The final, formatted version of the article will be published soon.
REVIEW article
Front. Immunol.
Sec. Cancer Immunity and Immunotherapy
Volume 16 - 2025 |
doi: 10.3389/fimmu.2025.1494788
This article is part of the Research Topic Community Series in Tumor Microenvironment and Metabolic Reprogramming in Cancer: Volume II View all 5 articles
Interactions between the metabolic reprogramming of liver cancer and tumor microenvironment
Provisionally accepted- 1 Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
- 2 Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
Metabolic reprogramming is one of the major biological features of malignant tumors, playing a crucial role in the initiation and progression of cancer. The tumor microenvironment consists of various non-cancer cells, such as hepatic stellate cells, cancer-associated fibroblasts (CAFs), immune cells, as well as extracellular matrix and soluble substances. In liver cancer, metabolic reprogramming not only affects its own growth and survival but also interacts with other non-cancer cells by influencing the expression and release of metabolites and cytokines (such as lactate, PGE2, arginine). This interaction leads to acidification of the microenvironment and restricts the uptake of nutrients by other non-cancer cells, resulting in metabolic competition and symbiosis. At the same time, metabolic reprogramming in neighboring cells during proliferation and differentiation processes also impacts tumor immunity. This article provides a comprehensive overview of the metabolic crosstalk between liver cancer cells and their tumor microenvironment, deepening our understanding of relevant findings and pathways. This contributes to further understanding the regulation of cancer development and immune evasion mechanisms while providing assistance in advancing personalized therapies targeting metabolic pathways for anti-cancer treatment.
Keywords: hepatocellular carcinoma1, tumor microenvironment2, Metabolism reprogram3, signaling pathways4, Immune evasion5
Received: 11 Sep 2024; Accepted: 29 Jan 2025.
Copyright: © 2025 Yang, Li, Niu, Zhou and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Yanjun Li, Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.