently increasing the levels
of anti-inflammatory cytokines (IL-4 and IL-10). Additionally, the
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exosomes reduced inflammatory responses by inhibiting the

function of astrocytes and microglia. Furthermore, the activated

levels of STAT3 and NF-kB in the brains of transgenic mice treated

with hypoxia-preconditioned MSC-derived exosomes were found

to be decreased (63). A recent study by Li provides insight into the

potential of mesenchymal stem cell-derived EVs in alleviating

cognitive impairment in mouse models of AD. The main findings

of this study showed that factors related to mitochondrial function,

such as SIRT1 and synaptic proteins, were upregulated, while

markers of oxidative damage, inflammatory cytokines, and

microglia activity were significantly reduced compared to the

control group (92). A separate study employed heat-shock-treated

neural stem cell-derived exosomes in the treatment of a mouse

model of AD, resulting in the restoration of cognitive impairment

and enhancement of motor skills (93). Building on this encouraging

evidence, the deployment of mesenchymal stem cell-derived MSC-

EVs in the treatment of AD seems to offer a promising and

innovative approach to address intractable medical conditions.
MSC-EVs and PD

An analogous situation is foreseen for PD, the second most

prevalent chronic neurodegenerative condition globally (94),

marked by the degeneration of dopamine-producing neurons

coupled with the accumulation of a-synuclein protein clumps

within the neurons’ internal architecture, leading to a reduction

in dopamine synthesis across multiple brain networks (95).

EVs have attracted a lot of interest as a crucial component in the

etiology of PD. Studies conducted as early as 2010 have shown that

EVs are able to transport a-syn, which has helped to advance the
Frontiers in Immunology 06
extracellular seeding theory. Additionally, studies have shown that

EVs from PD patients’ cerebrospinal fluid can cause a-syn
aggregation in recipient cells, which may aid in the pathological

advancement of the illness (96). The potential of MSC-EVs as a

therapeutic approach appears promising, albeit in its preliminary

stages. In PD, key factors contributing to pathology include

mitochondrial dysfunction, impairments in protein degradation

pathways such as the ubiquitin–proteasome system, and

disruptions in the autophagy-lysosomal pathway (97). The

utilization of MSC-EVs in PD is detailed in Table 2.

A transgenic rat model of PD was used to study the effects of

human mesenchymal stem cell (hMSC) conditioned medium. The

results show that the hMSC-secretome has a promising role in

increasing the number of dopaminergic neurons, helping to

partially recover motor impairments, and reducing histological

manifestations of the disease (98). The importance of these

investigations stems from the fact that EVs play a vital role in a

cell’s secretome and, as a result, the EVs that a cell secretes affect

certain outcomes. For example, Jarmalavičiőtė et al. investigated the

neuroregenerative potential of exosomes and microvesicles

generated by human exfoliated deciduous tooth (SHED) stem

cells on dopaminergic neurons. Their results showed that

exosomes released by SHEDs, but not microvesicles, might inhibit

6-OHDA-induced apoptosis in human dopaminergic neurons. In

their conclusion, they suggested using SHED exosomes as a

therapeutic method to treat PD (99). Later work by the same

group used EVs derived from human exfoliated deciduous teeth

(SHEDs) stem cells to reduce motor symptoms in 6-OHDA-

induced unilateral lesion models of PD. The results demonstrated

that the EVs improved motor functions in addition to stopping the

6-OHDA-induced gait abnormalities. The restoration of striatal
TABLE 1 The roles of MSC-EVs in Alzheimer’s disease.

Disease Source of EVs Route of administration Outcomes References

Alzheimer's disease Murine neuroblastoma Neuro2a
(N2a) cells

Stereotactic administration Reduced amyloid-b peptide (Ab) levels
and improved Ab pathology.

(86)

Wharton’s jelly mesenchymal
stem cells

Not reported Increases the resistance of hippocampal
neurons to damage caused by Ab

(87)

Mesenchymal stem cells Stereotactic administration stimulated neurogenesis in the
subventricular zone and alleviated beta
amyloid 1−42-induced cognitive
impairment, and these effects are similar
to those shown in the mesenchymal
stem cells.

(88)

Bone marrow mesenchymal
stem cells

Cocultures of hippocampal neurons and
MSC-EVs

Protection of neurons against amyloid-b
peptide-induced oxidative stress and
synaptic damage.

(89)

Bone marrow mesenchymal
stem cells

Intranasal administration Regulation of microglia phenotype and
dendritic spine integrity.

(90)

Neural stem cells Bilateral ventricles Enhanced mitochondrial function, SIRT1
activation, synaptic activity, decreased
inflammatory response, and rescued
cognitive deficits in AD

(91)
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tyrosine hydroxylase (TH) activity and levels was credited with this

improvement (100). Chen and colleagues discovered that EVs

originating from mesenchymal stem cells can mend a Parkinson’s

disease model by stimulating autophagy (101). Peng and colleagues

created a self-guided nanocarrier named PR-EXO/PP@Cur,

merging therapeutic MSC-EVs with curcumin. This integration

enhances the functional restoration of neurons and lessens

neuroinflammatory responses by diminishing the levels of a-
synuclein aggregates (102). In Parkinson’s disease, as with other

neurological disorders, the profiling of miRNA expression is viewed

as an effective instrument for both diagnostic and therapeutic

objectives (103). For example, miR-433 and miR-16-1 are

involved in Parkinson’s disease-related pathological mechanisms

that elevate a-synuclein levels (104). Furthermore, the reduction in

miR-34b/c levels and the increase in miR-494 and miR-4639-5p

expression exert opposing influences on DJ-1 protein levels, with

the former negatively affecting and the latter positively impacting its

expression. DJ-1 is known as a protector against mitochondrial

oxidative damage (105, 106). Moreover, MSC-EVs facilitate neural

differentiation by conveying both endogenous and exogenous

microRNAs. To illustrate, Lee and colleagues verified the

differentiation phenotype in human neural progenitor cells

(NPCs) and observed an increase in glutamate transporter

expression in both NPCs and astrocytes following the delivery of

two specific exogenous microRNAs, miR-124 and miR-145, via

MSC-EVs (107). In a separate instance, studies have noted that

while miR-133b is markedly decreased in individuals with PD, it is

abundant within MSC-EVs. Both in vitro and in vivo experiments

demonstrated that the delivery of miR-133b via MSC-EVs promotes

neuronal growth (108). Xin and colleagues discovered that the MiR-

17-92 cluster within EVs boosts neuroplasticity and aids in

functional recovery following stroke in rats (109). Although the

research is somewhat limited, the current results have clearly shown

the advantageous impacts of various stem cell types in the

management of Parkinson’s disease, which is largely attributed to

the payload of their inherent EVs.
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MSC-EVs and ALS

ALS is a intricate, advancing neurodegenerative disorder. The

disease’s onset is linked to a multitude of pathological processes,

such as mitochondrial impairment, oxidative stress, and axonal

destruction (110), which result in the deterioration and death of

neuronal cells. ALS predominantly affects males (111) and

progresses swiftly. It is marked by the deterioration of both upper

and lower motor neurons (MNs) within the brain and spinal cord,

causing incremental muscle wasting and limb frailty. The majority

of patients succumb to respiratory complications within a few years

following the emergence of symptoms (111). Current medications

merely alleviate symptoms. Effective treatment of ALS could be

achieved if the lifespan of MNs could be extended. MSC-based

therapies may pave the way for more potent treatments for ALS.

Over time, several molecular targets have been suggested to play

a role in the development of ALS, and a variety of proteins that are

encoded by genes associated with the pathogenesis of ALS have

been identified. Recent research suggests that a large number of

these proteins are either expressed differently or are found within

EVs and can move between neurons and glial cells in different parts

of the brain, facilitating the dissemination and propagation of EVs.

Among these proteins are SOD1 (112), TDP-43 (113), Fused in

sarcoma (FUS) (114), and Dipeptide repeating proteins (DPRs)

(115). Provenzano et al. found that EVs from MSCs attenuated the

pathological phenotype and neurotoxicity in human astrocytes

(iAstrocytes) derived from inducible neural progenitor cells

(iNPCs) of ALS patients as well as in astrocytes extracted from

the spinal cords of symptomatic SOD1G93A mice. The neurotoxic

effects of mouse and human ALS astrocytes on motor neurons were

reversed by in vitro exposure to EVs (116). EVs notably reduced the

pathological traits and neuroinflammation in SOD1G93A

astrocytes. Lee and associates demonstrated the differentiation of

neural stem cells from (SOD1(G93A)) transgenic ALS mice

following treatment with EVs derived from adipose-derived stem

cells. The analysis revealed a decrease in cytosolic SOD1 aggregates
TABLE 2 The role of MSC-EVs in Parkinson’s disease.

Disease Source of EVs Route of administration Outcomes References

Parkinson’s disease Human exfoliated deciduous teeth
stem cells

Not reported Inhibition the apoptosis-induced by (6-
OHDA) in human dopaminergic neurons

(99)

Human exfoliated deciduous teeth
stem cells

Intranasal administration normalizes tyrosine hydroxylase
expression in the substantia nigra and
striatum of the (6-OHDA)-treated rats

(100)

Human umbilical cord mesenchymal
stem cells

Tail vein injections Neuroprotection of dopaminergic neuron
in substantia nigra and upregulation of
dopamine levels in striatum

(101)

Bone marrow mesenchymal stem cells Tail vein injections Reduction in a-syn aggregates and
functional recovery

(102)

Bone marrow mesenchymal stem cells Tail vein injections Regulate neurite outgrowth by transfer of
the miR-133b

(108)

Bone marrow mesenchymal stem cells Not reported Stimulation of oligodendrogenesis and
improving neuronal function

(109)
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and an improvement in mitochondrial protein markers, such as the

phospho-CREB/CREB ratio and PGC-1a (117). In a parallel study,

the protective influence of EVs from adipose-derived mesenchymal

stem cells against oxidative damage was confirmed in an in vitro

model expressing ALS mutations (118).

Intriguingly, every study has uniformly reported enhancements

in physical prowess without any notable detrimental side effects

(119, 120). In particular, Crose’s research noted that a patient, after

receiving treatment with EVs derived from human bone marrow

mesenchymal stem cells (BM-MSCs), was able to ambulate with

minimal support for a distance of 25–50 feet, following a six-month

period of being unable to walk (119). Likewise, Ueda and associates

documented an augmented range of motion in the limbs (120).

Additional enhancements included better speech and increased

strength, a decrease in muscle spasms (and consequently the

related discomfort) (119), as well as a slowdown in the decline of

respiratory function (120). These benefits are likely associated with

the shielding effect of the MSC-secretome/EVs on limbal motor

neurons, the neuromuscular junction, and muscle tissue, along with

protection against inflammation, as indicated by a reduction in glial

cell activation. Moreover, enhancements in sleep quality were also

noted (119).
MSC-EVs and HD

HD is mainly identified by involuntary dance-like movements,

along with emotional and cognitive impairments, which ultimately

result in fatality (121). There are several mechanisms of action of

MSC-EVs in HD: 1 Immunomodulation; Studies have shown that

MSC-EVs are able to modulate the immune response and attenuate

neuroinflammation through multiple mechanisms, which is crucial

for patients with HD. MSC-EVs are capable of releasing a variety of

factors that have immunomodulatory functions, such as cytokines

and growth factors, which in turn inhibit the release of over-

activated microglial cells and inflammatory mediators, thereby

attenuating nerve damage and apoptosis (122). 2 Promote

neuroprotection and regeneration; in an animal model of HD, the

application of MSC-EVs significantly improved neurological

function, reduced neuronal apoptosis, and promoted regeneration

of damaged nerves (123). 3 Improvement of cell metabolism and

function; MSC-EVs can improve the metabolic state of neurons and

enhance their function by regulating energy metabolic pathways.

For example, MSC-EVs can promote the function of mitochondria

and improve cellular ATP production, which in turn improves the

viability and function of neuronal cells (124).HD currently has no

known cure; palliative care is the only treatment available. Like in

other neurodegenerative diseases, EVs allow huntingtin proteins

with polyglutamine expansions to spread to nearby cells (125).

Therefore, EVs play a crucial role in the pathophysiology of HD.

Many MSC-EVs-based therapy approaches have been evaluated for

the management of HD (126).

Lee and colleagues conducted research in this area and observed

that exosomes from adipose-derived mesenchymal stem cells can

modulate harmful properties in HD cell models (127). Additionally,
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through exosomes to the striatum of R6/2 HD transgenic mice.

Despite observing a decrease in the intracellular expression of the

miR-124 targeted gene, REST, the effects on the mice’s behavior

were minimal (128). Studies have shown that MSC-EVs have

particular effects on HD. In vitro analysis has revealed that MSC-

EVs can constrain motor function and striatal atrophy in a rat

model of HD (129). In their study, Ebrahimi and colleagues showed

that the release of GDNF and vascular endothelial growth factor

(VEGF) fromMSCs had a positive effect on motor coordination and

muscle functions in animal models of HD (130).
MSC-EVs in clinical trials

Over 200 clinical trials of exosomes or extracellular vesicles

treatments are listed on the clinicaltrials.gov website. Nine of these

studies use MSC-derived exosomes. A number of pharmaceutical

companies as well as the academic community have expressed

interest in EVs-based therapeutics. The number of clinical trials

for EVs-based therapeutics in humans is rapidly increasing, and

more are currently being conducted (131). The following clinical

trials are currently registered in the field of neurological disorders: A

Phase I/II clinical trial study of adipose MSC-EVs administered by

nasal drip into subjects with Alzheimer’s disease has been evaluated

for safety and efficacy(NCT04388982). Another study

demonstrated the great potential use of different groups

(Autologous/allogenic UC-MSCs + A-MSC-secretome) implanted

in Multiple System Atrophy patients (NCT04876326). Another

study evaluating the improvement of patients with acute ischemic

stroke treated with MSC -EVs fully demonstrated its safety and

efficacy (NCT03384433). In all three trials, MSCS provided EVs,

although their tissue sources were different. These representative

clinical trials of EV-based therapies for human neurodegenerative

diseases will yield exciting results (132). Despite impressive

preclinical results in both clinical and biochemical parameters,

the use of MSC-derived EVs in clinical trials remains limited.
Advantages and limitations of MSC-
EVs therapy

MSC-EVs offer a promising alternative to cell therapy because

they can provide the beneficial effects of MSCs. MSC-EVs have the

following advantages over cellular therapies in clinical applications

(1): Safety. MSC transplantation may be rejected by the host

immune system, and MSC-EVs are less immunogenic. On the

other hand, MSC transplantation carries the risk that the cells

will differentiate in an undesirable manner, potentially transforming

into malignant cells and forming tumors. Due to the lack of self-

replicating ability, EVs do not have the potential to generate tumors

(2). Target tissues. Unlike natural MSCs, EVs are able to cross the

blood-brain barrier via cytosis and exert direct effects in the brain.

EVs crossing of the BBB in a bidirectional manner between the

bloodstream and brain parenchyma remains poorly understood.
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There are several mechanisms: receptor-mediated transport, EVs

express a variety of receptors and ligands on the surface, which can

bind to the receptors on the surface of BBB endothelial cells,

triggering endocytosis, thus realizing transmembrane transport

(133). Adsorption-mediated transport, cationic molecules on the

surface of EVs (e.g., phosphatidylserine) can interact with anionic

molecules on the surface of BBB endothelial cells, triggering

adsorption-mediated transport (134), and EVs are able to pass

through the BBB endothelial cells directly into the brain tissue

through intercellular communication mechanisms (e.g., Tunneling

Nanotubes) (135). (3). Versatility. One advantage of EVs is that they

can be modified in multiple ways to increase their therapeutic

potential. One strategy is to enrich them in a microRNA or protein

that has a beneficial effect. Another strategy is to modify membrane

proteins on the vesicle surface to increase their specificity for

specific target tissues.

Although MSCs-EVs can be manipulated to alleviate some

limitations, MSC-EVs treatment faces additional challenges.

Because living cell treatments have the potential to trigger an

immune response or cause tumor growth, they may not have the

natural implantation capabilities of normal cells (136). Furthermore,

standardizing and improving EV production is essential to

overcoming the current barriers to the development of medicines

based on EVs. Furthermore, further investigation is required to

improve our comprehension of their mechanics.Technical issues

that impact the production processes, such as determining the best

cellular source, culture and storage conditions, cell type variability,

and phenotypic instability during cell passaging, are mostly to blame

for a number of variations (137). These discrepancies are also a result

of inconsistent and standardised techniques for vesicle extraction and

characterisation. The constraints of current technology have made it

difficult to identify, isolate, and analyze EVs, and research done in the

last 10 years has frequently been tainted by artifacts. In 2018, the

Minimal Information for Studies of Extracellular Vesicles (MISEV)

rules were modified and suggested by the International Society for

Extracellular Vesicles (ISEV) in response to concerns over process

uniformity. The goal of these updates is to improve and guarantee the

caliber of EV research. Natural EVs show potential in treating

neurodegenerative illnesses; nevertheless, their short half-life, poor

targeting precision, quick clearance upon injection, and small payload

restrict their therapeutic use. Studies conducted on humans and

preclinical models have shown that following systemic injection, EV

levels in the blood drop off quickly, and that EVs tend to concentrate

in the liver, spleen, and lungs for around ten days. Additionally, the

clearing of macrophages and microglia reduces the duration of EV

circulation (138).
Conclusions

All things considered, the research that has been published

supports the notion that MSC-EVs may offer a new kind of

treatment for neurodegenerative diseases. Because EVs may cross
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the blood-brain barrier and enter the damaged parts of the brain,

this is a significant benefit of using them in neurodegenerative

disease treatment. Furthermore, these EVs have the ability to

transport and carry certain molecules, such as microRNAs, which

are essential for controlling gene expression. Neuroprotection can

be improved and gene expression patterns influenced by EVs

carrying these microRNAs to brain cells. Moreover, MSC-EVs

can be used as delivery vehicles for molecules or therapeutic

agents, allowing for targeted delivery to the afflicted brain areas.

By using a targeted delivery approach, the therapeutic impact of the

chemicals delivered is increased and the probability of negative

effects is decreased. While there are still many obstacles to

overcome, MSC-EVs are a novel and exciting treatment option

for neurodegenerative illnesses.
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