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in Ageing and Disease, Medical Faculty, University of Cologne, Germany, and Cologne Excellence
Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Centre for Molecular
Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
Background: Short-Term Fasting (STF) is an intervention reducing the intake of

calories, without causing undernutrition or micronutrient-related malnutrition. It

aims to systemically improve resilience against acute stress. Several (pre-)clinical

studies have suggested protective effects of STF, marking the systemic effects STF

can induce in respect to surgery and ischemia-reperfusion injury. In addition, STF

also affects the number of circulating immune cells.We aim to determine the effect

of STF on the abundance and phenotype of different immune cell populations.

Methods: Thirty participants were randomly selected from the FAST clinical trial,

including living kidney donors, randomized to an STF-diet or control arm. In an

observational cohort sub-study we prospectively included 30 patients who

donated blood samples repeatedly during study runtime. Using flow cytometry

analyses, immune cell phenotyping was performed on peripheral blood

mononuclear cells. Three panels were designed to investigate the presence

and activation status of peripheral T cells, B cells, dendritic cells (DCs) and

myeloid cells.

Results: Eight participants were excluded due to sample constraints. Baseline

characteristics showed no significant differences, except for fasting duration.

Weight changes were minimal and non-significant across different time intervals,

with slight trends toward long-term weight loss pre-surgery. Glucose, insulin,

and b-hydroxybutyrate levels differed significantly between groups, reflecting

adherence to the fasting diet. Flow cytometry and RNA sequencing analysis

revealed no baseline differences between groups, with high variability within

each group. STF changes the levels and phenotype of immune cells, reducing the

abundance and activation of T cells, including regulatory T cells, increased

presence of (naïve) B cells, and elevation of type 1 conventional DCs (cDC1s).

In addition, a decrease in central memory T cells was observed.
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Abbreviations: cDC1s, Type 1 conventional DCs; CR, C

Dendritic Cells; DE, Differentially Expressed; DN, Doub

Ontology; GSEA, GeneSet Enrichment Analysis; PBM

mononuclear cells; SD, Standard Deviation; STF, Sho

Central memory T cells; Tregs, Regulatory T cells.
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Discussion: In this study, we observed significant changes due to fasting in B

cells, T cells, and DCs, specifically toward less specialized lymphocytes,

suggesting an arrest in B and T cell development. Further research should

focus on the clinical implications of changes in immune cells and significance

of these observed immunological changes.

Conclusion: STF results in reduced numbers and activation status of T cells and

Tregs, increased presence of (naïve) B cells, and elevation of cDC1s.
KEYWORDS

Short-Term Fasting, acute inflammatory response, immune response, cell population
analysis, caloric restriction
Introduction

Short-Term Fasting (STF) and Caloric Restriction (CR) are both

interventions reducing the intake of calories without causing

undernutrition or micronutrient-related malnutrition. Both aim to

systemically improve resilience against acute stress (1–7), with fasting

focused on a short exposure, and CR on the long term. CR lowers the

risk of age-associated diseases, boosts health span, and extends

lifespan across many organisms (1–6, 8–14). CR and STF have

been an objective of mostly preclinical and animal studies, where it

has shown preventive effects on genomic stress, ischemia reperfusion

injury, acute stress conditions and ageing (5, 9, 12, 14–18). In a

clinical setting, STF is mostly applied prior or in addition to treatment

as nutritional preconditioning and can be performed in different

regimens (19). STF induces a Survival Response after a day or two but

requires a significant and stringent reduction of caloric intake. This

Survival Response protects against different types of stress, e.g.

genotoxic stress caused by oxidative DNA damage (5, 9–14, 18).

Interest in STF has increased recently, as it has been proven feasible

and safe in human trials (9, 18–26), and holds potential for alleviating

the burden of treatment (19, 27, 28) and possibly enhancing it

(19–21). Potential short- and long-term health benefits of reducing

caloric intake have only been partly translated to and investigated in

humans, but is a topic heavily investigated (19–22).

Mechanistically, STF suppresses the somato-, lacto-, and

thyrotropic hormonal axes, causing a temporary attenuation of

growth, while protective antioxidant defenses, stress resistance and

maintenance- and resilience mechanisms are enhanced (5, 9, 10, 12,

14, 18, 29–34). Treatments damaging DNA, such as chemotherapy,

lead to acute genotoxicity and accelerated cell death, thereby

causing functional decline and aging in local and systemic areas.
aloric Restriction; DCs,

le Negative; GO, Gene

Cs, Peripheral blood

rt-Term Fasting; Tcm,
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This damage might be alleviated by CR and/or STF. Additionally,

STF may have benefits in other aspects of medical treatment, such

as improving post-surgery recovery. Surgical procedures involving

temporary lack of oxygen and nutrients followed by reperfusion,

such as in organ transplantation, generate acute tissue damage,

increased cell death and inflammation (35). Several pre-clinical

studies have demonstrated the protective effects of STF in their

respective models; marking the systemic effects CR can induce in

respect to surgery and ischemia-reperfusion injury (IRI) (9, 18, 19,

23–26, 36–38). Surgical procedures can induce local and systemic

effects, with secondary cell death and inflammation (35). Therefore,

STF could entail a method of mitigating the effects of acute surgery-

induced stress. Recently, a large prospective randomized controlled

trial was initiated, investigating the benefit of STF before living

kidney donation (39). Living kidney donors are an excellent group

to further investigate the effect of STF, as the surgery is scheduled

electively, and donors are screened extensively before living

donation. As the topic of duration and stringency of STF has

already been extensively investigated, this trial focuses on the

clinical benefit gained, for both the donor and recipient.

Aside from the aforementioned responses on cell damage and

inflammation, STF and CR may also directly affect the number of

circulating immune cells (7, 40–42). The abundance and phenotype of

peripheral immune cells serves as an indicator of the body’s immune

response (42). Postoperative recovery can be significantly influenced

by the immune cell count; elevated levels of e.g. neutrophils

immediately after surgery indicate the extent of the acute

inflammatory response (43). Conversely, a decrease in lymphocyte

count could signify immunosuppression, potentially impacting the

body’s ability to combat infections during postoperative recovery

(7, 40–42). Monitoring the immune cell populations over time may

offer insights into the body’s response to surgical stress. STF seems to

affect the intravascular presence and distribution of T and B cells and

it alters the presence, metabolic functions and inflammatory activity

of monocytes (40–42, 44). The primary objective of this study is to

determine the effect of STF on the circulatory abundance and

phenotype of different immune cell populations.
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Methods

Population

Thirty participants were randomly prospectively selected from

the FAST clinical trial (39), an active trial at the Erasmus MC

Transplant Institute and University Medical Center Groningen

(UMCG), registered in the Netherlands Trial Register (45). Both

hospitals are tertiary academic centers with extensive experience

with living kidney donation and transplantation (46). The

participants for this sub-study were included at the Erasmus MC

site. Eligible kidney donors were subjected to the study procedures,

including randomization to STF or the control group, while the

recipients were included for the collection of post-transplant clinical

data. Castor EDC (Amsterdam, the Netherlands) was used in

accordance with laws and regulations, to centrally randomize

study subjects. Computerized stratified block randomization was

performed to determine allocation to a treatment group;

stratification was employed for subject sex and center. Trial

participants and care providers could not be blinded to the result

of randomization, but statistical analysis was performed blindly.

Patients who consented to participating in the FAST-Study were

prospectively included in this sub-study if they checked the non-

obligatory checkbox on the informed consent file, stating that they

consented to the sub-study. At the moment of inclusion into this

sub-study, the result of the randomization was not yet known. We

prospectively included thirty patients in our observational cohort

study, aiming to include 15 patients from the control group and 15

patients from the intervention group. In this sub-study we acquired

blood samples repeatedly during study runtime, in addition to the

standard of care and study procedures conducted due to general

study participation (39).
Flow cytometry

To investigate the immunological effects of STF, we conducted

immune cell phenotyping using flow cytometry analyses on

peripheral blood samples. Blood samples were collected at set

time points: 2-3 months after randomization (visit 1, baseline), on

the day of admittance (visit 2, the day before surgery), at the end of

the surgical procedure (visit 3), at the day of discharge from the

hospital (visit 4, day 2 or 3 after surgery) and at follow-up 6 weeks

after surgery (visit 5) (Figure 1A). All samples were drawn

according to local protocol, sampled by trained medical personnel

via venous puncture in three heparin tubes. From these samples,

peripheral blood mononuclear cells (PBMCs) were isolated. PMBCs

were purified from peripheral blood by Ficoll density gradient

centrifugation (47) and cryopreserved until use.

Three panels were designed to investigate the presence and

activation status of peripheral T cells, B cells, dendritic cells (DCs)

and myeloid cells by flow cytometry (Supplementary Table S1). In

short, PBMCs were stained for extracellular markers at 4°C for 30

minutes. Thereafter, cells were stained with Fixable Viability Dye

(eBioscience) at 4°C for 15 minutes. After fixating at 4°C for 30

minutes using the FoxP3 Transcription Factor Staining Buffer Set
Frontiers in Immunology 03
(eBioscience), PBMCs were stained for intracellular markers at 4°C

for 1 hour. Data was acquired on the FACSympony A5 using BD

FACSDiva Software and analyzed by FlowJo™ Software (all BD

Biosciences). The gating strategy for individual cell subsets is shown

in Supplementary Figure S1. All data that followed from our FlowJo

analysis are shown in Supplementary Table S2.
Statistical analysis on immune cells and
blood parameters

Adherence to the assigned randomization in our population

was based on intake during admittance, self-reported adherence at

admittance, by change in body weight during the fasting period and

by blood samples drawn on the day of surgery. Relevant clinical data

were collected from the electronic health record. At a set time point

at admittance, after having followed the fasting diet for 2/3 of its

intended duration, laboratory measurements such as fasting glucose

(mmol/l), fasting insulin (pmol/l) and b-hydroxybutyrate (BHB)

(mmol/l) were determined in order to quantify the metabolic effect

of the diet. Statistical analysis was performed using R version 4.0.3

or newer. A two-sided significance level of 0.05 was used for all

primary and secondary analyses, unless otherwise stated. Statistical

tests (t-test, Chi-square, and Wald-test) were performed where

applicable, depending on the type of variable. In addition, FACS

data underwent t-distributed stochastic neighbor embedding (t-

SNE) dimensionality reduction analysis, employing optimized

hyperparameters (“perplexity” 1/4 18, “max_iter” 1/4 5,000, and

“theta” 1/4 0). This facilitated the exploration of the data in a two-

dimensional space, aiming to identify potential clustering driven by

the treatment groups at different time points.
RNA isolation and analysis

For transcriptome analysis, blood samples from both fasted and

control patients were utilized (39). Sampling was done at the

approximate same moment during the day of admittance to

minimize variation due to differences in the circadian clock.

Samples were snap frozen and RNA was isolated using the

Monarch Total RNA Miniprep Kit (New England Biolabs; T2010)

according to manufacturer’s protocol with on column DNase

treatment. The RNA was further cleaned and concentrated using

the RNA Clean & Concentrator-5 kit (Zymo Research; R1013). RNA

quality and quantity were assessed using the NanoDrop One

(Thermo Fisher Scientific). RNAseq library was constructed using

KAPA Robo erase Hyperprep (Roche; 08098140702), with

subsequent quantification by the Qubit (Thermo Fisher Scientific)

and TapeStation system (Agilent) and finally total RNA was

sequenced in house on the Illumina NovaSeq6000 system (Illumina).

Analysis of RNAseq raw data files was performed on our in

house-generated data analysis pipeline (48). The reads were

normalized using TMM normalization, followed by quantification

of log2 fold changes and false discovery rates using EdgeR (version

3.40.2) and gene set enrichment analysis [GSEA, MSigDB, version

2023.2 (49, 50)] was performed using the GSEA function from the
frontiersin.org
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“cluster profiler” package [version 4.12.6 (51, 52)] to check the

effects of fasting on specific processes. For GSEA, genes were ranked

using the calculation -log10(pvalue)*log2(Fold change).
Results

Population

Inclusion for this sub-study started in November 2021 and was

completed in November 2022. No intended FAST-Study participant

objected to the acquirement of additional blood samples, with all 30

participants included consecutively. Eight participants were excluded

from this analysis due to sample constraints. For six participants, the

sample at admittance or at discharge was missing, due to logistical

limitations, such as rescheduling the surgery and/or non-retrieval of

the samples during regular rounds at the ward. For two participants,

surgery for living kidney donation was not performed due to changes

in the condition of the recipient. Table 1 summarizes the clinical

characteristics of the participants of which all five blood collections
Frontiers in Immunology 04
were available, and which were subsequently analyzed by flow

cytometry. The control group consists of 13 individuals and the

intervention group of 9 participants.
Baseline characteristics

Analysis indicated no significant differences between the

control and intervention group with regards to the clinical

characteristics. There were an equal number of females (50.0%)

and males (50.0%), evenly split between the control and

intervention groups. Half of the participants were never-smokers,

while 36.4% had a history of smoking and 13.6% were active

smokers, with a similar distribution observed in both groups.

Confirmation of diet adherence at admission revealed full

compliance among all 22 participants. The average age was 49.7

years (SD=12.7) for the control group and 47.2 years (SD=11.3) for

the intervention group, with an age range spanning from 23 to 68

years in both cohorts. Finally, the control and intervention group

were also similar with regards to BMI. Examining the fasting
B
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FIGURE 1

Patients from both treatment arms are highly comparable at start of treatment. (A) Schematic methodologic overview of the clinical procedures. The
intervention group was instructed to follow a STF-diet, starting 60 hours before surgery. Participants drank ad libitum water, tea or coffee to
maintain fluid balance, and to maintain electrolyte balance, they were allowed a max of 4 bouillon soups a day. After surgery, they resumed regular
intake. (B) t-SNE plot that illustrates no sample segregation based on treatment among 88 FACS variables at Visit 1. (C) Volcano plot depicting the
fold of change of 88 FACS variables between the two treatment groups at Visit 1. The x-axis represents the log2 fold change, whereas the y-axis
represents -log10 P values. Variables on the right (positive) are higher in the intervention group, and those on the left (negative) are higher in the
control group. (D, E) t-SNE plot that illustrates no sample segregation based on treatment among 88 FACS variables at Visit 2 (D) or Visit 3 (E).
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duration at specific blood sampling points, the intervention group

had a mean fasting duration of 42.4 hours at visit two/admittance,

while the control group had adhered their regular diet routine.

During surgery, both groups experienced the maximum fasting

duration: the control group, following regular pre-surgery

instructions, had fasted for an average of 12.2 hours, whereas the

intervention group had fasted for an average of 61.0 hours.
Change in weight

No significant weight difference was found between specific time

intervals and there was minimal weight change overall. Specifically,

analyses regarding weight showed no significant changes between

moment of inclusion and 3 days before surgery (p = 0.245), inclusion

and admittance (p = 0.325), and 3 days before surgery and

admittance (p = 0.701), as seen in Supplementary Figure S2A. In

addition to this, only subtle non-significant alterations in weight were

observed for intervention and control groups. Despite a trend

showing weight loss pre-surgery in both trial arms, it did not reach

statistical significance. Weight variations occurred mostly during the

waiting period, with variable and minor changes before surgery

(Supplementary Figures S2B, C). Finally, the differences between

study arms with regards to glucose, insulin, and b-hydroxybutyrate
show notably lower glucose and insulin levels and higher

b-hydroxybutyrate in the intervention group [p = 0.049, p = 0.001,

and p = 0.001, respectively (Supplementary Figures S2D–F)], aligning

with adherence to the fasting regimen.
Clinical outcomes

Post-operative recovery of included living kidney donors was

comparable between the two study-arms. Postoperative admission

time was 3 days in the control arm (range 2-5), and 2.9 in the

intervention arm (range 2-3). Postoperative complications arose in

just one participant from the control arm and consisted of a

superficial wound infection.
STF-induced changes in peripheral
immune cells

To exclude baseline differences between the intervention and

control group, we performed t-distributed stochastic neighbor

embedding (t-SNE) dimensionality reduction analyses. Exploration

of flow cytometry data using t-SNE analyses revealed no segregation

of baseline (Visit 1) blood samples, when stratified for study

treatment (Figure 1B). Correspondingly, only 5 variables were

significantly differentially expressed (DE) between the treatment

groups at baseline (P<0.05) (Figure 1C), indicating that patients

from both treatment arms were highly comparable at start of

treatment, as also represented by the clinical characteristics shown

in Table 1.
Frontiers in Immunology 05
In line with no apparent segregation of patient samples at

baseline, t-SNE analysis revealed no distinct clusters based on

study treatment emerging after a mean fasting duration of 42.4

hours for the intervention group (Figure 1D), nor after the

maximum fasting duration, (Figure 1E), indicating high inter-

patient variability in every treatment group.

Next, we assessed a total RNA sequencing profile generated

from total blood of 13 selected patients (8 controls and 5 fasted),

isolated from the moment of admittance (Visit 2). Principal

component analysis also showed no clear separation based on

study treatment (Figure 2A), and was suggestive of high inter-

patient variation for the control participants. Gene-set enrichment

analysis (GSEA), considering all gene changes with a high

sensitivity and low bias (48), revealed a suppression of insulin

secretion involved in cellular response to glucose in the STF-

intervention group compared to controls (Figure 2B), in line with

their high adherence to the dietary regimens. Additionally, the

intervention group revealed a clear change in immune related
TABLE 1 Clinical characteristics of the patient cohort.

Control
(N=13)

Intervention
(N=9)

Total
(N=22)

Sex

Female 6 (46.2%) 5 (55.6%) 11 (50.0%)

Male 7 (53.8%) 4 (44.4%) 11 (50.0%)

Smoking

Never 6 (46.2%) 5 (55.6%) 11 (50.0%)

In tde Past 5 (38.5%) 3 (33.3%) 8 (36.4%)

Active 2 (15.4%) 1 (11.1%) 3 (13.6%)

Adherent

Fully Adherent 13 (100.0%) 9 (100.0%) 22 (100.0%)

Non-Adherent 0 (0.0%) 0 (0.0%) 0 (0.0%)

Age

Mean (SD) 49.7 (12.7) 47.2 (11.3) 48.7 (11.9)

Range 25 - 68 23 - 62 23 - 68

BMI

Mean (SD) 27.6 (4.3) 26.2 (3.7) 27.0 (4.1)

Range 21.6 - 36.9 21.5 - 32.6 21.5 - 36.9

Fasting Duration 1 (Hours)a

Mean (SD) 0 (0) 42.4 (0.7) 17.4 (21.4)

Range 0 - 0 41.0 – 43.0 0 – 43.0

Fasting Duration 2 (Hours)b

Mean (SD) 12.2 (2.3) 61.0 (0.8) 32.1 (24.6)

Range 9 - 15.5 60.1 - 62.6 9 - 62.6
Clinical characteristics of the participants of which all five blood collections were available,
and which were subsequently analysed by flow cytometry.
a Fasting Duration 1 corresponds with the moment of admittance/visit 2.
b Fasting Duration 2 corresponds with the moment of surgery/visit 3.
SD, standard deviation; BMI, body mass index.
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pathways and cell types, including suppressed gamma delta T cell

differentiation and activation, neutrophil activation, and platelet

activation signalling along with an enhanced adaptive immune

response, antigen processing and regulation of T cell chemotaxis

(Figure 2C; Supplementary Figure S3).

Due to the high inter-patient variation, we next assessed

alterations in immune cell populations over time within each

patient. In the control arm of the trial, not adhering to a STF-

Diet, minimal variables were significantly differentially expressed.

Five were increased at day of admittance and five were decreased

(Figure 3A). These involved expansion of CD8+ central memory T

(Tcm) cells and increased expression of CD28+ on CD8+ T cells,

indicating slight T-cell activation (Figure 3B). Tcm cells are long-
Frontiers in Immunology 06
lived antigen-experienced cells that provide enhanced protective

response upon reinfection and recirculate between lymphoid organs

and the blood. On the other hand, NK cells were decreased at day of

admittance (Figure 3C). Concomitantly, patients in the control

group showed phenotypic/cell surface changes in CD27- IgD- B

cells (Figure 3D). These double negative (DN) B cells have been

linked to autoimmunity, infectious diseases and cancer being either

hyperresponsive, autoreactive or exhausted. DN B cells are diversely

characterized, commonly also by lack of expression of CD21. We

found that the frequency of CD21- cells within DN B cells was

decreased at day of admittance (Figure 3D), suggesting less

dysfunctional B cells, even though not accompanied by a decrease

in DN B cells. Patients in the control arm did not show a definite
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FIGURE 2

Transcriptome analysis of blood cells from fasted versus control participants at Visit 2. (A) PCA plot showing no separation between the two
treatment arms at Visit 2 but high variability among controls. (B) GeneSet Enrichment Analysis (GSEA) plots of Gene Ontology Biological Process
(GO-BP) Regulation of Insulin Secretion Involved in Cellular Response to Glucose Stimulus. (C) Bubble plot summary of GSEA top 15 significant GO-
BP Immune Pathways. Red dots have a positive normalized enrichment score (NES), meaning upregulated, and blue dots negative NES, thus
downregulated. Size of dots indicates size of corresponding gene set.
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profile with regard to more or less activation of DN B cells over time

(Figure 3D), indicating the exact role of the cells remain

inconclusive. During surgery, when the control group had a mean

fasting time of 12.2 hours, none of these variables were still DE,

except for the expression of CD86 on CD27- IgD- B cells

(Figures 3E-G), suggesting less activation of DN B cells. The

other DE variables mainly involved B cells and myeloid cells

(Figures 3F, G) and were indicative of decreased B cell abundance

and activation (the latter measured by CD40 and CD86 expression).

In contrast to patients that employed no preoperative diet, STF

led to more changes in different immune cell populations, among B

cells, T cells and DCs. Preoperatively, circulating T cells were less

abundant and less activated, but also immune suppressive

regulatory T cells (Tregs) were less abundant after fasting for
Frontiers in Immunology 07
approximately 40 hours (Figures 4A, B). Concomitantly, (naïve) B

cells expressing PD-1 and HLA-DR became more abundant in the

periphery (Figure 4C), suggesting a reduction in specialized B cell

subsets and/or B cell development. Finally, cross-presenting type 1

conventional DCs (cDC1s) increased upon caloric restriction

(Figure 4D), implying the potential to initiate a type 1 cytotoxic

immune response, e.g. against viral infection after STF. At time of

surgery, solely those changes observed in B cells and cDC1s

remained (borderline) significantly different as compared to

baseline (Figures 4E-G). However, CD8+ and CD4+ Tcm cells

were decreased at this stage (Figure 4H), suggesting an arrest in T

cell development, as seen for B cells (Figure 4F). Even though Tregs

were only significantly decreased at Visit two, these still trended to

be lower at Visit 3 following a STF-diet (Figure 4I). Additionally,
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Assessment of alterations in immune cell populations over time in the control group. (A) Volcano plot depicting the fold of change of 88 FACS
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Alterations in immune cell populations over time and according to a STF-diet. (A) Volcano plot depicting the fold of change of 88 FACS variables
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these reduced levels remained significantly present at time of

discharge compared to patients not adhering to a STF-diet

(Figure 4J). None of the other markers that significantly changed

upon STF remained significantly different between the two

intervention groups at time of discharge or 6 weeks after surgery

(data not shown), indicating that refeeding reshapes the peripheral

immune system back to its pre-treatment composition again. Even

though STF did not affect the number of circulating NK cells, after

surgery control participants did show significantly higher levels

than participants adhering to a STF-diet, up to 6 weeks after surgery

(Figure 4K). In addition, STF led to higher levels of CD86+ and

CD40+ naïve B cells 6 weeks after surgery (Figure 4L), indicating

less specialized cells become activated. Together these changes seen

in patients that preoperatively adhere to a STF-diet suggest reduced

lymphoid cell activation and development.
Discussion

In this study, using flow cytometry analysis, we found that

fasting changes the abundance and phenotype of peripheral

immune cells. Thirty participants were sequentially enrolled in

this sub-study. Despite some exclusions due to sample constraints

and cancellation of surgery, baseline characteristics were well-

matched between the control and intervention groups.

Comparable clinical outcomes were observed, and flow cytometry

analysis revealed no significant differences between baseline

samples from control and intervention groups.

In the control arm of the trial, minimal variables were

differentially expressed. Considering that only few variables were

DE in this control arm, at admittance or after a limited preoperative

fasting duration, we believe these changes are spurious and can be

considered not clinically relevant. These results are significant in the

context of recent interest in DN B cells, which have been implicated

in various diseases, including autoimmune and infectious diseases

and cancer (53, 54). However, the effect was deemed minimal,

particularly since it vanished at the time of surgery, and it did not

show a definite profile with regards to more or less activation.

Furthermore, at the time of surgery, when the control group

underwent a mean fasting time of 12.2 hours, most variables

ceased to be DE. This finding is intriguing given the role of

CD86-positive B cells in antigen presentation and immune

stimulation (55, 56). Interestingly, the discrepancy between these

results and those observed before suggests the likelihood of spurious

findings. This underscores the complexity of immune responses and

the need for cautious interpretation of experimental results.

In contrast to patients in the control group, STF led to more

changes in different immune cell populations, among B cells, T cells

and cross-presenting DCs at Visit two. Initially, it was observed that

preoperative fasting of approximately 40 hours duration, led to a

decrease in circulating T- cells, including Tregs, known for their crucial

role in immune regulation and homeostasis (57–59). Even though this

finding did not hold significance at time of surgery, patients following

an STF-diet still trended toward lower levels of peripheral Tregs. In

addition, at time of discharge again these patients showed significant

reduced levels of Tregs. These findings are intriguing considering the
Frontiers in Immunology 09
multifaceted functions of Tregs, which not only suppress immune

responses but can also exhibit proinflammatory properties under

certain circumstances (40–42). Despite these observations, the

implications of these alterations remain unclear, warranting further

investigation into the consequences of reduced T cell abundance

following prolonged fasting. Additionally, we also found an increase

in peripheral (naïve) B cells, suggesting a shift in specialized B-cell

subsets or B-cell development.

Finally, an increase in cross-presenting type 1 conventional

dendritic cells was observed, known for their pivotal role in

orchestrating antitumor immune responses (60, 61). This

heightened presence of cDC1s suggests an enhanced potential for

initiating type 1 cytotoxic immune responses (60, 61), particularly

against viral infections. This finding implicates a potential shift

toward a more vigilant immune state against pathogens, of which

the clinical significance remains yet unknown. Finally, at the time of

surgery with maximum fasting duration, several of these changes

persisted, notably in B cells and cDC1s, while CD8+ and CD4+ Tcm

cells exhibited a decrease, indicating an arrest in T cell development

akin to that observed in B cells. Our data are consistent with

previous studies (40–42), showing a decrease in specialized

immune cell subsets during a fasting period and rejuvenation of

the immune system after refeeding. In addition, these findings

highlight the intricate relationship between fasting and immune

modulation, warranting further investigation to elucidate the

underlying mechanisms and therapeutic implication.

Findings from our study are subject to several limitations.

Firstly, the flow cytometry analysis was not performed on all

intended participants, as data was missing due to logistical

constraints and unexpected changes in clinical treatment.

However, we hypothesize that this is non-selective missingness, as

it is purely influenced by chance, that aside from limiting the power

of our study, induces no significant bias. Secondly, our analyses

were limited to peripheral blood. It therefore remains unclear

whether the changes seen in blood reflect those in tissues, or

whether a decrease of specialized immune cells is due to

infiltration within peripheral tissues. Furthermore, as living

kidney donors are required to be healthy, we selected by design

on a healthy population, thereby limiting generalizability of our

findings. The current findings have significant implications for

understanding the effects of STF on immune cell populations.

Despite the limitations, the study demonstrates that STF

induces distinct changes in immune cell subsets, particularly

among B cells, T cells, and DCs. These findings contribute to the

growing body of literature on the immunological effects of dietary

interventions. Previous research (40–42) namely indicates that STF

can modulate immune cell populations. However, the specific

changes observed in this study, such as the increase in cDC1s and

the reduction in Tregs, provide novel insights into the mechanisms

underlying the immunomodulatory effects of fasting. Moving

forward, further research is needed to elucidate the effects of STF

on immune function and its combined influence on postoperative

recovery. Additionally, future studies should aim to address the

limitations identified in this study, such as the selection bias due to

the study design, to strengthen the generalizability of the findings.

Moreover, investigating the potential clinical implications of the
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observed immunological changes could inform the development of

novel therapeutic strategies for immune-related disorders.
Conclusion

In this study, we found that STF changes the expression of

immune cells, reducing abundance and activation of (central

memory) T cells and Tregs, increased presence of (naïve) B cells,

and elevation of cDC1s. Except for reduced levels of Tregs, none of

the markers that significantly changed upon STF remained present

at time of discharge, indicating that refeeding reshapes the

peripheral immune system back to its pre-fasting composition

again. Further research should focus on the clinical implications

of the observed immunological changes during STF.
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55. Shimabukuro-Vornhagen A, Garcıá-Márquez M, Fischer RN, Iltgen-Breburda J,
Fiedler A, Wennhold K, et al. Antigen-presenting human B cells are expanded
in inflammatory conditions. J Leukoc Biol. (2017) 101:577–87. doi: 10.1189/
jlb.5A0416-182R

56. Montfort A, Pearce O, Maniati E, Vincent BG, Bixby L, Böhm S, et al. A strong
B-cell response is part of the immune landscape in human high-grade serous ovarian
metastases. Clin Cancer Res. (2017) 23:250–62. doi: 10.1158/1078-0432.CCR-16-0081

57. Wan YY. Regulatory T cells: immune suppression and beyond. Cell Mol
Immunol. (2010) 7:204–10. doi: 10.1038/cmi.2010.20

58. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T
cells: how do they suppress immune responses? Int Immunol. (2009) 21(10):1105–11.
doi: 10.1093/intimm/dxp095
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