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neurodegenerative disease
Ziyan Huang1†, Miao Hao2†, Naixu Shi1, Xinyu Wang1, Lin Yuan1,
Haotian Yuan1 and Xiaofeng Wang1*

1Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China,
2Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
Porphyromonas gingivalis (P. gingivalis) is a gram-negative bacterium and the

main causative agent of periodontitis, a disease closely associated with the

development of periodontal disease. The progression of periodontitis, a

chronic infectious disease, is intricately linked to the inflammatory immune

response. Inflammatory cytokines act on periodontal t issues via

immunomodulation, resulting in the destruction of the periodontal tissue.

Recent studies have established connections between periodontitis and

various systemic diseases, including cardiovascular diseases, tumors, and

neurodegenerative diseases. Neurodegenerative diseases are neurological

disorders caused by immune system dysfunction, including Alzheimer’s and

Parkinson’s diseases. One of the main characteristics of neurodegenerative

diseases is an impaired inflammatory response, which mediates

neuroinflammation through microglial activation. Some studies have shown an

association between periodontitis and neurodegenerative diseases, with P.

gingivalis as the primary culprit. P. gingivalis can cross the blood-brain barrier

(BBB) or mediate neuroinflammation and injury through a variety of pathways,

including the gut-brain axis, thereby affecting neuronal growth and survival and

participating in the onset and progression of neurodegenerative diseases.

However, comprehensive and systematic summaries of studies on the

infectious origin of neurodegenerative diseases are lacking. This article reviews

and summarizes the relationship between P. gingivalis and neurodegenerative

diseases and its possible regulatory mechanisms. This review offers new

perspectives into the understanding of neurodegenerative disease

development and highlights innovative approaches for investigating and

developing tailored medications for treating neurodegenerative conditions,

particularly from the viewpoint of their association with P. gingivalis.
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1 Introduction

The aging population is leading to an annual increase in

neurodegenerative diseases like Alzheimer’s disease (AD) and

Parkinson’s diseases (PD), which poses a significant threat to human

health. Currently, effective treatments strategies and drugs are lacking,

suggesting that some key pathogenic mechanisms may remain

undiscovered. Recent studies indicate that Porphyromonas gingivalis,

the primary bacterium responsible for periodontitis, may significantly

contribute to the onset and progression of neurodegenerative diseases.

Periodontitis, a common chronic inflammatory disease, affects

over 700 million people worldwide and is frequently overlooked and

untreated (1). Porphyromonas gingivalis (P. gingivalis) is the primary

pathogenic bacterium causing periodontitis, with approximately

85.75% of subgingival plaque samples testing positive for this

opportunistic bacteria (2). Typically, inflammatory factors such as

C-reactive protein, IL-6 and IL-21 are significantly upregulated in

serum of patients with P. gingivalis -induced periodontitis (3). This is a

distinctive feature of Chronic Low-Grade Inflammatory Phenotype

(CLIP), which often occurs during the aging process (4, 5). Studies

have shown that periodontitis is an important risk factor for various

health issues, including cardiovascular diseases, diabetes, and

Parkinson’s disease (6, 7). Recent research found P. gingivalis in the

brains and spinal cord of Alzheimer’s patients (8). Furthermore, study

confirms that P. gingivalis infection enhances BBB permeability, and

gingivally infected P. gingivalis may cause cognitive decline with

periodontitis (9, 10). These findings confirm the strong link between

P. gingivalis and the development of neurodegenerative diseases.

Most studies on the relationship between periodontitis, P.

gingivalis periodontitis, and neurodegenerative diseases have focused

primarily on clinical and epidemiological perspectives. However, there

is little research on the specific regulatory mechanisms connecting the

two, and the existing summaries are inadequate. This review aims to

closely examine the association and potential mechanisms linking P.

gingivalis and neurodegenerative diseases, including the roles of

bacteria, inflammation, and immune system responses. Through

this review, we hope to propose some innovative concepts to clarify

the origins of neurodegenerative diseases. At the same time, we also

hope to offer fresh ideas for preventing and treating these diseases.
1.1 Porphyromonas gingivalis

P. gingivalis colonizes the oral epithelium and forms part of the

plaque beneath the gums. It can alter the symbiotic composition of

bacteria in the oral cavity, leading to ecological dysbiosis. The

production of P. gingivalis biofilms is associated with the

formation of bacterial plaques in gingival tissue, which further

exacerbates gingival damage by other oral bacteria (11, 12).
1.2 Mechanisms of P. gingivalis
involvement in neurodegenerative diseases

P. gingivalis possesses several unique properties and virulence

factors that affect the host (2). One notable characteristic is the
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shedding of outer membrane vesicles (OMVs). These vesicles

contain virulence factors, particularly gingival proteases and

lipopolysaccharide (LPS) (13, 14). Gingipain triggers an immune

escape response by modulating inflammatory mediators and

suppressing immune cell activity, including the activities of the

lysine-gingipain (Kgp) and arginine-gingipain (Rgp). P. gingivalis

also produces P. gingivalis lipopolysaccharide (P.g-LPS), which

activates the natural host immune response (15, 16). Most strains

of P. gingivalis are covered by a capsule that protects the bacteria from

attack and host complement killing (17). Some studies have shown

that encapsulated strains are more virulent in a mouse model of

infection (18, 19). Therefore, these toxins make P. gingivalis highly

pathogenic, enabling its components to enter the brain through

various pathways. This entry triggers pathological reactions and

contributes to the development of neurodegenerative diseases.

Based on current research, we conclude that oral infections

caused by P. gingivalis can affect the brain in three ways (Figure 1).

First, P. gingivalis causes local chronic inflammation and disrupts

central nervous system (CNS) homeostasis through the blood-brain

barrier, indirectly promoting neuroinflammation. The association

of high loads of P. gingivalis with increased serum TNF-a levels

suggests that P. gingivalis not only triggers the development of local

inflammatory periodontitis but also leads to elevated serum levels of

pro-inflammatory cytokines (20). In addition, prolonged exposure

to harmful substances disrupts and increases blood-brain barrier

permeability, allowing peripheral pro-inflammatory cytokines to

enter the vagus nerve (21).

Second, P. gingivalis enters the intestine through the mouth and

can disrupt the intestinal flora, leading to an inflammatory response

transmitted to the brain through the gut-brain axis (GBA).

Dysregulation of the gut microbiota is strongly associated with the

development of neurodegenerative diseases through the regulation of

the GBA, and P. gingivalis can alter the ratio of T lymphocytes to

inflammatory T cells in mesenteric lymph nodes and increase

inflammatory cytokines, disrupting the gut microbiota (22–24). Gut

microbiota can alter immune cells and stimulate the production of

pro-inflammatory cytokines (25–27), with immune cells and

inflammatory mediators subsequently entering the brain (28).

Finally, TLR4 signaling activated by P. gingivalis induces OS,

leading to mitochondrial dysfunction and neuroinflammation. In

both cases, it is involved in the progression of degenerative diseases

due to neuroinflammation. A recent study showed that Pg-LPS acts

via TLR4. Furthermore, administering Pg-LPS triggers TLR4 signals

and elevates markers of dementia and neuroinflammation that have

been linked to AD (29). Additional research has revealed that

neuroinflammation caused by Pg-LPS is facilitated by the

activation of the TLR4 signaling route (30, 31). Research indicates

that neurons are capable of expressing both TLR2 and TLR4,

implying that these receptors are crucial for neuroinflammatory

responses (32, 33).
2 Neurodegenerative diseases

Neurodegenerative diseases are disorders that impact the

central nervous system, such as AD, PD, multiple sclerosis (MS),
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amyotrophic lateral sclerosis (ALS), and Huntington’s disease

(HD). These diseases are commonly associated with aging, and

their occurrence rises as people get older (34). Immune responses

from activated neuroglial cells is crucial in neurodegenerative

diseases, particularly in the most prevalent forms: AD and PD

(35). Neurodegenerative diseases target various areas of the brain,

resulting in different symptoms and causes. Despite these

differences, neurodegenerative diseases share common features

and involve similar cellular and molecular processes.
2.1 Pathogenetic mechanisms of
neurodegenerative diseases

An imbalance in the inflammatory response is a common issue in

neurodegenerative diseases that leads to neuroinflammation in various

parts of the brain, worsening the overall condition (36). The released

mediators impact microglia and astrocytes, potentially harming

neurons and the central nervous system (36–38). For instance,

pyroptotic cell of microglia can lead to neuroinflammation,

triggering various neurodegenerative diseases (39). Similarly,

damage to astrocytes can lead to specific neuroinflammatory

markers, resulting in further complications (40). Another notable

feature of neurodegenerative diseases is oxidative stress. In the brains

of patients with neurodegenerative diseases, elevated levels of reactive

oxygen species are often seen, suggesting that oxidative damage might

make the disease worse (41, 42).
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2.2 Neuroinflammation and brain
immune cells

Inflammation is the response of cells and tissues to injury,

trauma, or infection. Research shows that there is a significant link

between the brain and the immune system. Inflammation occurring

in the brain is called neuroinflammation (43). Neuroinflammation is

an early feature of neurodegenerative diseases. It can activate the

immune system, leading to the release of pro-inflammatory

cytokines, increased oxidative stress (OS), and abnormal protein

deposition, all of which may harm neurons directly or indirectly

(44–46). For instance, while neuroinflammation can help remove

deposited Ab, it can also generate cytotoxic substances that worsen

Ab deposition and contribute to neurodegenerative damage (47).

Recent studies suggest that neuroinflammation might be a result of

periodontitis (8). The immune cells in the brain mainly consist of

microglia and astrocytes. Chronic inflammation in the body triggers

the activation of microglia and astrocytes in the brain. For instance,

when the Toll-like receptors (TLRs) in these cells get activated, they

produce various pro-inflammatory cytokines, leading to

neuroinflammation that causes damage or death to neurons (48–50).

2.2.1 Microglia and neuroinflammation
Microglia are innate immune cells that participate in synaptic

remodeling and defense functions, involved in homeostasis and host

defense against pathogens and CNS diseases (51). Under normal

conditions, microglia are highly branched and perform their sensory
FIGURE 1

Pathways of P. gingivalis to the brain. The figure depicts that P. gingivalis virulence factor P.g-LPS can enter the brain through three pathways: (1)
enters the epithelium of periodontal pockets to cause local inflammation and indirectly promotes neuroinflammation or directly colonize the brain;
(2) disrupts the homeostatic balance of intestinal flora and enters the brain through the gut-brain axis to cause neuroinflammation; (3) activates the
TLR4 signaling-inducing OS, leading to mitochondrial dysfunction and neuroinflammation (Figure was created with BioRender.com. Huang, Z. (2025)
https://BioRender.com/a16s851).
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functions (52). With aging and chronic stress, microglia activation

exhibits dystrophic morphology and an exaggerated inflammatory

response (53). Although neuroinflammation is a neuroprotective

mechanism, it induces neurotoxicity and is associated with

neurodegeneration (51). In neurodegenerative diseases, microglia

can migrate the site of injury, produce cytokines such as tumor

necrosis factor (TNF)-a, interleukin (IL)-1b, and accumulate

pathogenic proteins that mediate neuroinflammation (49).
2.2.2 Astrocytes and neuroinflammation
Astrocytes, the most abundant glial cells in the CNS, perform

various functions in healthy neural tissues, including the regulation of

blood flow and extracellular fluid, ionic and transmitter balance,

energy supply, and synaptic function (54). Astrocytes are activated in

response to pathological stimulation. During neuroinflammation,

astrocytes enhance the activity of the IL-17 receptor, a crucial

inflammatory agent released by effector T lymphocytes (55). The

binding of IL-17 to various transmembrane receptors results in the

activation of NF-kB-activating factor 1 (Act1) and the formation of

signaling complexes, leading to the synthesis of pro-inflammatory

cytokines, chemokines, and metalloproteinases (50).

The role of astrocytes in neuroinflammation is twofold.

Astrocytes can reduce inflammation by releasing anti-

inflammatory factors and promoting the production of

neuroprotective factors. Also, they can exacerbate inflammation

and nerve damage by releasing pro-inflammatory and neurotoxic

molecules. Thus, the role of astrocytes in neuroinflammation is

complex and encompasses pro-inflammatory, inhibitory, and pro-

neuroprotective effects.
3 P. gingivalis and
neurodegenerative diseases

P. gingivalis has significant implications in the pathophysiology of

neurodegenerative diseases because its virulence factors can enter the

brain through three pathways, causing OS and neuroinflammation.

First, toxic proteases produced by P. gingivalis, such as gingipains,

may directly damage neurons in the brain, leading to the activation of

microglia and astrocytes, thereby inducing neuroinflammation (56).

Second, P. gingivalis infection may enter the brain through blood

circulation, causing local and systemic inflammatory responses that

may form positive feedback loops with oxidative stress and

neurodegenerative changes (57). In addition, P. gingivalis infection

may further exacerbate neuroinflammation by promoting the

accumulation of misfolded proteins, such as Ab and tau proteins

(8, 58). The interaction between the abnormal accumulation of these

proteins and neuroinflammation may lead to the onset and

development of neurodegenerative events such as AD and PD.
3.1 P. gingivalis and AD

AD is characterized by the progressive cognitive decline

resulting from synapse degeneration and neuronal death. It is an
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irreversible chronic degenerative neurological disease and the most

common neurodegenerative disease leading to cognitive

impairment (59, 60). AD is associated with cognitive dysfunction,

Ab plaques and neurofibrillary tangles (NFTs) formed by

hyperphosphorylated tau are the two hallmark pathological

features of AD (61, 62). Ab plaques are recognized by the brain

as foreign bodies, triggering inflammatory and immune responses

through activation of microglia and cytokine release, ultimately

leading to cell death and neurodegeneration (63). And

phosphorylated tau proteins contribute to AD by causing

microtubule rupture, synaptic loss, and, ultimately, cognitive

dysfunction (64, 65). Moreover, both Ab and tau aggregate

impair synaptic plasticity and lead to neuronal cell death (66).

Firstly, P. gingivalis could induce neuroinflammation and

neurodegeneration via OS. Le Sage et al. found that at the cellular

level, P.g-LPS induces oxidative stress by increasing intracellular

ROS production and altering the expression of genes encoding the

oxidoreductases NOX2, NOX4, iNOS, and catalase (67).

Accumulation of ROS, reduced MMP expression, and increased

4-HNE protein expression in neuroblastoma cells due to P.g-LPS

underscore its significance in the pathogenesis of AD (29).

Furthermore, LPS from P. gingivalis increases OS in periodontal

ligament fibroblasts and brain endothelial cells (68, 69).

In addition to inducing neuroinflammation through OS, P.

gingivalis can directly cause neuroinflammation. Animal studies

have shown that P.g-LPS-induced neuroinflammation leads to

cognitive impairment in C57BL/6 mice and that P.g-LPS

significantly activates astrocytes and microglia and upregulates

the TLR4/NF-kB signaling pathway (70). Hu et al. found that

periodontitis caused by P.g-LPS exacerbates neuroinflammation

by stimulating TLR4 and the NF-kB signaling pathway, which

have been linked to learning and memory deficits in Sprague-

Dawley rats (71). P. gingivalis OMV, which carries high levels of

gingipain, may play a significant role in AD (72). Research have

demonstrated that LPS derived from P. gingivalis OMV activates

glial cells and induces brain inflammation. It is also linked to the

expression of AD markers, such as Ab and NFTs (73). In addition,

the capsules of P. gingivalis play a central role in chronic

inflammatory responses and cognitive deficits caused by short-

term oral infections. More toxic capsules are likely to induce AD-

like pathology and accelerate the pathogenic process (74).

At the same time, the pathogenic factors of P. gingivalis can also

lead to the development of pathological features associated with

AD, such as influencing Ab accumulation and tau protein function.

Animal studies corroborate that oral P. gingivalis infection in mice

leads to brain colonization and enhances the generation of the

amyloid plaque element Ab1-42 (8). Similarly, Ryra et al. reported,

using a rat model, that P.g-LPS induces an increase in serum levels

of Ab peptide (75). Tang et al. demonstrated that rats infected with

P. gingivalis exhibit robust tau phosphorylation at the Thr181 and

Thr231 loci linked to AD, and these loci are abundant in activated

astrocytes (76).

At the cellular level, it has been established that prolonged

contact with P.g-LPS led to the buildup of Ab in the brains of mice

of middle age. The exposure further led to the peripheral build-up

of Ab in inflammatory monocytes and macrophages (58).
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Gingipains, another toxic product of P. gingivalis, are associated

with tau phosphorylation and tau cleavage (77, 78). Dominy et al.

suggested that the origin of tau in the brains of patients with AD

could stem from the transneuronal spread of P. gingivalis,

Gingipain may also play a role in the adaptive elevation of tau

protein synthesis in patients with AD (8).

In summary, P. gingivalis has been linked to the pathogenesis of

AD through multiple mechanisms, including neuroinflammation,

oxidative stress, Ab accumulation, and interference with tau protein

function, as summarized in Table 1. These findings suggest that P.

gingivalis may contribute to the development of AD through

different pathways, whether at the cellular or animal, level, thus

providing potential targets for future therapeutic strategies.
3.2 P. gingivalis and PD

PD is the second most prevalent neurodegenerative disorder

that results from the death of dopaminergic nerve cells in the

substantia nigra pars compacta (SNPC) (84, 85). It leads to

movement disorders such as tremors, bradykinesia, and cognitive

impairment (86). Pathologically, PD involves alpha-synuclein (a-
Syn) misfolding, neuroinflammation, and mitochondrial

dysfunction (87, 88). In recent years, periodontitis, a common

slow inflammatory disease, has been associated with the risk of

PD (89, 90). Most previous associations between the two diseases

have been based on PD-induced dyskinesias, which may lead to the

progression of periodontal disease (90). And P. gingivalis is a major

periodontal pathogen that induces intestinal dysbiosis (91, 92).

Our previous study employed bioconfidence data mining to

demonstrate that periodontitis is a high-risk causative factor of PD,

and our results suggest that P. gingivalis, the main causative agent of
Frontiers in Immunology 05
periodontitis, can contribute to the development of PD (93).

Previous studies have also detected P. gingivalis major virulence

factors such as gingipain R1 and P.g-LPS in the blood of PD patients

(94, 95). A recent study suggests that gingipains from P.gingivalis

may accumulate in the SNPC of the human brain (96). An animal

study confirmed that P. gingivalis reduces dopaminergic neurons in

SNPC of mice with the leucine-rich repeat kinase 2 (LRRK2) R144G

mutation, which is associated with late-onset PD (97, 98).

P. gingivalis may affect the onset and development of PD

primarily through two mechanisms: OS and neuroinflammation.

This mechanism was confirmed in various studies on animal

models, including a report by La Vitola et al., which found that

LPS from Escherichia coli (E. coli) induces neuroinflammation and

enhances a-Syn toxicity along with cognitive impairment (99).

Similarly, a previous study showed that P.g-LPS hindered spatial

learning and memory in the Morris Water Maze (MWM) test,

whereas the effects of the two LPS types were not significantly

different (70). The findings imply that P.g-LPS, notwithstanding its

structural variances, might possess a mechanism akin to Escherichia

coli LPS that leads to the intensification of harmful impacts of a-Syn
and cognitive deficits.

There is currently no direct evidence that P. gingivalis

contributes to the development of PD via oxidative stress.

However, studies indicate that P.g-LPS induces oxidative stress,

leading to mitochondrial dysfunction and neuroinflammation in

SH-SY5Y cells (29). In addition, a positron emission tomography

(PET) study of patients with PD have shown that a widespread

presence of activated microglia (100). Interestingly, this response

does not correlate with clinical severity, suggesting it may occur

early in the disease. The mechanism by which microglia are

involved in PD may be similar to that seen in AD (51). Microglia

internalize and degrade the proteina-Syn. If this process fails,
TABLE 1 P. gingivalis affects the development of AD.

Mechanism/Target Type of study Virulence Published time Reference

Direct infection
Direct infection of the brain, leading to nerve cell damage

Clinical Gingipain 2019 (8)

Animal experimental P.gingivalis/Gingipain 2023 (10)

Epidemiological P.gingivalis 2017 (79)

Animal experimental P.gingivalis 2023 (9)

Inflammation-mediated
P. gingivalis activates inflammatory pathways, indirectly

leading to neurodegeneration

Clinical Gingipain 2019 (8)

Epidemiological P.gingivalis 2017 (79)

Epidemiological P.gingivalis 2008 (80)

Animal experimental P.gingivalis/Gingipain 2018 (81)

Cellular level LPS 2013 (82)

Ab production
P. gingivalis affects Ab production and clearance, leading

to Ab deposition

Animal experimental LPS 2013 (82)

Epidemiological P.gingivalis 2008 (80)

Cellular level P.gingivalis 2020 (74)

Tau phosphorrylation
P. gingivalis affects the phosphorylation state of tau
protein and promotes the formation of neuro-

fibrillary tangles

Cellular level P.gingivalis/Gingipain 2018 (81)

Animal experimental P.gingivalis 2023 (83)

Cellular level P.gingivalis 2020 (74)
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extracellular a-Syn accumulates, similar to Ab (101). Microglia

gather around a-Syn deposits and display pro-inflammatory

properties base on receptors that also bind Ab (102, 103).

Therefore, we hypothesized that P. gingivalis may contribute to

PD through oxidative stress and neuroinflammation.
3.3 P. gingivalis and MS

MS is a progressive disorder of the central nervous system,

characterized by invasion by immune cells, detachment of myelin

sheaths, growth of reactive glial cells, and damage to neural axons.

This sequence results in sensory, motor, and cognitive impairments

(104). Although the exact cause of MS recurrence remains unclear,

it is believed to stem from an autoimmune inflammatory condition

in which environmental and genetic elements trigger CNS antigens,

such as myelin basic protein, to be addressed by the immune

system (105).

The correlation between MS and P. gingivalis is currently being

investigated, although there are no published articles describing the

role of P. gingivalis in the pathogenesis of MS. As one of the most

prevalent neurodegenerative diseases, MS is also associated with

neuroinflammation. Lucchinetti et al. showed that acute MS leads to

astrocyte and microglial activation and occasionally to

oligodendrocyte apoptosis (106).

Some relevant experiments have sought to demonstrate this

link, including a report by Moreno et al. aimed to investigate

whether systemic inflammatory stimuli exacerbate axonal damage.

Through the use of rat models of autoimmune encephalomyelitis,

the researchers showed that microglia activation leads to an increase

in carbon monoxide synthase, IL-1b, and axonal damage (107). The

findings confirmed a relationship between peripheral inflammation

and neurodegeneration in a rodent model (91). In another study,

Polak et al. engineered an MS mouse model by infecting it with P.

gingivalis. Their experiment showed that tail weakness and paralysis

in the extremities developed while exacerbating MS pathology and

increasing lymphocyte proliferation (108). These findings suggest

that P. gingivalis can contribute to the exacerbation of MS pathology

by causing an inflammatory response.
3.4 P. gingivalis and ALS

ALS is the most common motor neuron (MN) disease, with an

average age of onset of 50-65 years (109). Neuroinflammatory

processes induced by microglia and astrocytes appear to play an

important role in ALS pathology. Reactive astrogliosis occurs under

pathological conditions such as ALS, shifting these cells from a

‘neuroprotective’ to a ‘neurodegenerative’ role (110).

In ALS, astrocyte activation is associated with motor neuron

degeneration, which promotes inflammation and OS. In the early

stages of disease, astrocytes provide neuroprotection. As the disease

progresses, activated astrocytes promote a neurotoxic environment.

This occurs either through microglial activation processes or

through compounds released by motor neuron, ultimately
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resulting in motor neuron death (111). Microglia also play a key

role in ALS, with M2 microglia being neuroprotective and M1

microglia being toxic. Studies in animal indicate that as the ALS

progresses in fALS mice, the number of ‘neuroprotective’ M2

microglia increases. However, at later stage, these microglia

transition to ‘neurotoxic’ M1 microglia (112–115). Inflammatory

cytokines released by astrocytes and microglia may promote

glutamatergic excitotoxicity, thereby linking neuroinflammation

to excitotoxic cell death. When critical thresholds are reached,

reactive astrocytes and microglia may trigger irreversible

pathological processes that subsequently lead to non-cell-

autonomous death of motor neurons in ALS patients (116).

Despite the absence of P. g-LPS, research has shown that

microglia in ALS models can be stimulated by various LPS

sources. This triggers a transition from protective to pro-

inflammatory conditions, resulting in the production of IL-12,

TNFa, NO, superoxide anion, and peroxynitrite. This process

causes motor neuron deterioration and exacerbates the disease in

mice models of ALS. Additionally, these molecules enhance the

interaction between extracellular glutamate and its receptor on

motor neurons, causing increased calcium influx into the cells

and triggering cellular death (117–119). In ALS, the motor

regions of the CNS may be affected by neuroinflammation and

OS, evidenced by the activation of reactive astrocytes and microglia,

moderate invasion of peripheral immune cells, and increased levels

of inflammatory mediators (120). Animal models primarily show

unusual growth of astrocytes and the presence of inflammatory

indicators such as cyclooxygenase-2, inducible NOS, and neuronal

NOS (121). Clinical studies have found that astrocytes in the spinal

cords of patients with ALS are cytotoxic to MN in culture (122).

Cytokines, such as G-CSF, IL2, IL15, IL17, MCP-1 MIP1a, TNFa,
and VEGF found in the cerebrospinal fluid of individuals with ALS

were found to be unusually elevated (123). Furthermore, patients

with ALS exhibit increased IL-6 levels in exosomes derived from

astrocytes, indicating a potential role of CNS-derived exosomes in

uncovering neuroinflammation in patients with ALS and a direct

relationship with the rate of disease progression (124).

Moreover, in ALS, OS may play a role in the deterioration of

neuromuscular junctions. Mouse models show enhanced sensitivity

of nerve endings to ROS, which may lead to the degeneration of

presynapses at neuromuscular junctions. Concurrently, excessive

activation of excitatory amino acids leads to the irregular release of

acetylcholinesterase, diminishing acetylcholine levels in the

synaptic gap and potentially resulting in diminished muscle

strength in patients with ALS. These initial malfunctions, coupled

with diminished inflammation and nutritional aid, potentially

culminate in neurodegenerative disorders (125).

Although no direct evidence exists that P. gingivalis is involved in

the pathogenesis of ALS, we can conclude that neuroinflammation

and OS are intertwined mechanisms involved in the pathophysiology

of ALS. Although further research is needed to determine whether P.

gingivalis influences ALS through mechanisms of neuroinflammation

and OS, P. gingivalis can trigger neuroinflammation and OS, and we,

therefore, hypothesize that it is involved in the development of ALS

through neuroinflammation and OS.
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3.5 P. gingivalis influences
neuroinflammation through the gut-
brain axis

Apart from the associations between P. gingivalis and AD, PD,

and MS, which has been summarized above, no studies on the

effects of P. gingivalis on other neurodegenerative diseases, such as

ALS, have been reported. However, the unifying clinical feature or

disease phenotype of these disorders is neuroinflammation. P.

gingivalis not only induces neuroinflammation directly but also

mediates neuroinflammation through the oral-intestinal-

brain axis.

The oral cavity is the starting site of the digestive tract, and

humans ingest approximately 1.5 × 1012 oral bacteria daily from

swallowed saliva (126), and P. gingivalis of oral origin can induce

dysbiosis of the intestinal flora (127, 128). For example, a clinical

study found altered gut microbiota in patients with periodontitis

(129). Furthermore, in a previous study, we found that

periodontitis-associated periodontal pathogens disrupt the gut

microbiota, exacerbate the systemic immune response, and

worsen colitis (130). According to Wang et al., oral microbes can

have an impact on the gut, and P. gingivalis was detected in the feces

of patients with colorectal cancer (131).

All these studies suggest that oral pathogenic bacteria can

affect the central nervous system via the Gut-brain axis,

suggesting the existence of an oral-intestinal-brain axis. A

previous study also defined the presence of the Oral-gut-brain

axis (132). It has been shown that P. gingivalis affects
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neuroinflammation by influencing intestinal ecology by

increasing the number of inflammatory T and B lymphocytes,

thereby inducing neuroinflammation (133, 134). Dysbiosis of the

gut microbiota reduces the production of short-chain fatty acids,

which are linked to inflammatory responses (135, 136). Another

study indicated that the gut microbiota affects both microglial

maturation and normal function and that dysregulation of the

microbiota can lead to neuroinflammation (137). Feng et al.

found that oral administration of P. gingivalis reduces intestinal

permeability and elevates IL-17a levels in the peripheral blood of

R1441G mice, potentially linked to neuronal demise and

neuroinflammation (97). Thus, the aforementioned studies

suggest that P. gingivalis influences neuroinflammation via the

oral-intestina-brain axis, which may be closely related to the

pathogenesis of several neurodegenerative diseases.

Currently, there is convincing evidence that oral P. gingivalis

may influence neurodegenerative diseases such as Alzheimer’s and

Parkinson’s diseases. Here, we summarize the relationship between

the two diseases (Figure 2).
4 Discussion

P. gingivalis is the main causative agent of periodontitis,

inducing both periodontal inflammation and systemic chronic

inflammation, as well as neuroinflammation. Recent studies

indicate that P. gingivalis is not only relevant to periodontitis, but

also directly induces AD through neuroinflammation and oxidative
FIGURE 2

P. gingivalis and neurodegenerative diseases. Periodontitis triggers neuroinflammation through the production of virulence factors P.g-LPS and
gingipain by P. gingivalis, which activate the brain’s immune cells, astrocytes and microglia, causing alterations in healthy neurons that ultimately lead
to neurodegenerative diseases such as AD and PD (figure was created with BioRender.com. Huang, Z. (2025) https://BioRender.com/a16s851).
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stress, suggesting its involvement in the development of

neurodegenerative diseases. This review systematically

summarizes the literature regarding P. gingivalis’s role in the

deve lopment of neurodegenerat ive diseases through

neuroinflammation and further analyzes the underlying

mechanisms involved.

Neurodegenerative diseases, such as AD, may be associated with

infections. T Numerous studies have confirmed that pathogenic

microorganisms, including human immunodeficiency virus (HIV)

and specific herpes viruses like herpes simplex virus (HSV), are

linked to neurodegenerative disorders. HIV infection can lead to

AIDS-associated dementia, while HSV infection may increase the

risk of AD (138, 139). Additionally, certain bacteria, such as

Streptococcus pneumoniae, are linked to neurodegenerative

diseases. For example, infections with Streptococcus pneumoniae

can result in meningitis, potentially causing lasting neurological

harm and cognitive deterioration (140). Additionally, gut microbes

can influence AD through the gut-brain axis. A study found notable

differences in the gut bacterial community structure between AD

model mice and their age-matched wild-type counterparts. AD

mice have significantly lower abundance of members of the phyla

Thick-walled Bacteria, Micrococcus wartyi, Aspergillus, and

Actinobacteria, and increased abundance of members of the phyla

Synechococcus and Teneribacteria (141); these changes may lead to

TNF-mediated gastrointestinal inflammation, which can increase

the risk of AD (142). This suggests that shaping the composition of

the gut microbiota may influence the progression of AD. These

findings indicate that the mechanisms of neurodegenerative

diseases are complex and, therefore, studies from the point of

view of pathogenic microorganisms, especially oral flora, are of

great importance.

Porphyromonas gingivalis impacts host’s immune function and

triggers inflammatory, which may lead to various immune diseases

beyond neurodegenerative disorders. Recent studies suggest a link

between P. gingivalis and several immune disorders, including

autoimmune and inflammatory conditions. In autoimmune

disorders, P. gingivalis can trigger immune responses through

molecular mimicry, leading to the production of autoantibodies.

Research shows that a particular peptide (Pep19) from P. gingivalis

heat shock protein 60 reacts significantly in the serum of individuals

with autoimmune disorders. This finding suggests P. gingivalis may

play a role in the emergence and progression of these diseases (143).

Furthermore, P. gingivalis is associated with inflammatory disorders

atherosclerosis, diabetes, and rheumatoid arthritis. Frequently

associated with persistent inflammatory reactions, these

conditions can worsen due to P. gingivalis by enhancing the

inflammatory response regulation (143).

Investigating the connection between P. gingivalis and

neuroinflammation is an emerging area of research, especially

regarding neurodegenerative disorders like AD. Many studies have

suggested ways in which P. gingivalis is connected to
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neuroinflammation. However, this research is still in its early

stages, requiring more experimental and clinical studies to validate

these links and investigate possible treatment options. In conclusion,

studying the relationship between P. gingivalis and neurodegenerative

conditions deepens our understanding of these diseases and raises

public awareness of periodontitis. Improving the prevention and

treatment of periodontitis may help reduce the onset and progression

of neurodegenerative diseases. The intricate connection between

Porphyromonas gingivalis and neurodegenerative diseases requires

further investigation to establish a scientific foundation for their

prevention and treatment.
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