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Identification and validation
of a novel autoantibody
biomarker panel for differential
diagnosis of pancreatic
ductal adenocarcinoma
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Marc Bernon3, Karan Gandhi3, Sean Burmeister3, Urda Kotze3,
Miriam Kahn3, Christo Kloppers3, Suba Dharshanan4,
Zafirah Azween4, Pamela Maimela1, Paul Townsend5,
Eduard Jonas3 and Jonathan M. Blackburn1,2*
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Sciences, University of Cape Town, Cape Town, South Africa, 2Institute of Infectious Disease and Molecular
Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, 3Surgical
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Introduction: New biomarkers are urgently needed to detect pancreatic ductal

adenocarcinoma (PDAC) at an earlier stage for individualized treatment strategies

and to improve outcomes. Autoantibodies (AAbs) in principle make attractive

biomarkers as they arise early in disease, report on disease-associated

perturbations in cellular proteomes, and are static in response to other

common stimuli, yet are measurable in the periphery, potentially well in

advance of the onset of clinical symptoms.

Methods: Here, we used high-throughput, custom cancer antigen microarrays to

identify a clinically relevant autoantibody biomarker combination able to

differentially detect PDAC. Specifically, we quantified the serological AAb profiles

of 94 PDAC, chronic pancreatitis (CP), other pancreatic- (PC) and prostate cancers

(PRC), non-ulcer dyspepsia patients (DYS), and healthy controls (HC).

Results: Combinatorial ROC curve analysis on the training cohort data from the

cancer antigen microarrays identified the most effective biomarker combination

as CEACAM1-DPPA2-DPPA3-MAGEA4-SRC-TPBG-XAGE3 with an AUC = 85·0%

(SE = 0·828, SP = 0·684). Additionally, differential expression analysis on the

samples run on the iOme™ array identified 4 biomarkers (ALX1-GPA33-LIP1-

SUB1) upregulated in PDAC against diseased and healthy controls. Identified

AAbs were validated in silico using public immunohistochemistry datasets and

experimentally using a custom PDAC protein microarray comprising the 11

optimal AAb biomarker panel. The clinical utility of the biomarker panel was

tested in an independent cohort comprising 223 PDAC, PC, PRC, colorectal

cancer (CRC), and HC samples. Combinatorial ROC curve analysis on the

validation data identified the most effective biomarker combination to be

CEACAM1-DPPA2-DPPA3-MAGEA4-SRC-TPBG-XAGE3 with an AUC = 85·0%
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(SE = 0·828, SP = 0·684). Subsequently, the specificity of the 11-biomarker panel

was validated against other cancers (PDAC vs PC: AUC = 70·3%; PDAC vs CRC:

AUC = 84·3%; PDAC vs PRC: AUC = 80·2%) and healthy controls (PDAC vs HC:

AUC = 80·9%), confirming that this novel AAb biomarker panel is able to

selectively detect PDAC amongst other confounding diseases.

Conclusion: This AAb panel may therefore have the potential to form the basis of

a novel diagnostic test for PDAC.
KEYWORDS

pancreatic ductal adenocarcinoma, biomarker panel, diagnosis, autoantibodies,
protein microarray
1 Introduction

Despite significant advances in cancer therapies, pancreatic

cancer, of which ~90% are pancreatic ductal adenocarcinoma

(PDAC), is predicted to surpass breast cancer as the 3rd leading

cause of global cancer deaths by 2025 (1). PDAC is characterized by

an asymptomatic presentation until a late stage, with vague,

intermittent symptoms and an unusual resistance to conventional

therapies, resulting in a poor prognosis. Moreover, screening is

made difficult by its location within the body resulting in a mere

~20% of patients diagnosed being eligible for surgical resection and

a high recurrence, with a 5-y survival below 7% (2–5). The limited

repertoire of treatment options is in part due to non-clinically

targetable driver mutations in specific genes, coupled with a high

abundance of low frequency passenger mutations, resulting in high

genomic heterogeneity (6, 7).

Currently, serological carbohydrate antigen 19-9 (CA 19-9),

remains the most studied and extensively used PDAC serum

biomarker in the clinical setting (8) However, its use in PDAC

diagnosis is limited by the fact that it is ineffacious in Lewis antigen

a and b negative (Le a-b-) populations (9) whilst high levels of the

biomarker are also observed in patients with various benign and

malignant conditions (10). Consequently, a significant proportion

of PDAC patients (up to ~30%) are misdiagnosed as other

gastrointestinal diseases, such as gall bladder, gastroesophageal

reflux disease, chronic pancreatitis or peptic ulcer disease (11, 12).

Classically, PDAC is immunologically cold due to a lack of

inflammation in early disease, implying low T-cell recruitment.

However, whilst the role of B-cells in cancer progression and

treatment response remains controversial, there is increasing

evidence in numerous cancers of humoral responses that are

detectable in the periphery. Particularly, autoantibodies (AAbs)

are known to be induced in cancers against neoepitopes arising

from, amongst others, aberrantly expressed, germline-encoded fetal

antigens, as well as from mutations, aberrant splicing and aberrant

post-translational modifications in the cancer cell proteome. This

therefore raises the enticing prospect of early cancer diagnosis
02
through quantitation of panels of cancer antigen-specific

autoantibodies that are present in serum.

In searching for novel autoantibody-autoantigen pairs that have

early diagnostic potential in cancers, the cancer-testis (CT) antigens

are a particularly attractive family of ca. 500 tumor-specific antigens

that have highly restricted expression in normal adult somatic tissues

and aberrant expression in various cancers as a result of disrupted

gene regulation. Since the testis is an immune-privileged site, aberrant

expression of these antigens in cancers typically triggers a

spontaneous cellular (T cell) and humoral (B cell) immune

response to the relevant CT antigen, the latter including the

maturation of B cells against specific antigens to produce cognate

autoantibodies which are detectable in the circulation. Thus, whilst

PDAC is generally thought to be a poorly immunogenic disease (13,

14) due to its complex and suppressive tumor environment, it seems

plausible that serological AAbs against CT antigens may be detectable

in early stages of PDAC as products of immune surveillance.

Here, we identify candidate AAb biomarkers for differential

detection of PDAC using a novel cancer testis antigen-focused

protein microarray platform (15) and we validate the AAb panels in

independent cohorts using a combination of experimental and in

silico methods, demonstrating high sensitivity and specificity of the

optimal AAb panel in discriminating PDAC patients from gastric

diseases, non-PDAC pancreatic cancers, other cancers, and

healthy controls.
2 Materials and methods

2.1 Study population

This study was approved by the ethics committees of the

University of Cape Town Human Research [HREC 559-2018 and

HREC 269/2011] and Health and Social Care of Guernsey [IJG/

C5.4]), and all study participants provided written informed

consent. The study population consisted of retrospective training

(N=94) and cancer-specific validation (N=223) cohorts (Table 1).
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2.1.1 Training cohort
Blood and tissue samples were collected from 94 patients

diagnosed using the international classification of diseases for

oncology [ICD-0]). Blood from 19 PDAC (Stage II-III), 20

chronic pancreatitis (CP), 1 other pancreatic cancer (PC; defined

as non-PDAC; Stage II-III), and 13 dyspeptic ulcer (DYS) patients,

as well as 7 healthy controls (HCs) were collected from Groote

Schuur hospital. Tumor and adjacent “normal” tissue were also

collected from ten of the PDAC patients. Additionally, 18 PC and

16 prostate cancer (PRC) samples were provided by the University

of Witwatersrand National Cancer Registry and Manchester

University, UK, respectively (Table 1).

2.1.2 Cancer-specific validation cohort
Banked serum samples from PDAC (n=98; Stage II-III) and PC

(n=65; Stage II-III) patients provided from the University of

Witwatersrand National Cancer Registry, together with banked sera

from patients with other cancers (PRC, n=20; colorectal cancer

(CRC), n=16), were used to evaluate marker specificity. A total of

24 HCs (defined as persons without cancer or other gastrointestinal

diseases) were also included in the validation cohort.
2.2 Preparation of blood and
tissue samples

Blood and corresponding tumor tissue from PDAC, CP and

DYS patients receiving standard of care at Groote Schuur hospital
Frontiers in Immunology 03
(GSH), Cape Town, were collected prospectively with written

informed consent at the point of resective surgery/biopsy.

Serum was isolated from the blood by centrifugation at 1500 g ×

15 min (22 °C), the supernatant was centrifuged again at 3500 g ×

15 (22 °C) min to remove platelets, and then placed in clean 1·5 mL

polypropylene tubes and stored at -80 °C until ready for use.

The tissue samples were collected immediately after resective

surgery, sectioned into aliquots, and washed in 20 µg/ml

streptomycin in PBS three times to remove any contaminants and

debris. Subsequently, these were stored in organoid storage buffer

(90% FBS, 10% DMSO), the cryovials were placed in aMr. Frosty, to

prevent cell damage, and placed in a -80 °C freezer overnight before

being stored directly at -80 °C until ready for analysis.
2.3 Carbohydrate antigen 19-9 enzyme-
linked immunosorbent assay

Serological levels of CA 19-9 in PDAC, CP, and DYS patients, as

well as HCs from the training cohort (N= 77) were measured in

duplicate wells using a human CA 19-9 enzyme-linked immunosorbent

assay (Cat #DE5069; Demeditec) and quantified in k/UL.
2.4 Fabrication of CT100+ microarray

CT100+ microarrays comprising 113 CT- or tumor-associated

antigens (Supplementary Tables 1A, B) were fabricated in-house as
TABLE 1 Demographics, clinical characteristics and serological carbohydrate antigen 19-9 levels according to disease cohort and healthy controls of
the training and validation cohort.

Training cohort (N=94) Validation cohort (N=223)

Variable PDAC
n = 19

PC
n = 19

CP
n = 20

DYS
n = 13

PRC*
n = 16

HCs
n = 7

PDAC
n = 98

PC
n = 65

CRC
**

n = 16

PRC
n = 20

HC
n = 24

Demographic and clinical characteristics

Age (y) 53.9 ± 9.9 53.9
± 15.3

48.9 ± 9.7 45.9
± 14.97

67.3
± 7.21

31.14
± 6.70

56.2 ± 10.1 58.4
± 9.51

56.5
± 11.1

68.6 ± 7.79 24.3 ± 7.49

Sex (n)

Male 12 8 4 5 – 1 58 43 6 – 10

Female 7 11 16 8 - 6 40 22 5 - 14

Race (n)

Black 12 20 17 6 - 3 98 65 - - -

Mixed 5 – 3 7 – 3 – – – – –

White 2 - - - - 1 - - - - -

Serological CA 19-9

Levels
(kU/L)

258.0
± 562.0

560.0
± 1233

63.8
± 108.0

11.7 ±
20.9

- 55.17 ±
19.94

765.1 ±
1372.6 PDAC

645.5 ±
1186.6 PC

- 708.8
± 1370.4

64.5 ±
24.5 HC
*No CA 19-9 level data was available for PRC samples.
**There was no demographic data for 5 CRC patients.
PDAC, pancreatic ductal adenocarcinoma; PC, other pancreatic cancers; CP, chronic pancreatitis; DYS, non-ulcer dyspepsia; PRC, prostate cancer; CRC, colorectal cancer; HC, healthy controls.
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previously described (16, 17) and used to identify AAbs that were

differentially present in PDAC patient sera relative to controls.

(Supplementary Figure S1A). Briefly, antigen lysates, diluted two-

fold with 40% sucrose, were printed in a 4-plex format (i.e., 4 replica

arrays per slide) on streptavidin-coated hydrogel microarray

substrates, and within each array/plex, the antigens were printed

in technical triplicate (Supplementary Figure S1B). Subsequently,

slides were incubated in blocking buffer (Supplementary Table S2)

for 1 h at room temperature (RT; 22 °C). Slides were then washed in

3 × 5 min in PBST (0.1% Tween®-20), rinsed 1 × 5 min in ddH2O,

and dried by centrifugation (1400 RCF for 4 min, 24 °C). Dried

slides were stored in light-protected slide holders at 4 °C until ready

for assay.

For each printed slide batch, successful immobilization of in situ

purified biotinylated proteins from lysates onto the microarray

substrate was confirmed using an anti-c-Myc antibody (Cat#

C6594-5ML; Sigma Aldrich) assay (Supplementary Figures

S2A–D).
2.5 Serological assays

CT100+ microarray slides were assayed in 4-plex, multi-well

hybridization cassettes (ArrayIt). iOme v5 slides (1622 antigens;

Sengenics) were assayed in single-plex, as per manufacturer’s

instructions. All incubation, wash and rinse steps on both array

types were performed on an orbital shaker at 100 rpm, with

minimum light exposure. Serum samples (1:800; Serum: PBST; v:

v) were incubated for 1 h at RT, followed by a 3 × 5 min wash in

PBST and 1 × 5 min rinse step in ddH20. Slides were then incubated

with 20 mg/ml of Cy5-labelled anti-human IgG detection antibody

(Cat # A21445; ThermoFischer Scientific) diluted in PBST for

30 min, then washed, and rinsed as above. Rinsed slides were

placed in clean 50 mL polypropylene tubes and dried by

centrifugation at 1400 RCF for 4 min at 24 °C.

Slides were then scanned using an InnoScan 710 AL (Innopsys,

France) microarray reader, essentially as previously described.

Scanning parameters are given in Supplementary Table S3. The

resulting scans were saved as TIFF files (used for data extraction

downstream) and also as JPEG files (used for data presentation and

visualization during quality control steps). Data was extracted in

Genepix (version 7; Molecular Devices) and processed using the

Pro-MAP pipeline [25] to provide background subtracted,

normalized net intensity values for each antigen-specific

autoantibody in each sample.
2.6 Validation of identified biomarkers

2.6.1 In silico verification of autoantigen targets
To determine the spatial localization and disease specificity of

the autoantigen targets of the identified AAb biomarkers, IHC data

on the presence and spatial localization of each autoantigen was

retrieved from the Human Protein Atlas. Additionally, searches

were performed on proteins for which no data was available in the
Frontiers in Immunology 04
Human Protein Atlas database using PubMed, Science Direct, and

Google Scholar. The broad search concepts of the <antigen of

interest>, <pancreatic cancer>, <immunohistochemistry>, and

<tumor tissue> were combined into search statements specific to

each database queried. An initial screening of titles and abstracts

excluded letters, editorials, posters, and opinion pieces. Full text

articles were screened and included if the study addressed

immunohistochemistry analysis of human PDAC tumor tissue or

the presence of the relevant autoantigen in PDAC tumor via

tissue analysis.

2.6.2 Experimental validation of PDAC selective
autoantibody panels in an independent cohort
through use of a custom pancreatic ductal
adenocarcinoma microarray

The corresponding antigens of the 11 most discriminatory

AAbs identified in the training cohort were re-expressed and used

to fabricate a custom PDAC microarray. Briefly, 24-well deep plates

were seeded with SuperSf9-3 cells (Oxford Expression

Technologies) at 6 × 106 cells/well then infected with 50 µl of

recombinant baculoviruses generated as previously described (18).

The plates were incubated with agitation at 27 °C for 72 h.

Subsequently, cells were harvested by centrifugation for 5 min

and washed three times with 3ml of PBS buffer between each

centrifugation. The pellets were then resuspended in 400 µl of

freezing buffer (25mM HEPES, 50 mM KCl, pH 7·5).

Antigen expression and in vivo biotinylation was confirmed via

western blot analysis using a streptavidin–HRP conjugate probe

(GE Healthcare) (Supplementary Table S5, Supplementary Figures

S3, S4). These antigens were then printed as before, except in a 16-

plex format; within each plex, each antigen was printed in triplicate.

Subsequently, the printed slides were assayed and scanned as

described above for the CT100+ arrays.
2.7 Statistical analysis

For the CA 19-9 data, the frequency of Le a-b- individuals was

determined by computing a frequency distribution table in R. To

determine if the data was normally distributed for subsequent

analyses, a Shapiro-Wilks test was run. Non-normal data was Log

or Tukey’s transformed to normalize distribution. The utility of CA

19-9 levels in distinguishing PDAC from other pancreatic diseases

was then determined using receiver-operating-characteristic (ROC)

curve analysis, reporting area under the ROC curve (AUC) and 95%

confidence intervals. The sensitivity and specificity were derived

using non-parametric re-sampling with the percentile method

(2000 stratified bootstrap replicates) (19). To determine if CA 19-

9 levels differed significantly across PDAC, diseased- and healthy

controls, we ran a multivariate analysis of variance (MANOVA).

Subsequently, we computed a TukeyHSD multiple pairwise

comparison to determine if the mean difference between specific

pairs was different.

For microarray analyses of the training and validation cohorts,

pre-processing steps were conducted using the Pro-MAP pipeline
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(20). Prior to analyses, a power analysis for ROC curve analyses was

run in R to determine the effect size of potential results, based on the

sample sizes utilized. For the CT100+ dataset, ROC analyses were

run to identify the top ten biomarkers differentiating PDAC from

the diseased controls. Subsequently, a combinatorial analysis of

these biomarkers was conducted using the CombiROC package in R

(21). Briefly, a generalized linear model was applied to each

combination and the resulting predictions were used to calculate

ROC curves and their corresponding coordinates. The biomarker

combinations were ranked based on their AUC values and the top

combination was selected for the PDAC custom chip.

For the samples run on the custom PDAC microarray, a

combinatorial analysis of the identified biomarker panel was run,

comparing PDAC to other cancers and HCs to determine its

clinical utility.

Gene ontology and subsequent Reactome pathway analyses of

differentially expressed genes that made up the biomarker panel

were conducted using the clusterProfiler (22) and ReactomePA (23)

packages in R, respectively.

All analyses were run in R (v 4·0) and all plots were created

using the ggplot2 (24) package.
3 Results

3.1 Power calculations

Power calculations for the training cohort (N = 94) on the

CT100+ array showed that, for a ROC analysis test of ncases = 20 and

ncontrols = 74, an AUC = 0.80, and a significance level = 0.01, we had

a power = 0.94. However, for the iOMe array, for which we were

availed fewer arrays, a fold change analysis test of ngroups = 5 and

nn_per_group = 10, an effect size = 0.5, and a significance level = 0.05,

we had a power = 0.77. Similarly, power analysis for the validation

cohort (N = 223) showed that, for the ROC analysis test of ncases =

98 and ncontrols = 125, we had a power = 0.99. Furthermore,

MANOVAs showed no significant effects of age, gender, and race

on CA 19-9 or AAb profiles in disease and healthy controls of the

training and validation cohorts (p > 0.05). Thus, our analyses were

confirmed to be statistically powered.
3.2 Carbohydrate antigen 19-9 enzyme-
linked immunosorbent assay

We generated CA 19-9 data for 77 of the 94 samples in the

training cohort and found that average CA 19_9 levels were higher in

PDAC than other disease and healthy controls, except PC (Table 1).

Nevertheless, mean CA 19-9 levels did not differ significantly across

PDAC, diseased- and healthy controls (F = 1.95, p = 0.11; Figure 1A).

In line with the literature, we found that close to half of the

individuals (32/77, 41.6%; Figure 1B) had no measurable CA 19-9

by ELISA. ROC curve analysis produced an AUC of 0.716 for PDAC

patients compared to the other diseased and HCs; a cut-off of 42.19

kU/L had the optimal sensitivity and specificity of 69.0% and 57.9%,

respectively (Figure 1C).
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3.3 Autoantibody biomarker identification
and validation

3.3.1 Combined autoantibody and CA19-9
analyses of training cohort

Sera from the training cohort (N=94) were assayed on custom

CT100+ microarrays and bound antigen-specific IgG

autoantibodies were detected and quantified using a Cy5-labelled

anti-human IgG secondary antibody. Extracted microarray data

were pre-processed using Pro-MAP (20). Briefly, spots below the

noise threshold of intensities <2SD were filtered out then data was

normexp background corrected, normalized using the cyclic loess

method and array weights were calculated following which data was

consolidated into mean intensities with columns and rows

representing arrays and proteins in preparation for analyses.

Subsequently, a combinatorial ROC curve analysis was run on the

CT100+ microarray data to identify the most effective biomarker

combination on the training cohort. Based on the rankings, a

biomarker combination consisting of 7 biomarkers (CEACAM1-

DPPA2-DPPA3-MAGEA4-SRC-TPBG-XAGE3) had the highest

AUC = 0.850, with sensitivity and specificity values of 0.828 and

0.684 respectively (Figures 2A–C, E). This biomarker panel was

thus able to accurately predict 83% of cases (Figure 2D). The

inclusion of CA19-9 ELISA data together with the AAb

biomarker panel decreased the sensitivity slightly (0.789) but

significantly increased the specificity (0.794) of the panel, yielding

an AUC of 0.841.

Pooled serum samples (n = 5 per pool; 2 pools per PDAC and

disease control groups; 1 pool for HCs) were assayed on iOme v5

arrays, bound antigen-specific IgG autoantibodies were detected

and quantified as before, and extracted microarray was again pre-

processed using Pro-MAP. Due to the smaller sample size in the

iOme data, a log fold change analysis was carried out using limma

and 14 differentially expressed proteins (Figure 2F), distinguishing

PDAC from each diseased- and healthy control group, were

identified. Of these, one biomarker (LIPI) had been previously

identified as one of the top ten proteins following ROC analysis of

CT100+ proteins and three (SUB1, ALX1, GPA33) were

upregulated in PDAC compared to the other diseased cohorts

and healthy controls. Thus, these four proteins were therefore

also included in downstream validation studies.

3.3.2 In silico immunohistochemistry analyses of
candidate biomarkers

The experimental identification of cancer biomarkers does not

guarantee their translation into the clinical setting. For clinical use,

candidate biomarkers therefore need to be validated in independent

cohorts, preferably including orthogonal experimental methods.

Here the identified biomarkers were initially verified in silico

through query of immunohistochemical (IHC) databases prior to

experimental validation in an independent cohort using a custom

PDAC protein microarray.

For in silico analysis of candidate biomarkers, we used the

Human Protein Atlas and available literature to collect IHC data on

the expression and spatial localization of the autoantigen targets of

the identified autoantibody biomarkers (Table 2). Antigen
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expression data for PDAC tumor tissue was available and collected

for 8 of the 11 proteins in the proposed PDAC biomarker panel. No

IHC data could be extracted on DPPA3, GPA33, or LIPI protein

expression in PDAC tissue. However, we found strong IHC

expression of DPPA2, MAGEA4, SRC, TPBG, ALX1, and SRC

and moderate expression of XAGE3 and CEACAM1. Interestingly,

RNA expression in tumor tissue was only evident for CEACAM1,

MAGEA4, SRC, TPBG, GPA33, and SUB1, with the highest and

lowest expression for SRC and MAGEA4, respectively.

3.3.3 Experimental analysis of an independent
validation cohort using a custom pancreatic
ductal adenocarcinoma microarray

Following in silico verification of expression profiles of the target

autoantigens, a custom PDAC microarray consisting of the top 11

proteins identified in the training cohort (CEACAM1; DPPA2;

DPPA3; MAGEA4; SRC; TPBG; XAGE3; ALX1; GPA33; LIPI;

SUB1) was constructed. To determine the discriminatory power

and disease specificity of our identified biomarker panel in relation

to other cancers as well as HCs, serological assays were performed on

an independent validation cohort (N=223) using the custom PDAC

array and a combinatorial ROC curve analysis was run. Overall, in the

cancer cohort, our biomarker panel had an AUC of 70% (SE = 0.60,

SP = 0.69) (Figure 3A). Our panel was found to be least effective when

comparing PDAC with PCs (AUC = 70.3, SE = 0.745, SP = 0.554;

Figure 3B), as expected, but was more effective when distinguishing
Frontiers in Immunology 06
PDAC from CRC (AUC = 84.3%, SE = 0.60, SP = 0.94), PRC (AUC =

80.2%, SE = 0.79, SP = 0.77), and HC (AUC = 80.9%, SE = 0.65, SP =

0.88) (Figures 3C–E). With the addition of patient CA 19-9 to the

panel, the panel was much more effective when distinguishing PDAC

fromHC (AUC = 89.2%, SE = 0.72, SP = 1). However, the addition of

CA 19-9 decreased biomarker panel performance when

distinguishing PDAC from all diseased and healthy controls (AUC

= 62.5%, SE = 0.63, SP = 0.60), PCs (AUC = 60.8%, SE = 0.30, SP =

0.91) and PRC (AUC = 67.5%, SE = 0.61, SP = 0.70). Unfortunately,

we were unable to collect CA 19-9 data for the CRC patients

(Supplementary Figure S5).
4 Discussion

Pancreatic cancer is one of the most challenging cancers to

detect early; thus, incidence closely parallels mortality. Currently,

blood CA 19-9, imaging tests, and endoscopic ultrasounds are the

most commonly used tools for PDAC detection with little

improvement to diagnosis and prognosis. The advantages of

exploring potential AAb biomarkers in liquid biopsies are the

minimally invasive sample extraction, their high specificity, and

reproducible results. Additionally, the presence of AAbs directed

against cancer antigens may occur months to years prior to the

onset of symptoms, thereby offering the possibility of early, pre-

symptomatic diagnosis.
FIGURE 1

Carbohydrate antigen 19-9 (CA19-9) as a biomarker for pancreatic ductal adenocarcinoma. (A) Proportion of asymptomatic serological carbohydrate
antigen 19-9 population in training cohort; (B) Boxplot portraying CA 19-9 levels in PDAC and disease controls; (C) ROC curves for patients with
PDAC compared to all disease controls.
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Based on combinatorial ROC and differential analyses of

PDAC, diseased and HC samples run on the CT100+ and iOme

arrays, we identified an 11 AAb biomarker panel that could

effectively differentially detect PDAC and distinguish it from

other related disease controls. Of the 11 biomarkers identified, ten

of the corresponding antigenic targets had been previously

identified in PC based on the literature, the Human Protein Atlas
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or both. However, to our knowledge, their autoantigenicity in

PDAC was previously unknown, making their identification here

as candidate AAb-based diagnostic biomarkers of PDAC both novel

and potentially clinically important.

Though the sample size of the training cohort was small (n =94),

with 19 PDAC samples, power analyses indicated this was sufficient

for biomarker identification. Moreover, the combinatorial analyses
FIGURE 2

Autoantigen biomarker combination most effective for pancreatic ductal adenocarcinoma (PDAC) diagnosis. (A) Bubble chart discriminating between
combinations not passing the user-defined SE (35) and SP (75) cut-offs (blue bubbles) and “gold” combinations passing them (yellow bubbles).
(B) ROC curve of the diagnostic combination consisting of seven autoantigens; (C) t-SNE plots of seven autoantigens that most effectively
distinguish PDAC patients from chronic pancreatitis, non-ulcer dyspepsia, prostate cancer, and healthy controls; (D) pie chart of case and control
predictions made by the biomarker combination (FN = False negatives, FP = False positives, TN = True negatives, TP = True positives). (E) Barplot
showing the fold change of expression intensity of PDAC versus diseased and healthy control samples on the CT100+ array. (F) Barplot showing the
fold change of expression intensity ofautoantibodies upregulated in PDAC versus all diseased and healthy control samples on the iOme array: PDAC
vs CP; PDAC vs PC; PDAC vs DYS; & PDAC vs HC comparisons.
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we employed leveraged the potential synergistic effects of multiple

markers, thereby minimizing the reliance on any single biomarkers

performance and mitigating limitations posed by our small cohort

size. Nevertheless, to address concerns about overfitting or selection

bias that could arise from using a small training cohort in

combinatorial ROC analyses, we tested the identified biomarker

combinations in a larger, independent, validation cohort.

Using a custom array based on the biomarkers identified in the

training cohort we ran assays on a larger (n =223) validation cohort

to identify our final biomarker panel. The good performance of our

biomarker panel on a larger, more diverse cohort highlights its

generalizability and stability. The identified biomarker panel was

effective against diseased (PC: AUC = 70.3%; CRC: AUC = 84.3%;

PRC: AUC = 80.2%) and healthy controls (AUC = 80.9%). Our

exploratory analyses suggested that the diagnostic specificity of our

panel may be further improved with the addition of CA19-9; thus,

we tested this on our validation cohort. We found that though CA

19-9 enhanced the performance of our biomarker panel when

distinguishing PDAC from healthy controls, its discriminatory

power was reduced when comparing PDAC with other pancreatic

cancers and prostate cancer (Supplementary Figure S5). This is

unsurprising as it may reflect the overlapping expression of CA 19-9

in various malignancies and pancreatic diseases, which limits its

specificity in distinguishing PDAC from other cancers and

pancreatic diseases.

The lower AUC against other pancreatic cancers (PC) is expected

as these diseases are the most similar to PDAC. The overall variability

across disease pairs results from the unique pathophysiological

mechanisms and biomarker expression patterns of the different

diseases. Notwithstanding, the AUC for healthy controls and other
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cancers showed a good overall performance. However, its clinical

utility may depend on the specific prevalence of each disease in the

population being tested. This underscores the importance for disease-

specific validation and refinement of biomarker panels and may

suggest the expansion or further refinement of our panel to improve

the performance for diseases with a lower AUC. Thus, for clinical use,

the diagnostic power of our biomarker panel should be explored in a

larger independent PDAC cohort including individuals which carry

an increased risk of developing PDAC as well as in other more closely

related cancers, in order to confirm its tissue specificity. It would also

be interesting to explore the utility of our panel on a European and

Asian cohorts to fully realize the generalizability of our panel on a

global scale.

GO enrichment analysis of our candidate biomarker panel

highlighted the roles of the corresponding autoantigens in the

negative regulation of metabolism, ameboidal-type cell migration,

regulation of vascular permeability, and the ERK1 and ERK2

cascade (Figure 4A).

The negative regulation of DNA metabolism or metabolic

reprogramming is a well-recognized hallmark of cancers (25),

since the metabolic pathway activity of lipids, glucose, amino

acids, and fatty acids (26–28) change during tumorigenesis and

cancer progression to fulfil the energy biosynthetic needs of their

uncontrolled proliferation (29). In PDAC, this is particularly

pronounced due to the high metabolic rate of the cancer.

Increased synthesis and storage of lipids contribute to cell

membrane biogenesis, energy storage, and signaling all crucial

for tumor progression and metastasis. Moreover, PDAC cells

shift towards aerobic glycolysis (i.e. the Warburg effect)

becoming reliant on glucose fermentation for energy production.
TABLE 2 Immunohistochemistry data on the expression and spatial localization of identified autoantibodies in pancreatic cancer.

Protein Protein Expression in
normal pancreatic tissue

IHC Expression (Y/N) and
Intensity in pancreatic
tumour tissue

Localization in
tumour tissue

RNA expression levels in
tumour tissue
(Average FPKM)

CEACAM 1 Not detected Y – Moderate to negative Cytoplasmic/membranous 15.0

DPPA2 Not detected Y –Strong to moderate Nuclear 0.0

DPPA3 Not detected Not applicable Not applicable 0.0

MAGEA4
Not detected Y – Strong to negative Nuclear, Cytoplasmic/

membranous/nuclear
0.1

SRC
Not detected Y - Strong to weak Cytoplasmic/membranous,

Cytoplasmic/membranous/nucleus
21.3

TPBG Detected Y – Strong to moderate Cytoplasmic/membranous 6.5

XAGE3 Not detected Y – Moderate to negative Cytoplasmic/membranous 0.0

ALX1
Detected Y – Strong to negative Nuclear,

Cytoplasmic/membranous,
Cytoplasmic/membranous/nuclear

0.0

GPA33 Not detected Not applicable Not applicable 2.8

LIPI Not detected Not applicable Not applicable 0.0

SUB1 Detected Y – Strong to weak Nuclear 12.1
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This along with fatty acid oxidation produces ATP as well

as intermediates necessary for biosynthesis, such as amino acids

(30, 31). Subsequently, increased amino acid metabolism and

uptake, particularly of glutamine, supports tumor growth and

survival (32).

Ameboidal migration, likely induced by cytokines and

mechanical cues, aids in the migration, dissemination and

survival of cancer cells enabling their proliferation. Thus, cancer

cells, including PDAC cells can modulate their migration by

adopting an ameboid migration style, which allows for more

flexibility when navigating ECM and blood vessel walls and may

partly explain the faster migration of PDAC cells (33). Increased
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vascular permeability is indispensable for cancer metastasis and is

highly correlated with the endothelial extravasation of tumor cells

as they require movement through the endothelial cell barrier to

migrate (34, 35). Pancreatic ductal adenocarcinoma is defined in

part by its aggressive nature and promotion of angiogenesis which

supports tumorigenesis and is key for metastasis possible via

increased vascular permeability. This is further highlighted by the

most dominant pathway with which our biomarker proteins are

involved being cell surface interactions at the vascular wall

(Figure 4B). This indicates a role in facilitating PDAC cell

migration through altered or newly formed blood vessels, thereby

supporting the dissemination of tumor cells to distant sites.
FIGURE 3

ROC curve analysis of validation cohort samples run on the custom pancreatic ductal adenocarcinoma (PDAC) array. ROC analysis curve of (A)
PDAC versus all diseased and healthy controls; (B) PDAC versus other pancreatic cancers; (C) PDAC versus colorectal cancers; (D) PDAC versus
prostate cancers; and (E) PDAC versus healthy controls.
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Finally, the ERK1 and 2 cascades as well as their regulation is

another process in which our biomarker proteins are involved.

Notably, these extracellular signal kinases are related to several

cancers including pancreatic cancers. In fact, KRAS mutations, a

key upstream regulator of the ERK pathway, are present in

approximately 90-95% of all PDACs. The KRAS-driven activation

of the MAPK/ERK pathway results in the phosphorylation of

downstream targets, thereby promoting cell cycle progression,

survival, and the enhanced metastatic ability characteristic of

PDAC cells (36). Though the activation of an aberrant ERK1/2

pathway is known to be activated in PDAC cells, the exact

mechanism by which this occurs remains unknown (37, 38).

These pathways are integral to PDAC progression and metastasis,

and the identified biomarkers may serve as critical indicators of

disease status and potential therapeutic targets. Antibody and

autoantibody biomarkers in liquid biopsies have been widely

identified across various cancers for their potential as non- to

minimally invasive diagnostic tools. For example, autoantibodies

against HER2 and MUC1 (39, 40) have been reported in breast
Frontiers in Immunology 10
cancer, while NY-ESO-1 and MAGE-A autoantibodies have been

used for diagnostic and prognostic purposes in lung and melanoma

cancers (40). Our study extends this approach to PDAC by

identifying a novel panel of biomarkers using protein microarrays.

Unlike these single biomarkers identified for other cancers, our

panel targets PDAC-specific pathways, such as altered ERK

signaling and metabolism, or vascular wall interactions.

Interestingly, some overlap exists with autoantibody responses in

other cancers, such as MAGEA4 and CEACAM-1, which may

reflect shared mechanisms in tumorigenesis. However, our

biomarker panel exhibits a higher specificity for PDAC.

Given that our autoantibodies are known to arise in disease

through a limited number of mechanisms, our data identify the

aberrant expression of specific cancer-testis antigens in individual

PDAC patients. Thus, whilst the main objective of this study was to

identify a candidate autoantibody-based diagnostic panel for pre-

symptomatic and early stage PDAC, the biology of the identified

autoantigenic targets also hints at possible paths towards novel

precision therapies and cancer vaccines, since the identified cancer-
FIGURE 4

GO Enrichment and PATHWAY analysis of proteins in biomarker panel. (A) Cluster profiler GO enrichment analysis of biological processes and (B)
Reactome PATHWAY analysis of biomarker proteins.
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testis antigens appear to be functionally linked to PDAC and are not

expressed in other adult somatic tissues, so may represent plausible

future targets for autologous immunotherapy.
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