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proteins associated with
primary immunodeficiencies
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Anastasia V. Rudik2, Dmitry A. Filimonov2

and Alexey A. Lagunin1,2*

1Department of Bioinformatics, Pirogov Russian National Research Medical University,
Moscow, Russia, 2Laboratory of Structure-Function Based Drug Design, Institute of Biomedical
Chemistry, Moscow, Russia
Introduction: Primary immunodeficiencies (PIDs) are a group of rare genetic

disorders characterized by dysfunction of the immune system components. Early

diagnosis and treatment are essential to prevent severe or life-threatening

complications. PIDs are manifested by diverse clinical symptoms, posing

challenges for accurate diagnosis. A key aspect of PID diagnosis is identifying

specific amino acid substitutions in the proteins related with heritable diseases. In

this study, we have developed classification sequence-structure-property

relationships (SSPR) models for predicting the pathogenicity of amino acid

substitutions (AAS) in 25 proteins associated with the most important and

genetically studied PIDs and encoded genes: IL2RG, JAK3, RAG1, RAG2, ADA,

DCLRE1C, CD40LG, WAS, ATM, STAT3, KMT2D, BTK, FOXP3, AIRE, FAS, ELANE,

ITGB2, CYBB, G6PD, GATA2, STAT1, IFIH1, NLRP3, MEFV, and SERPING1.

Methods: The data on 4825 pathogenic and benign AASs in the selected proteins

were extracted from ClinVar and gnomAD. SSPR models were created for each

protein using the MultiPASS software based on the Bayesian algorithm and

different levels of MNA (Multilevel Neighborhoods of Atoms) descriptors for the

representation of structural formulas of protein fragments including AAS.

Results: The accuracy of prediction was assessed through a 5-fold cross-

validation and compared to other bioinformatics tools, such as SIFT4G,

Polyphen2 HDIV, FATHMM, MetaSVM, PROVEAN, ClinPred, and Alpha

Missense. The best SSPR models demonstrated high accuracy, with an average

ROC AUC of 0.831 ± 0.037, a Balanced accuracy of (0.763 ± 0.034), MCC (0.457

± 0.06), and F-measure (0.623 ± 0.07) across all genes, outperforming the most

popular bioinformatics tools.
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Conclusions: The best created SSPR models for the prediction of pathogenicity

of amino acid substitutions related with PIDs have been implemented in a freely

available web application SAV-Pred (Single Amino acid Variants Predictor,

http://www.way2drug.com/SAV-Pred/), which may be a useful tool for medical

geneticists and clinicians. The use of SAV-Pred for some clinical cases of PIDs

are provided.
KEYWORDS
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1 Introduction

Primary immunodeficiencies (PIDs), also called inborn errors

of immunity (IEI), represent a group of diseases caused by germline

mutations. These diseases are caused by mutations in genes

encoding proteins that play a crucial role in the functioning of

the human immune system. They often lead to a decrease or

impairment of the expression of a gene or to its enhancement.

The clinical symptoms of PIDs are diverse. Most commonly, they

manifest as an increased susceptibility to severe infections. They can

also cause autoimmune and autoinflammatory diseases, oncological

pathologies, and diseases leading to the development of

angioedema. In addition, pathologies related to immune

dysregulation and bone marrow failure are included here (1).

Mutations in genes encoding proteins that play a crucial role in

the functioning of the human immune system are the reason for

PIDs. Early identification of these genetic defects is urgent for

successful treatment. Failure to promptly recognize and address

these mutations can result in chronic or fatal outcomes. These

disorders are often manifested by varied and nonspecific symptoms,

leading to significant delays in diagnosis that can last for years.

Despite advancements in understanding of these diseases, there

continues to be a significant lag in diagnosing primary

immunodeficiencies, even in developed countries (2). Timely

detection and intervention are essential in managing these

conditions and improving patient outcomes. Therefore, it is

necessary to accurately identify the pathogenicity of amino acid

substitutions to understand the underlying mechanisms of disease.

The advent of Next Generation Sequencing (NGS) technology

has revolutionized genetic testing by allowing for the efficient and

economical analysis of the entire exome or genome. However, the

sheer volume of data produced by NGS can be daunting,

particularly when it comes to distinguishing between pathogenic

variations and harmless polymorphisms. Unannotated variants or

variants of uncertain significance (VUS) create challenges in the

diagnosis and treatment of genetic disorders. These variants may

not be documented in genetic databases or literature, making it

difficult to determine their significance. Bioinformatics analysis
02
methods are essential for resolving VUS, with machine learning-

based computational approaches proving to be valuable tools in this

process. By analyzing large datasets of biological sequences,

researchers can develop predictive models for assessing the

pathogenicity of these variants. Despite the availability of

numerous pathogenicity predictors like SIFT, Polyphen, and

others, no universally accepted algorithm has gained wide

recognition in the scientific community (3).

In this study, we present a new version of the SAV-Pred (Single

Amino acid Variants Predictor) web application for predicting the

pathogenicity of amino acid substitutions in proteins associated with

PIDs based on sequence-structure property relationships (SSPR)

modeling. This approach was initially used to predict the pathogenic

effect of single amino acid substitutions in proteins associated with

twenty-five monogenic inherited diseases from the Uniform Screening

Panel for Major Conditions recommended by the Advisory

Committee on Hereditary Disorders in Newborns and Children (4).

The method has now been used for primary immunodeficiencies.

SSPR modeling is focused on machine learning-based

classification models that use structural formulas of protein

fragments as amino acid sequences description. This methodology

allows us to study the way that a protein’s amino acid sequence affects

its three-dimensional structure and ultimately determines its

properties. It has been successfully applied to predict

posttranslational protein phosphorylation sites (5), the association

of CDR3 regions of T-cell receptors with MHC epitopes and alleles

(6), and amino acid substitutions associated with drug resistance (7).
2 Materials and methods

2.1 Gene selection

Proteins related to primary immunodeficiencies were chosen

based on the IUIS classification (2022) (8) and the prevalence of

diseases in the population. The registries selected for the study of

immunodeficiency epidemiology were: NAEPID – National

Association of Experts in Primary Immunodeficiency in Russia
frontiersin.org
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(9); ESID – European Society for Immunodeficiencies registry

(10–15); MENA – registry of Middle East and North African

countries (16–18); USIDNET – registry of the United States of

America (19); PIDJ – Japanese registry of PID patients (20). In

addition to these registries, the research on epidemiology PIDs also

focused on several countries, such as China (21), South India (22),

and Bulgaria (23). Based on the data gathered from these sources,

the study identified the most prevalent and socially impactful

diseases linked to primary immunodeficiencies, along with the

specific genes associated with them. As a result, the most

common and socially significant diseases associated with PIDs

and their corresponding genes were identified: IL2RG, JAK3,

RAG1, RAG2, ADA, DCLRE1C, CD40LG, WAS, ATM, STAT3,

KMT2D, BTK, FOXP3, AIRE, FAS, ELANE, ITGB2, CYBB, G6PD,

GATA2, STAT1, IFIH1, NLRP3, MEFV, MVK, SERPING1.
2.2 Preparation of datasets

Data on amino acid substitutions (AASs) in the selected

proteins associated with PIDs were obtained using ClinVar

(available as of July 2023) (24). Only missense variants were

analyzed. Missense mutations are a type of mutation in which

one nucleotide in a gene is replaced by another, leading to one AAS

in the protein sequence. These AASs can have various consequences

for the function of the protein: some missense variants can be

pathogenic, leading to impairment of normal protein function,

while others can be benign, not leading to diseases. To train

classifiers accurately, we decided that each protein should have at

least 75 missense SNPs (Single Nucleotide Polymorphism). This

threshold is a balance between including as many proteins

associated with PIDs as possible and having enough annotated

variants to generate accurate and robust models, as well as

performing a quality assessment of their accuracy. To supplement

the dataset with benign variants, gnomAD (25) was used, with the
Frontiers in Immunology 03
criterion that the gnomAD allele frequency of the variant was

greater than the frequency of the disease in the population (from

OMIM database). Datasets containing pathogenic and benign AASs

were compiled for all selected proteins.

Based on the collected data, the training sets were created for

each protein in the form of MDL SD (structure-data) files with

structural formulas of peptides with varying lengths. Machine

learning algorithms were trained on these sets. Initially, it was

unknown what peptide length would provide the best accuracy for

the created classification models of the appropriate protein.

Therefore, 14 sets of peptides of different lengths with

substitutions in the center, ranging from 5 (two residues in each

side from AAS) to 31 (fifteen residues in each side from AAS)

amino acid residues with an odd number, were created for each

protein (Figure 1). If AAS is located at the edge of the sequence,

then the number of residues on one side will be less than on the

other side for the selected peptide length (for example, two bottom

records in Figure 1).
2.3 SSPR modeling and validation

The proposed approach represents protein molecular fragments

with amino acid substitutions as a structural formula and creates

the classification “sequence-structure-property relationships”

(SSPR) models. Classification models were trained and verified

using a modified command line version of the Prediction of

Activity Spectra for Substances (PASS) software - MultiPASS

(version 2022) (26). It utilizes a standardized set of MNA

(Multilevel Neighborhoods of Atoms) descriptors representing the

structural formula of peptides and a modified classifier based on the

Naive Bayes approach for modeling “structure-property”

relationships. This version allows for the utilization of up to 15

levels of MNA descriptors. The MNA descriptor is a way to

represent a molecule fragment, including the central atom (except
FIGURE 1

Example of peptides of the appropriate length with amino acid substitution in the center for AAS from ADA protein. Aspartic acid (D) is replaced with
asparagine (N).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1492751
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Porfireva et al. 10.3389/fimmu.2025.1492751
for the hydrogen atom) and the atoms bonded to it. The set of MNA

descriptors is used for description of each structural formula. The

level of the MNA descriptor reflects the number of covalent bonds

from the central atom (Figure 2). For constructing SSPR models on

14 distinct peptide fragment length datasets (from 7 to 31 with odd

numbers), each of the 11 MNA levels (from 5 to 15) was utilized.

MultiPASS prediction results are a list of predicted characteristics

of molecules with Pa (probability of “to be active”) and Pi (probability

of “to be inactive”) values. In this study, the Pa value is the probability

that the peptide with AAS belongs to the class of pathogenic variants,

and the Pi value is the probability that the peptide with AAS does not

belong to the class of pathogenic variants. The Pa-Pi value

(Confidence) is used for the representation of prediction results in

the SAV-Pred web application. Any positive value of Confidence

shows that AAS belongs to the class of pathogenic AASs. A higher

Confidence value indicates a greater association between AAS and a

disease. Any negative value of Confidence means that AAS belongs to

the benign class of AASs. The high negative value of Confidence

implies the high probability of AAS belonging to benign variants.

The evaluation of model quality for each dataset was conducted

using the Invariant Accuracy of Prediction (IAP) implemented in

MultiPASS. IAP is an assessment of the probability that positive and

negative examples randomly selected from the test set can be

correctly classified by a model. Numerically, it is equal to the

ROC AUC value traditionally used to assess the accuracy of

classification models. The quality of the models for each dataset

was evaluated through the leave-one-out (AUCLOO CV) and 5-fold

cross-validation (AUC5F CV) procedures.
Frontiers in Immunology 04
3 Results

3.1 Analysis and selection of SSPR models

The final dataset consisted of 4825 missense variants across 26

proteins associated with primary immunodeficiencies encoded by

genes: IL2RG, JAK3, RAG1, RAG2, ADA, DCLRE1C, CD40LG,

WAS, ATM, STAT3, KMT2D, BTK, FOXP3, AIRE, FAS, ELANE,

ITGB2, CYBB, G6PD, GATA2, STAT1, IFIH1, NLRP3, MEFV,

MVK, and SERPING1 (Table 1).

154 SSPR models with different levels of MNA descriptors (11

levels, from 5 to 15) and different peptide lengths (14 length values

with odd numbers, from 5 to 31 amino acid residues) were

developed for each protein. The quality of SSPR models for each

dataset was evaluated through the leave-one-out cross-validation

procedure (AUCLOO CV) (Figure 3).

The best SSPR model for predicting pathogenicity for each

protein was selected based on the highest AUCLOO CV values of

models built on different training datasets of amino acid

substitutions. The distribution of AUCLOO CV values of the SSPR

models created on different peptide length and levels of MNA

descriptors for ADA protein are shown as an example (Figure 4).

Among the best SSPR models, the average AUCLOO CV value

was 0.838 ± 0.027. Figure 3 shows that the best SSPR models

exceeded 0.80 for 20 proteins. The high accuracy levels (above

0.920) of the SSPR models for genes IFIH1, KMT2D, and GATA2

indicate their potential effectiveness in prediction. However, the

SSPR model for the MVK protein showed a value below 0.7 (0.652).
FIGURE 2

The levels of MNA descriptors beginning from the Ca atom (zero level) of a lysine residue within the central residue of PDKVV peptide from ADA
protein are shown.
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TABLE 1 The list of investigated proteins with associated diseases, data on training sets, and parameters of SSPR models.

Gene Disease OMIM UniProt P B B+ Total Frequency PL MNA AUCLOOCV AUC5FCV

ADA ADA-SCID, Adenosine
deaminase deficiency

102700 P00813 42 31 41 114 0.0000050 9 5 0.835 0.887

AIRE APECED, Autoimmune
polyendocrinopathy
syndrome

240300 O43918 28 14 90 132 0.0000100 13 6 0.816 0.817

ATM AT, Ataxia-telangiectasia 208900 Q13315 66 15 111 192 0.0000050 5 10 0.778 0.768

BTK XLA,
Agammaglobulinemia
X-linked

300755 Q06187 43 9 42 94 0.0000050 29 15 0.813 0.802

CD40LG HIGM1, HYPER-
IgM immunodeficiency

308230 P29965 38 20 32 90 0.0000050 23 15 0.866 0.870

CYBB CGDX, Chronic
granulomatous disease

306400 P04839 8 25 81 114 0.0000050 17 6 0.774 0.781

DCLRE1C SCIDA, Severe combined
immunodeficiency
athabaskan-type,
Artemis deficiency

602450 Q96SD1 31 10 41 82 0.0000010 31 11 0.846 0.844

ELANE SCN1, Severe
congenital neutropenia

202700 P08246 37 17 85 139 0.0000040 31 15 0.871 0.887

FAS ALPS-FAS, Autoimmune
lymphoproliferative
syndrome

601859 P25445 30 57 174 261 0.0000020 19 11 0.892 0.842

FOXP3 IPEX, Immunodeficiency
polyendocrinopathy and
enteropathy X-linked

304790 Q9BZS1 55 105 2 162 0.0000010 27 7 0.827 0.842

G6PD Anemia, nonspherocytic
hemolytic, due to
g6pd deficiency

300908 P11413 56 671 163 890 0.0000313 13 14 0.711 0.725

GATA2 IMD21, immunodeficiency
21, monocytopenia and
mycobacterial
infection syndrome

614172 P23769 87 21 47 155 0.0000053 23 15 0.975 0.978

IFIH1 AGS7, aicardi-goutieres
syndrome 7

615846 Q9BYX4 26 45 29 100 0.0000010 13 6 0.924 0.892

IL2RG SCID, Severe combined
immunodeficiency,
x-linked

300400 P31785 45 18 31 94 0.0000020 17 6 0.834 0.845

ITGB2 LAD1, Leukocyte
adhesion deficiency

116920 P05107 26 7 77 110 0.0000020 21 15 0.756 0.452

JAK3 SCID, Severe combined
immunodeficiency,
autosomal recessive

600802 P52333 53 11 88 152 0.0000040 17 10 0.851 0.866

KMT2D Kabuki syndrome 147920 O14686 23 19 261 303 0.0000010 31 15 0.942 0.946

MEFV FMF, Familial
mediterranean fever

249100 O15553 53 34 77 164 0.0000100 23 7 0.833 0.826

MVK HIDS, HYPER-
IgD syndrome

260920 Q03426 194 13 1 208 0.0000100 19 5 0.652 0.789

NLRP3 FCAS, Familial cold
autoinflammatory
syndrome

120100 Q96P20 43 12 297 352 0.0000010 25 13 0.899 0.908

(Continued)
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It may be related with a disbalance of data (Pathogenic variants –

194 and Benign variants – 14) in the training set (Table 1). The best

SSPR models were selected for implementation in the SAV-Pred

web application (hereinafter, we will call our method SAV-Pred).

These models additionally underwent a thorough evaluation using a

5-fold cross-validation (5F CV) procedure. This rigorous testing

process ensured that the algorithm was robust and reliable in

predicting the outcomes’ validity. The average AUC5F CV score

was 0.831 ± 0.037, which indicates a high level of prediction

accuracy (Table 1).
Frontiers in Immunology 06
3.2 Comparison the best SSPR models with
other bioinformatics tools

The prediction accuracy obtained through the 5-fold cross-

validation was compared to the accuracy of other well-known

bioinformatics tools (SIFT4G, Polyphen2_HDIV, FATHMM,

AlphaMissense, ClinPred, MetaSVM, and PROVEAN) for the

same variations, based on data from dbNSFP4 (27–33). The

numerical values for the predictive indicators in Tables 2–5 were

derived from dbNSFP4. Data processing and the calculation of
TABLE 1 Continued

Gene Disease OMIM UniProt P B B+ Total Frequency PL MNA AUCLOOCV AUC5FCV

RAG1 SCID, Severe combined
immunodeficiency,
autosomal recessive

601457 P15918 82 6 79 167 0.0000010 19 15 0.849 0.768

RAG2 SCID, Severe combined
immunodeficiency,
autosomal recessive

179616 P55895 10 60 6 76 0.0000100 31 6 0.790 0.785

SERPING1 HAE,
Angioedema hereditary

106100 P05155 50 13 256 319 0.0000033 25 5 0.812 0.828

STAT1 IMD31A,
immunodeficiency 31a,
autosomal dominant
stat1 deficiency

600555 P42224 13 17 49 79 0.0000100 23 15 0.891 0.893

STAT3 HIES, HYPER-
Ig syndrome

147060 P40763 65 7 71 143 0.0000050 21 15 0.894 0.884

WAS WAS, Wiskott-
aldrich syndrome

301000 P42768 46 23 64 133 0.0000050 31 15 0.865 0.868

Mean 0.838 0.831
fr
B, Benign variants in the sets; P, Pathogenic variants in the sets; B+, benign variants that initially did not have clinical classification and added from gnomAD; AUCLOOCV, AUC obtained by leave-
one out validation procedure; AUC5FCV, AUC obtained by 5-fold cross-validation procedure; Frequency, frequency of the disease in the population (OMIM); PL, peptide length; MNA (the level
of MNA descriptors), parameters of sequence–structure–property relationships (SSPR) models.
FIGURE 3

The plot of AUC values for SSPR protein models at different MNA descriptor levels and peptide lengths.
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FIGURE 4

ADA protein. A dependence of the SSPR model’s accuracy on the level of MNA descriptors and different peptide length values.
TABLE 2 Accuracy comparison of the tools in predicting single amino acid substitution effects in proteins related to PIDs on the AUC metric.

Gene SAV-Pred SIFT4G Polyphen2 FATHMM MetaSVM PROVEAN ClinPred Alpha Missense

ADA 0.887 0.862 0.890 0.644 0.888 0.791 0.791 0.907

AIRE 0.817 0.796 0.656 0.628 0.758 0.599 0.740 0.781

ATM 0.768 0.685 0.522 0.407 0.403 0.596 0.667 0.576

BTK 0.802 0.929 0.841 0.758 0.934 0.903 0.959 0.960

CD40LG 0.870 0.772 0.908 0.888 0.942 0.914 0.980 0.971

CYBB 0.781 0.876 0.844 0.741 0.846 0.895 0.964 0.959

DCLRE1C 0.844 0.814 0.734 0.825 0.958 0.888 0.954 0.934

ELANE 0.887 0.782 0.745 0.765 0.814 0.767 0.816 0.839

FAS 0.842 0.821 0.777 0.622 0.807 0.823 0.888 0.870

FOXP3 0.842 0.746 0.705 0.409 0.764 0.708 0.768 0.763

G6PD 0.725 0.702 0.752 0.746 0.644 0.784 0.661 0.669

GATA2 0.978 0.966 0.888 0.999 0.782 0.898 0.997 0.995

IFIH1 0.892 0.613 0.709 0.609 0.718 0.694 0.880 0.796

IL2RG 0.845 0.770 0.917 0.516 0.800 0.846 0.973 0.923

ITGB2 0.452 0.833 – 0.820 0.894 0.879 0.899 0.888

JAK3 0.866 0.746 0.775 0.509 0.727 0.695 0.798 0.790

KMT2D 0.946 – 0.862 0.789 0.861 0.892 0.941 0.878

MEFV 0.826 0.317 0.372 0.582 0.539 0.292 0.453 0.479

MVK 0.789 0.783 0.774 0.623 0.818 0.721 0.757 0.765

NLRP3 0.908 0.605 0.526 0.602 0.705 0.520 0.719 0.735

RAG1 0.768 0.820 0.792 0.647 0.736 0.754 0.827 0.861

RAG2 0.785 0.860 0.769 0.614 0.797 0.860 0.862 0.891

SERPING1 0.828 0.871 0.827 0.623 0.919 0.858 0.985 0.958

(Continued)
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model performance metrics were made using the KNIME

software. SAV-Pred (0.831 ± 0.037) was among the top three

in terms of AUC values, along with ClinPred (0.846 ± 0.050) and

AlphaMissense (0.839 ± 0.047). However, SAV-Pred has shown
Frontiers in Immunology 08
the best prediction results for 10 proteins encoded by the genes

JAK3, ATM, KMT2D, FOXP3, AIRE, ELANE, STAT1, IFIH1,

NLRP3, and MEFV, while ClinPred and Alpha Missense were

better for 8 (CD40LG, CYBB, FAS, IL2RG, ITGB2, SERPING1,
TABLE 2 Continued

Gene SAV-Pred SIFT4G Polyphen2 FATHMM MetaSVM PROVEAN ClinPred Alpha Missense

STAT1 0.893 0.732 0.751 0.470 0.652 0.764 0.837 0.847

STAT3 0.884 0.836 0.758 0.777 0.853 0.822 0.928 0.855

WAS 0.868 0.874 0.919 0.514 0.641 0.872 0.951 0.924

Mean 0.831 0.746 0.731 0.659 0.777 0.771 0.846 0.839
For each gene, the best results are highlighted in bold.
TABLE 3 The accuracy comparison of the tools in predicting single amino acid substitution effects in proteins related to PIDs on the BA metric.

Gene SAV-Pred SIFT4G Polyphen2 FATHMM MetaSVM PROVEAN ClinPred Alpha Missense

ADA 0.793 0.814 0.783 0.500 0.615 0.729 0.729 0.850

AIRE 0.745 0.734 0.604 0.567 0.655 0.637 0.669 0.723

ATM 0.645 0.572 0.468 0.487 0.491 0.523 0.563 0.568

BTK 0.735 0.853 0.751 0.613 0.759 0.820 0.770 0.791

CD40LG 0.769 0.741 0.763 0.691 0.776 0.827 0.863 0.916

CYBB 0.686 0.756 0.768 0.500 0.654 0.780 0.817 0.822

DCLRE1C 0.887 0.729 0.705 0.574 0.825 0.889 0.808 0.827

ELANE 0.823 0.731 0.695 0.500 0.792 0.660 0.720 0.729

FAS 0.772 0.731 0.735 0.540 0.797 0.745 0.834 0.808

FOXP3 0.795 0.613 0.627 0.500 0.615 0.689 0.721 0.648

G6PD 0.749 0.581 0.684 0.500 0.494 0.701 0.649 0.575

GATA2 0.930 0.868 0.684 0.500 0.534 0.856 0.575 0.799

IFIH1 0.809 0.616 0.679 0.500 0.638 0.692 0.776 0.638

IL2RG 0.763 0.661 0.756 0.469 0.606 0.803 0.869 0.817

ITGB2 0.460 0.786 – 0.584 0.728 0.776 0.748 0.747

JAK3 0.782 0.702 0.676 0.451 0.673 0.667 0.725 0.695

KMT2D 0.852 – 0.786 0.756 0.811 0.862 0.850 0.819

MEFV 0.725 0.446 0.354 0.485 0.500 0.362 0.454 0.508

MVK 0.729 0.729 0.706 0.500 0.731 0.726 0.692 0.724

NLRP3 0.830 0.558 0.471 0.556 0.613 0.506 0.588 0.602

RAG1 0.697 0.672 0.699 0.555 0.730 0.662 0.678 0.783

RAG2 0.721 0.686 0.725 0.622 0.696 0.730 0.668 0.801

SERPING1 0.714 0.799 0.709 0.500 0.873 0.840 0.877 0.918

STAT1 0.791 0.725 0.754 0.432 0.612 0.680 0.747 0.766

STAT3 0.831 0.776 0.655 0.654 0.748 0.738 0.698 0.731

WAS 0.806 0.740 0.794 0.521 0.543 0.821 0.784 0.858

Mean 0.763 0.678 0.655 0.541 0.674 0.720 0.726 0.748
For each gene, the best results are highlighted in bold.
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STAT3 , WAS ) a nd 4 (ADA , BTK , RAG1 , RAG2 ) ,

proteins (Table 2).

SAV-Pred has demonstrated the best performance on metrics

used in conditions of imbalanced data. The Balanced Accuracy (BA)

metric helps to obtain a more accurate assessment of the model’s

quality in conditions of imbalanced data when the number of events

in one class significantly exceeds the number of events in another

(Table 3). Average Balanced (BA) accuracy for SAV-Pred was

higher in comparison with other methods and achieved 0.763 ±

0.034. BA of SAV-Pred was the highest for 12 proteins. ClinPred

and Alpha Missense were better for 2 and 7 proteins, respectively.

MCC (Matthews correlation coefficient) is a measure of the

quality of a model that balances a True Positives Rate and a True

Negatives Rate. It is commonly used in cases where it is crucial to

balance the prediction performance on both positive and negative
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samples. The average MCC for our models (SAV-Pred) was also

better and achieved 0.457 ± 0.06 (Table 4). MCC for SAV-Pred

models was the highest for 15 proteins. ClinPred and Alpha

Missense were better for 1 and 8 proteins, respectively.

The F-measure is useful when achieving a balance between

precision and recall is important, as well as in tasks with imbalanced

classes. It is also widely used as a metric for evaluating the quality of

machine-learning models related to classification tasks. The average

F-measure for SAV-Pred models was also better and achieved 0.623

± 0.07, confirming the effectiveness and accuracy of this algorithm

compared to other predictors (Table 5). The F-measure for SAV-

Pred models was the highest for 14 proteins. ClinPred and Alpha

Missense were better for 2 and 7 proteins, respectively.

The results of the evaluation highlighted the effectiveness and

efficiency of the SAV-Pred algorithm in making accurate
TABLE 4 The accuracy comparison of the tools in predicting single amino acid substitution effects in proteins related to PIDs on the MCC metric.

Gene SAV-Pred SIFT4G Polyphen2 FATHMM MetaSVM PROVEAN ClinPred Alpha Missense

ADA 0.578 0.613 0.569 0.000 0.323 0.471 0.471 0.681

AIRE 0.490 0.466 0.218 0.206 0.320 0.274 0.337 0.462

ATM 0.164 0.086 -0.039 -0.049 -0.018 0.033 0.073 0.081

BTK 0.468 0.742 0.571 0.238 0.584 0.664 0.630 0.635

CD40LG 0.527 0.468 0.526 0.379 0.539 0.649 0.699 0.816

CYBB 0.353 0.487 0.523 0.000 0.353 0.533 0.608 0.611

DCLRE1C 0.440 0.212 0.187 0.206 0.358 0.401 0.283 0.306

ELANE 0.619 0.438 0.381 0.000 0.553 0.306 0.427 0.436

FAS 0.482 0.417 0.424 0.124 0.550 0.454 0.613 0.630

FOXP3 0.526 0.200 0.230 0.000 0.274 0.353 0.397 0.280

G6PD 0.244 0.078 0.198 0.000 -0.024 0.233 0.176 0.084

GATA2 0.738 0.243 0.114 0.000 0.041 0.230 0.063 0.180

IFIH1 0.475 0.141 0.229 0.000 0.428 0.254 0.365 0.197

IL2RG 0.512 0.346 0.480 -0.094 0.217 0.566 0.672 0.611

ITGB2 0.039 0.286 – 0.113 0.225 0.272 0.244 0.250

JAK3 0.487 0.327 0.278 -0.089 0.309 0.268 0.355 0.331

KMT2D 0.464 – 0.267 0.270 0.364 0.417 0.388 0.360

MEFV 0.359 -0.080 -0.218 -0.073 0.000 -0.224 -0.071 0.014

MVK 0.463 0.404 0.380 0.000 0.431 0.403 0.360 0.401

NLRP3 0.521 0.053 -0.027 0.051 0.119 0.005 0.080 0.104

RAG1 0.374 0.378 0.409 0.103 0.445 0.309 0.363 0.537

RAG2 0.443 0.455 0.467 0.311 0.470 0.462 0.379 0.603

SERPING1 0.407 0.529 0.371 0.000 0.675 0.619 0.671 0.830

STAT1 0.582 0.435 0.488 -0.132 0.224 0.346 0.493 0.511

STAT3 0.641 0.455 0.252 0.263 0.399 0.398 0.342 0.373

WAS 0.555 0.430 0.525 0.109 0.157 0.571 0.508 0.661

Mean 0.457 0.331 0.300 0.074 0.320 0.356 0.382 0.423
For each gene, the best results are highlighted in bold.
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predictions in the proteins associated with PIDs. These data

demonstrate that this method outperformed other tools in terms

of prediction accuracy and specificity, highlighting its potential

utility in clinical and research settings.
3.3 SAV-Pred web application

The best SSPR models for 25 proteins associated with PIDs (the

model for MVK was excluded) became the basis for the section

“Inborn Errors of Immunity” in the SAV-Pred web application

predicting the pathogenic effects of amino acid substitutions (AAS)

on the way2drug.com portal (4): (http://www.way2drug.com/SAV-

Pred/) (accessed on August 30, 2024). Users should press the
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“Input” button on the Home page and select “One request” or

“*.csv file” commands to form a query for prediction of the

pathogenicity of amino acid substitution(s). After selecting “One

request” in the appeared “Input data” window, users should select

“Inborn Errors of Immunity” in the field “Dataset” and then select

the gene name (field “Gene”) or disease (field “Disease”) to select

the protein where amino acid substitution would be estimated.

Then a position and amino acid substitution should be defined for

the creation of a query. The “Input data” window also includes

information on the maximal position in a sequence of the

appropriate protein. These steps may be repeated several times to

form a query for the prediction of the pathogenicity for several

amino acid substitutions. The selection of “*.csv file” command

allows loading a query list of substitutions in the following format:
TABLE 5 The accuracy comparison of the tools in predicting single amino acid substitution effects in proteins related to PIDs on the F-
measure metric.

Gene SAV-Pred SIFT4G Polyphen2 FATHMM MetaSVM PROVEAN ClinPred Alpha Missense

ADA 0.765 0.773 0.744 0.559 0.623 0.697 0.697 0.805

AIRE 0.739 0.725 0.635 0.656 0.673 0.630 0.659 0.667

ATM 0.229 0.200 0.127 0.000 0.080 0.154 0.192 0.178

BTK 0.757 0.893 0.830 0.701 0.834 0.862 0.848 0.852

CD40LG 0.716 0.685 0.709 0.641 0.720 0.780 0.812 0.885

CYBB 0.585 0.682 0.694 0.512 0.601 0.706 0.743 0.741

DCLRE1C 0.400 0.200 0.182 0.222 0.333 0.343 0.231 0.250

ELANE 0.760 0.651 0.620 0.505 0.715 0.582 0.643 0.642

FAS 0.615 0.603 0.605 0.460 0.688 0.625 0.727 0.731

FOXP3 0.657 0.462 0.487 0.425 0.490 0.545 0.581 0.491

G6PD 0.831 0.822 0.885 0.974 0.968 0.906 0.906 0.883

GATA2 0.762 0.148 0.068 0.044 0.047 0.138 0.051 0.103

IFIH1 0.533 0.241 0.306 0.000 0.419 0.326 0.406 0.306

IL2RG 0.703 0.541 0.621 0.413 0.496 0.699 0.761 0.727

ITGB2 0.088 0.257 – 0.142 0.209 0.236 0.224 0.244

JAK3 0.603 0.472 0.430 0.145 0.456 0.432 0.482 0.476

KMT2D 0.460 – 0.231 0.268 0.355 0.388 0.357 0.343

MEFV 0.474 0.200 0.120 0.000 0.105 0.054 0.186 0.200

MVK 0.730 0.579 0.552 0.419 0.574 0.574 0.540 0.580

NLRP3 0.585 0.122 0.088 0.121 0.167 0.098 0.133 0.156

RAG1 0.616 0.586 0.606 0.437 0.632 0.550 0.588 0.683

RAG2 0.698 0.714 0.727 0.667 0.721 0.692 0.692 0.787

SERPING1 0.636 0.653 0.562 0.423 0.760 0.724 0.748 0.876

STAT1 0.793 0.654 0.690 0.311 0.505 0.604 0.687 0.703

STAT3 0.774 0.567 0.427 0.424 0.519 0.531 0.455 0.494

WAS 0.681 0.602 0.648 0.438 0.449 0.680 0.636 0.756

Mean 0.623 0.521 0.504 0.431 0.505 0.521 0.538 0.560
For each gene, the best results are highlighted in bold.
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<gene name> <position> <a.a. substitution>

After forming the query, pressing the button “Make prediction”

starts the prediction. The prediction results are shown in a table

(Figure 5). They can be saved as a file in the CSV or XLS formats.

Figure 5 shows that a table with the prediction results includes:

name of the gene; OMIM ID with the hyperlink to the records

related with the appropriate disease; UniProt ID with the hyperlink

to the records related with the appropriate protein; position with

AAS; one-letter code of AAS; Confidence value and AUC value of

SSPR model calculated by leave-one-out cross-validation procedure

for the appropriate protein.
3.4 Clinical cases and SAV-Pred prediction

In modern medicine, predicting the functional consequences of

gene variants is becoming increasingly important, especially in the

context of classifying variants of uncertain significance (VUS). The

SAV-Pred prediction is a promising tool for this. Several clinical

cases with VUS from scientific publications have been considered as

examples for demonstration of practical usefulness of SAV-Pred for

revealing possible pathogenic AASs.

3.4.1 Clinical case 1
Gu and co-authors published the case describing a patient with

a de novo variant in the FAS gene presenting a severe phenotype of

ALPS (Autoimmune Lymphoproliferative Syndrome) (34).

Phenotype: a 2-year-old boy with clinical characteristics of

ALPS, including splenomegaly and lymphadenopathy, and

elevated double-negative T-cells (DNT) (6.8%). In healthy

individuals, the levels of such cells are not more than 1%. The

patient had no family history of the condition.

Genotype: a novel heterozygous missense variant in the FAS

gene was identified (NM_000043.6:c.857G>A, p.G286E,

p.Gly286Glu) (34).
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In summary, the available evidence is currently insufficient to

determine the role of this variant in disease. Therefore, it has been

classified as a Variant of Uncertain Significance. This variant was

absent in population databases. Aggregated prediction agrees on the

potential pathogenic impact of this missense change, SAV-Pred

prediction identified this variant as pathogenic (Confidence value:

0.114) (Figure 5). Indirect confirmation of the connection of this

variant with pathogenicity can be its positive response to treatment

with sirolimus (34). Sirolimus is effective in ALPS treatment at

pathogenic mutations in FAS.
3.4.2 Clinical case 2
Park and co-authors published the case describing a patient

with the variant in the ELANE gene presenting episodes of cyclic

neutropenia (35).

Phenotype: a 20-year-old male with febrile neutropenia. He has

a history of cyclic neutropenia since the age of 7, experiencing self-

limiting fever attacks with pain and swelling in the buccal region.

Blood analysis revealed a leukocyte count of 1.98×109/L (normal

lower boundary 4.0×109) and an absolute neutrophil count of

0.26×109/L (normal lower boundary 0.3×109).

Genotype: a novel heterozygous missense variant in the ELANE

gene was identified (NM_001972.4:c.170C>A, p.A57D,

p.Ala57Asp) (35).

This variant was not present in ClinVar. The variant can be

classified as Likely Pathogenic. This variant has not been reported in

population databases. According to Pfam, the variant is located in a

critical functional Trypsin domain. ELANE gene has low rate of

benign missense mutations and for missense variants are a common

mechanism of a disease. The known pathogenic variant c.170C>T

(p.Ala57Val) has been reported. In-silico predictions are either

unavailable or do not agree on the potential impact of this

missense change. The SAV-Pred prediction identified this variant

as pathogenic (Confidence value: 0.522) (Figure 5).
FIGURE 5

The prediction results of the SAV-Pred for missense variants related with the clinical cases. Pos, position of AAS; Sub, amino acid substitution;
Confidence, Pa-Pi value; AUC, the accuracy of prediction of SSPR model (AUC) calculated by leave-one-out cross-validation procedure.
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3.4.3 Clinical case 3
Lien and co-authors published the case describing a patient with

the variant in the CD40LG gene, X-linked hyper IgM

syndrome (36).

Phenotype: a one-year-old boy with hyper IgM syndrome. Early

symptoms included fever, recurrent pneumonia, sepsis, diarrhea,

enteritis, and ulcerative colitis. Serum immunoglobulin levels

showed decreased IgA (0.32 g/L, normal range 0.4-2.0 g/L) and

IgG (3.50 g/L, normal range 4.9-16.1 g/L) levels, but IgM level was

high - 3.35 g/L (normal range 0.5-2.0 g/L).

Genotype: a new mutation (NM_000074.3:c.414A>T, p.L138F,

p.Leu138Phe) was found in the CD40LG gene (36).

This variant was not present in ClinVar. The variant can be

classified as Likely Pathogenic. This variant has not been reported in

population databases. Different amino acid change Leu138Ser as a

known pathogenic variant has been reported. The variant is located

in exonic mutational hotspot (12 pathogenic or likely pathogenic

reported variants were found in a 68bp region surrounding this

variant in exon 5 within the region X:136659038-136659106

(GRCh38) without any missense benign variants). In-silico

predictions are either unavailable or do not agree on the potential

impact of this missense change. The SAV-Pred prediction identified

this variant as pathogenic (Confidence value: 0.463) (Figure 5).

3.4.4 Clinical case 4
Padula and co-authors published the case describing a patient

with Behcet’s disease with the variant in the NLRP3 gene (37).

Phenotype: A 62-year-old man with fever and multiple ulcers in

the oral cavity. He was also diagnosed with folliculitis, nodular

erythema, and arthritis in the lower limbs.

Genotype: a new heterozygous missense variant in NLRP3 gene

(NM_001243133.2:c.1037T>G, p.I348S, p.Ile346Ser) was

identified (37).

This variant was not present in ClinVar and can be classified as

a Variant of Uncertain Significance. The variant has extremely low

frequency in gnomAD population databases and computational

prediction tools unanimously support a deleterious effect on the

gene. The SAV-Pred prediction identified this variant as pathogenic

(Confidence value: 0.457) (Figure 5).

Thus, SAV-Pred demonstrated remarkable accuracy in

classifying clinical cases with suspected pathogenic amino acid

substitutions. It may be a valuable tool for both clinicians and

geneticists. It holds significant promise for its integration into

routine clinical practice and underscores the significance of using

advanced computational tools in healthcare to enhance patient

outcomes and simplify the diagnostic process.
4 Discussion

The use of bioinformatics and machine learning methods is

becoming increasingly important for interpreting unannotated

variants in genetic studies of rare hereditary diseases. With a large

amount of biological sequence data that can be used as training

material, these approaches enable the creation of models capable of

detecting pathogenic variants even in the absence of annotations.
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This integration of bioinformatics and machine learning methods

offers new opportunities for identifying genetic variants associated

with rare diseases and advancing precision medicine.

The SAV-Pred web application represents a unique approach

based on the development of machine learning and molecular

prediction models. While this approach has previously been

employed successfully in predicting the pathogenicity of amino

acid substitutions in proteins related to congenital diseases

investigated in newborn screening, its application to assessing the

pathogenicity of amino acid substitutions in proteins associated

with PIDs marks a significant milestone.

Traditionally, the clinical significance of newmutations in genes

associated with PIDs could only be presumed based on some

publications concerning a particular protein and its mediating gene

anduniversal bioinformatics tools like SIFTorPolyphen.However, the

development of a novel tool presented in this study now enables to

make the estimation of AASs specifically for PID-associated proteins.

A freely available web application empowers geneticists and clinicians

tomake informeddecisions regarding treatment strategies byassessing

the pathogenicity of specific amino acid substitutions. Furthermore,

the utility of this web application extends beyond clinical settings,

offering valuable insights for prospective parents planning pregnancy

based on genetic analysis. Informing patients about their genetic risks

encourages their active participation in making decisions about their

health. Identifying pathogenic genetic variants will help clinicians

understand a patient’s condition better. Thus, by predicting potential

risks associated with certain genetic variations, this tool can be used to

provide personalized recommendations to reduce potential

health problems.

Our study also demonstrated that there is no best universal

bioinformatic tool for predicting the pathogenicity of AASs. Here,

one may see what bioinformatic tool is the best for the estimation of

AAS pathogenicity in the appropriate proteins related with PIDs. For

more thanhalf of the proteins (14 from25proteins), SAV-Predmodels

showed the best average characteristics of accuracy calculated by the

data from Tables 2-5 (AIRE, ATM, DCLRE1C, ELANE, FOXP3,

GATA2, IFIH1, JAK3, KMT2D, MEFV, MVK, NLRP3, STAT1, and

STAT3). At the same time, the advantage in accuracy is absolutely

overwhelming for the genesGATA2,MEFV, andNLRP3, which relate

with IMD21 (immunodeficiency 21, monocytopenia and

mycobacterial infection syndrome), Familial mediterranean fever,

and Familial cold autoinflammatory syndrome, respectively. The

average characteristics of accuracy for Alpha Missense were better

for 7 proteins related with ADA, CD40LG, CYBB, RAG1, RAG2,

SERPING1, and WAS genes. ClinPred was the best for FAS and

IL2RG, and it revealed comparative accuracy with Alpha Missense

for CYBB. SIFT4G was the best for BTK, and it revealed comparative

accuracy with PROVEAN for ITGB2. SIFT4G was the best for G6PD.

Based on the obtained results, we recommend selecting the most

accurate models for the corresponding genes and adding SAV-Pred

model prediction to the set of prediction programs already used for

analyzing potential pathogenic variants. We believe that integrating

our predictor with existing tools can enhance the efficiency and

accuracy of variant interpretation in clinical settings.

In this study we made models for well-studied mutated genes

related with PIDs. There are also many genes associated with PIDs
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that are poorly characterized in terms of pathogenic and benign

mutations. The small data on annotated genetic variants is a

limitation for the proposed approach because of the training set is

a key factor for successful machine learning models. Our experience

displayed that small data on pathogenic and benign AASs in such

genes makes the model training less effective and robust. Despite

this, annotated data of genetic variants increases over time.

Therefore, it is hoped that it will be possible to create good

models for predicting pathogenic AASs and for genes associated

with PIDs, which currently have a small number of annotated

AASs. Looking ahead, SAV-Pred can be constantly improved by

adding new genes associated with PIDs. By updating the gene

database regularly and expanding its associations with diverse

forms of immunodeficiencies, this web application is poised to

deliver increasingly accurate and pertinent information,

empowering users to make well-informed medical decisions.
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