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Multi-omics analysis reveals
the sensitivity of immunotherapy
for unresectable non-small
cell lung cancer
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Xiao Feng2, Xin Dong4* and Hao Tang2*

1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing),
Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China,
2Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Navy Medical
University, Shanghai, China, 3Department of Anesthesiology, Changzheng Hospital, Navy Medical
University, Shanghai, China, 4School of Medicine, Shanghai University, Shanghai, China
Background: To construct a prediction model consisting of metabolites and

proteins in peripheral blood plasma to predict whether patients with

unresectable stage III and IV non-small cell lung cancer can benefit from

immunotherapy before it is administered.

Methods: Peripheral blood plasma was collected from unresectable stage III and

IV non-small cell lung cancer patients who were negative for driver mutations

before receiving immunotherapy. Then we classified samples according to the

follow-up results after two courses of immunotherapy and non-targeted

metabolomics and proteomics analyses were performed to select different

metabolites and proteins. Finally, potential biomarkers were picked out by

applying machine learning methods including random forest and stepwise

regression and prediction models were constructed by logistic regression.

Results: The presence of metabolites and proteins in peripheral blood plasma

was causally associated with both non-small cell lung cancer and PD-L1/PD-1

expression levels. A total of 2 differential metabolites including 5-

sulfooxymethylfurfural and Anthranilic acid and 2 differential proteins including

Immunoglobulin heavy variable 1-45 and Microfibril-associated glycoprotein 4

were selected as reliable biomarkers. The area under the curve (AUC) of the

prediction model built on clinical risks was merely 0.659. The AUC of

metabolomics prediction model was 0.977 and the AUC of proteomics was

0.875 while the AUC of the integrative-omics prediction model was 0.955.

Conclusions: Metabolic and protein biomarkers in peripheral blood both have

high efficacy and reliability in the prediction of immunotherapy sensitivity in

unresectable stage III and IV non-small cell lung cancer, but validation in larger

population-based cohorts is still needed.
KEYWORDS

non-small cell lung cancer, immune checkpoint inhibitors, metabolomics, proteomics,
prediction models
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GRAPHICAL ABSTRACT

The flowchart of the study is presented.
Background

Lung cancer currently ranks as the second most common

malignant tumor globally and the leading cause of cancer-related

mortality (1). Pathologically, it can be classified into non-small cell

lung cancer (NSCLC) and small cell lung cancer. NSCLC accounts for

80% to 85% of newly diagnosed lung cancer cases. The primary

treatment modalities for NSCLC include surgical resection, targeted

therapy against tumor-driving genes, conventional chemotherapy,

and emerging immune checkpoint inhibitors (2). Approximately 50%

of NSCLC patients present with distant organ or lymphatic

metastasis at the time of diagnosis (3). For such patients, aside

from stage IIIA patient s who may undergo surgical treatment after

assessing the efficacy of neoadjuvant therapy, most unresectable stage

III and IV NSCLC patients rely on drug therapy as first-line

treatment (4). These tumors can be furtherly categorized into

NSCLC with driver gene mutations and NSCLC without driver

gene mutations. For NSCLC patients with targetable driver gene

mutations, the first-line treatment regimen typically consists of

targeted therapy against driver genes combined with anti-

angiogenic drugs and conventional chemotherapy (5). Conversely,

treatment regimens for driver gene-negative patients are stratified

based on Eastern Cooperative Oncology Group Performance Status

(ECOG) and may include combinations of immune checkpoint
Frontiers in Immunology 02
inhibitors and conventional chemotherapy or monotherapy with

immune checkpoint inhibitors. The advent of immune checkpoint

inhibitors, primarily targeting Programmed cell death 1 ligand 1 (PD-

L1)/Programmed cell death protein 1 (PD-1), has transformed the

treatment landscape for stage III and IV NSCLC (6). For instance,

patients treated with pembrolizumab in combination with platinum-

based chemotherapy and paclitaxel exhibited an increased overall

survival from 10.7 months to 22 months compared with those treated

solely with conventional chemotherapy (7). However, it is

noteworthy that many patients still do not benefit from

immunotherapy and experience tumor progression. Currently,

reliable biomarkers and predictive models for identifying patients

likely to benefit from immunotherapy before treatment initiation

remain lacking.

Metabolomics and proteomics analyses based on human serum

samples have provided reliable biomarkers for early diagnosis,

treatment plan selection, efficacy monitor and prognosis and

helped build many prediction models as biomarkers selection

based on peripheral blood has many advantages including low

heterogeneity, small trauma and convenience for continuous

monitoring (8). As a research tool for comprehensive analysis of

changes in endogenous small molecule metabolites occurring in an

organism following internal or external stimuli, metabolomics is

considered as an extension and endpoint of genomics and
frontiersin.org
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proteomics, where small changes in expression levels at the gene

and protein level can be amplified at the metabolite level, and thus

metabolomics is regarded as a “biochemical phenotype” of the

overall functional status of an organism, and is well suited for

biomarker screening (9). And as the most downstream of various

pathophysiological activities, changes in metabolites also reflect

changes in the sensitivity of non-small cell lung cancer to

immune checkpoint inhibitor therapy. Proteins are the bearers of

various cellular functions, and resolving the spatiotemporal

specificity of proteins is a key molecule to understand the

heterogeneity of microenvironments and the characteristics of life

occurrence and development in tissues and diseases (10). With the

promotion of mass spectrometry instrumentation, quantitative

histological testing of large-scale samples has begun to gain

gradual popularity, and proteomic testing of body fluids, such as

plasma, urine, and saliva, for patients with malignant tumors has

become an important research method for early diagnosis, pathway

discovery, and efficacy monitoring of tumors (11).

In this study, we collected 47 serum samples from unresectable

stage III or IV NSCLC patients who received Pembrolizumab

treatment and metabolomic and proteomic analyses were

performed according to the classification based on follow-up results

to explore biomarkers that can be used for early prognosis and

provide potential targets for precision therapy (Graph Abstract).
Patients and methods

Study design and participants

This study recruited non-small cell lung cancer patients with

unresectable stage III or IV driver gene negativity admitted to the

Department of Respiratory and Critical Care Medicine of Shanghai

Changzheng Hospital from October 2022 to October 2023. The

study was approved by the Ethics Committee of Shanghai

Changzheng Hospital (2023SL008) and was conducted in

accordance with the Declaration of Helsinki. The pathology type

of each patient was examined by two experienced pathologists and

tumor staging was determined by two experienced radiologists.

5 ml blood from patients who met the inclusion criteria was

collected and placed in Ethylene Diamine Tetraacetic Acid (EDTA)

blood collection tubes. The tubes were left to stand for 2 hours at 4

degrees Celsius. After centrifugation for 15 minutes at 3,000 rpm

and 4 Celsius degrees, the supernatant was taken in a 1.5ml

centrifuge tube, labeled with sample information and frozen at

-80 degrees Celsius refrigerator for storage. The collection of

peripheral blood plasma specimens of the patients was proceeded

before immunotherapy, and the efficacy of the immunotherapy was

evaluated after patients had received two courses of treatment.

Based on the results of the high-resolution chest CT before and after

the treatment, the patients were classified into three groups

according to the proportion of the reduction of the tumor

volume, complete or partial response group, stable disease group,

and progressive disease group according to Response Evaluation

Criteria in Solid Tumors 1.1 (12). Patients with disappearance of all
Frontiers in Immunology 03
target lesions or at least a 30% decrease in the sum of diameters of

target lesions were grouped into PR/CR, patients who witnessed at

least a 20% increase in the sum of diameters of target lesions were

grouped into PD group and other patients were grouped into

SD group.
Liquid chromatography-mass spectrometry
metabolomics analysis

Thaw serum at 4 degrees Celsius, gently vortex and mix; take 50

microliters of serum in a centrifuge tube; add 200 microliters of

internal standard solution; vortex for 1 minute; let stand for 2

minutes; centrifuge at 4 degrees Celsius for 15 minutes at 13,000

rpm; take 100u microliters of supernatant from the wall in the

feeder vials and wait for measurement. Take 10 microliters of each

supernatant and mix, level and centrifuge for two minutes,

immediately take the supernatant into the feed vial as a Quality

Control (QC) sample to prevent protein precipitation from floating.

The remaining serum was immediately returned to the -80 degrees

Celsius refrigerator for refreezing.

A Vanquish ultra-high performance liquid chromatography

system, Q-Exactive combination Orbitrap mass spectrometer and

C18 column from Thermo Fisher Scientific China Ltd. were used.

The temperature was set at 35°C, mobile phase A consisted of 0.1%

formic acid and water, and mobile phase B consisted of 0.1% formic

acid and acetonitrile at a flow rate of 0.4 ml/min, and the injection

volume of each sample was 2 ml, with QC sample inserted in

between every eight real samples. The elution gradient was set as 0-2

min: 5-5% (B); 2-13 min: 5-95% (B); 13-15 min: 95 -95% (B); 15-

15.1 min: 95-5% (B); 15.1-20 min: 5-5% (B). The ion source for

mass spectrometry was a heated electrospray ionization source,

HESI, with the voltage set to 3.8 kVt in positive ion mode and 3.2

kVt in negative ion mode, a capillary temperature of 320 degrees

Celsius, a mass-to-charge ratio between 100 and 1500, and a

shielding gas of 30 liters/minute. After completing the mass

spectrometry analysis, the raw data from the Q-Exactive mass

spectrometer were exported and proceeded using Thermo Fisher’s

Compound Discoverer 3.3 software.
Statistics and pathway analysis
of metabolomics

In the first step, spectra were selected from the raw data for each

polarity and the retention times of the chromatographic peaks were

aligned. Unknown compounds with spectral peak intensity values

over 10,000 were then detected and spectra. In the second step,

missing values were filled with Compound Discoverer 3.3 and

compounds were identified by different types of databases.

Mzcloud was used to annotate compounds on MS/MS at

tolerances within 10 ppm. Chemspider contains the BioCyc, the

Human Metabolome Database (HMDB), and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases for

precise mass-based annotation of features with a mass tolerance

of 5 ppm and an S/N threshold of 1.5. In the third step, SERRF QC
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correlation was applied to reduce batch effects in all samples. In the

fourth step, raw data from blank samples were used to label

background compounds and the peak area of the samples/blanks

was set to 5, enabling the use of background compounds to filter the

background signal. Finally, a list of detected compounds, including

exact molecular mass-to-charge ratio, retention time, compound

name, and peak area, is exported in Excel format in QC

normalization mode.

The exported compound names were manually checked before

using MetaboAnalyst as a target list for pathway enrichemnt

analysis and random forest analysis, both of which are online

data processing tools. In addition, peak area lists were uploaded

into SIMCA-P 14.1 software (Umetrics, Malmo, Sweden) for PCA

analysis to assess stability of data between samples. A rank-sum test

was performed on all metabolites detected by Compound

Discoverer 3.3 to screen for metabolites that differed in

expression levels between groups. Pathway enrichment analysis

based on KEGG database was performed for the differential

metabolites screened between groups using the pathway analysis

module on MetaboAnalyst website.
Proteomics analysis

In this study, the iST sample pretreatment kit (PreOmics,

Germany) was taken for protein pretreatment. 2 µl of plasma

samples were taken and 50 µl of lysate was added, centrifuged at

1000 rpm for 10 min at 95°C and then left to cool down to room

temperature, trypsin digestion buffer was added, and the reaction

was incubated with oscillation for 2 h at 37°C, 500 rpm, and the

reaction was terminated by adding 100 ml of buffer. The peptides

were desalted using the iST cartridge in the kit, eluted twice with

100 ml of elution buffer, then vacuum-dried and stored at -80

degrees Celsius.

The samples were analyzed by LC-MS/MS using an AUR3-

15075C18 analytical column (15 cm*75 mm, 1.7 mm) with a gradient

of 30 min, a column temperature of 50°C, and a column flow rate of

400 nl/min. The B-phase consisted of 80% acetonitrile with 0.1%

formic acid, and the gradient was started from 4% of B-phase,

increased to 28% within 15 min, and to 44% within the next 4 min. 4

min to 44%, and then to 90% in the next 4 min, maintained for 3

min and then equilibrated at 4% for 4 min. The mass spectrometer

was set to diaPASEF mode with a scanning range of 349-1229 m/z

and an isolation window width of 40 Da. During the PASEF MSMS

scan, the collision energy increased linearly with ion mobility from

59 eV (1/K0 = 1.6 Vs/cm2) to 20 eV (1/K0 = 0.6 Vs/cm2).

DIA data were analyzed using the Spectronaut18 default

parameters, i.e., BGS Factory Settings (default), with a sequence

database of uniprot-Homo_sapiens (version 2022, 20610 entries),

set for Trypsin zymolysis, and fixed modifications of the search

library parameters as: Carbamidomethylation (C) 57.02 and

variable modification is: Oxidation (M) 15.99, whereas according

to the iRT peptide software the retention time and mass window

can be automatically corrected to automatically determine the ideal

extraction window. The criteria for protein characterization were

Precursor Threshold 1.0% FDR and Protein Threshold 1.0% FDR;
Frontiers in Immunology 04
while the Decoy database was generated using a mutated strategy,

i.e., the sequence of a random number of amino acids was selected

to be disrupted, and the number of disrupted amino acids should be

greater than or equal to two and less than half of the total length of

the peptide; Spectronaut was automatically corrected and the data

were normalized using a local normalization strategy, while

peptides less than 1.0% FDR were quantified using MaxLFQ to

complete the proteome (13).

The quality control of mass spectrometry data included liquid

phase system, mass spectrometry system, qualitative results,

quantitative results, etc. The parameters of quality control

included missed cut, specific enzyme cleavage, non-specific

modification, half-peak width, distribution of ion out time,

distribution of ion charge number, and mass axis shift. The

samples of the beneficiary group were compared with those of the

non-beneficiary group, and the mean of the relative quantitative

values of each group of samples in the comparison sample pair was

calculated for each white, and the ratio of the mean values of each

group of samples in the comparison sample pair was the Fold

Change (FC). The p-value was calculated by t-test to determine the

significance of the difference, and FC>1.2 or FC<-0.83 and p<0.05

were used as the screening criteria for differential proteins. The

protein quantification form was exported according to the library

search software, and data preprocessing was required before

screening for differential proteins. Data preprocessing includes

contaminant library protein removal, missing value filtering and

filling. The missing value filtering and filling adopt the global

missing value rejection and filling strategy, which is, the samples

were grouped according to the group, in each group of samples, the

protein with more than 50% missing values was considered to have

0 expression in that group of samples, and the protein values with

missing value less than 50% were filled with the very small value,

and the proteins with the percentage of missing value more than

50% were filtered out when the percentage of missing value in all

groups was more than 50%.

While statistical analysis such as differential proteins include

Principal Component Analysis (PCA), Partial Least Squares

Discriminant Analysis (PLS-DA), Hierarchical Cluster Analysis

(HCA) and so on. A variety of bioinformatics analysis tools

including GO analysis, KEGG analysis, and protein-protein

interaction networks were applied in proteomics analysis.
Statistical analysis

R 4.2.2 was used for data analysis, metabolomics and

proteomics were screened for predictor variables using random

forest and stepwise regression respectively, 29 differential

metabolites and 23 differential proteins between the beneficiary

and non-beneficiary groups were included in the independent

variables available for screening, a randomized stratification

method was adopted to divide the data into training and testing

sets according to 7:3, based on the training set, logistic regression

was used to respectively Based on the training set, logistic regression

was used to construct clinical risks, metabolomics, proteomics,
frontiersin.org
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metabolomics and proteomics prediction models, and the ROC

(Receiver Operating Characteristic) curve was used to evaluate the

differentiation of the models, and the AUC (Area Under Curve) was

used to evaluate the effectiveness of the models.
Frontiers in Immunology 05
IPA (Integrate Pathway Analysis) software was used to analyze

the pathway enrichment of 27 differential metabolites and 23

differential proteins simultaneously, and the corresponding dual-

omics combined pathway maps were obtained.
TABLE 1 The detailed information of participants.

Groups PR/CR SD PD/DEATH

Gender Male 4 28 10

Female 1 2 2

Age 68.2±7.36 66.87±7.13 66.33 ± 10.27

40~49 0 0 1

50~59 1 5 2

60~69 2 13 4

70~79 2 11 4

80~89 0 1 1

BMI 22.69±1.52 23.12±5.14 23.89±4.27

Pathological type Adenocarcinoma 0 11 5

Squamous cell carcinoma 5 19 4

Carcinoid 0 0 3

Stage III 1 8 5

IV 4 22 7

Smoking history Yes 3 26 11

No 2 4 1

ECOG score 0 3 11 3

1 1 13 5

2 1 6 4
TABLE 2 The differential metabolites between the beneficiary and non-beneficiary groups.

Name Formula m/z RT(min) Ion FC P

Uridine C9 H12 N2 O6 279.03902 0.637 [M+Cl]-1 0.64432036 0.036

Threonine C4H9NO3 119.05824 1.652 [M+H]+1 0.66352246 0.023

Mesitol C9 H12 O 195.10212 6.412 [M-H+HAc]-1 0.39580597 0.026

Hostmaniane C13 H18 O5 253.10824 5.78 [M-H]-1 0.57390195 0.028

Hippuric acid C9 H9 N O3 178.05016 2.906 [M-H]-1 0.70977601 0.014

Hexyl 2-furoate C11 H16 O3 195.10206 6.413 [M-H]-1 0.39580597 0.026

Ecdysterone C27 H44 O7 481.31433 9.187 [M+H]+1 0.38236049 0.04

DL-Tryptophan C11 H12 N2 O2 205.09714 2.404 [M+H]+1 0.66013304 0.048

CMPF C12 H16 O5 239.0923 6.413 [M-H]-1 0.39684508 0.025

Brassylic acid C13 H24 O4 243.16 6.988 [M-H]-1 0.71582303 0.034

Arabinosylhypoxanthine C10 H12 N4 O5 267.07365 0.810 [M-H]-1 0.20327324 0.011

5-sulfooxymethylfurfural C6 H6 O6 S 204.9807 1.703 [M-H]-1 0.04568696 0.001

(Continued)
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Results

Patient characteristics

From October 2022 to October 2023, a total of 47 patients were

enrolled in this study, including 42 male patients and 5 female

patients. 35 patients were included in the benefit group while 12
Frontiers in Immunology 06
were included in the no-benefit group. 30 of 35 patients belonging

to benefit group were classified into stable disease (SD) group and

the other 5 patients were classified into remission group which

consisted of complete response (CR) group and partial response

(PR) group. The no-benefit group consisted of progressive disease

(PD) group and death group. The details of each group are shown

in Table 1.
TABLE 2 Continued

Name Formula m/z RT(min) Ion FC P

2-methoxyacetaminophen sulfate C9 H11 N O6 S 260.0236 0.808 [M-H]-1 0.58682834 0.022

1-Oleoyl-lysophosphatidic acid C21 H41 O7 P 481.25793 9.683 [M+FA-H]-1 0.72535815 0.048

3,5-Dihydroxy-meodah C22 H30 O7 405.1923 5.380 [M-H]-1 0.69134066 0.048

Glycoursodeoxycholic acid C26H43NO5 516.29485 6.415 [M-H]-1 0.19795065 0.022

Glycohyodeoxycholic acid C26H43NO5 516.97862 6.414 [M-H]-1 0.38797949 0.019

Chenodeoxyglycocholic acid C26H43NO5 517.13943 6.414 [M-H]-1 0.45166525 0.045

PE-NMe(20:5(5Z,8Z,11Z,14Z,17Z)/
22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C48H74NO8P 823.51519 5.204 [M-H]-1 0.66109173 0.023

L-gamma-Glutamyl-L-valine C10 H18 N2 O5 227.10327 2.131 [M-H-H2O]-1 0.78324428 0.048

Curcumene C15 H22 203.17915 15.332 [M+H]+1 1.84164036 0.022

Anthranilic acid C7 H7 N O2 138.05499 0.616 [M+H]+1 0.27665018 0.022

N-Docosahexaenoyl GABA C26 H39 N O3 414.3001 11.948 [M+H]+1 1.72991327 0.02

2-Hexenoylcarnitine C13 H23 N O4 258.17018 3.569 [M+H]+1 1.44288876 0.012

2-Octenoylcarnitine C15 H27 N O4 286.20137 5.341 [M+H]+1 1.72271138 0.043

(3Z,6E)-N-Hydroxy-2,4,4,7-tetramethyl-6,8-
nonadien-3-imine

C13 H23 N O 227.21174 4.983 [M+NH4]+1 3.62373447 0.025

(+)-TRAMADOL C16 H25 N O2 264.1959 4.272 [M+H]+1 60.4912732 0.016
FIGURE 1

Heat map showing the results of the cluster analysis of differential metabolites between the progressed and mitigated groups (A). Heat map showing
the results of the cluster analysis of differential metabolites between the progressed and stabilized groups (B). Heat map showing the results of the
cluster analysis of differential metabolites between the mitigated and stabilized groups (C). Heat map showing the results of the cluster analysis of
differential metabolites between the benefited and non-benefited groups (D).
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Metabolomics

A total of 998 metabolites identified after initial process using

Compound Discoverer 3.3 were checked according to the HMDB

database, Chemspider database, and KEGG database, and a total of

392 of these metabolites that were endogenous to the human body

were manually identified. Subsequently, SIMCA- P 14.1 software

was used to further analyze the cleaned data, and Principal
Frontiers in Immunology 07
Component Analysis (PCA) was applied to analyze the stability

of the samples, according to the PCA-X in Supplementary Figure 1.

As it was shown, the QC samples have good aggregation in both

positive and negative modes which proved that the mass

spectrometer has reached a good stability level during the

metabolomics analysis.

Subsequently, the rank-sum test was performed on the peak values

of each human endogenous metabolite for each sample in both the
FIGURE 3

(A) Pathway enrichment results of differential metabolites between the beneficiary and non-beneficiary groups. (B) Pathway enrichment results of
differential metabolites between the remission group and the stable group. (C) Pathway enrichment results of differential metabolites between the
remission group and the progression group.
FIGURE 2

(A) Volcano plot of protein differences between the progressed and stabilized groups. (B) Volcano plot of protein differences between the relieved and
progressed groups. (C) Volcano plot of protein differences between the relieved and stabilized groups. (D) Volcano plot of protein differences between the
benefited and non-benefited groups. (E) Heat map showing the results of the cluster analysis of differential proteins between the beneficiary and non-
beneficiary groups. (F) Heat map showing the results of the cluster analysis of differential proteins between the progressed and stabilized groups. (G) Heat
map showing the results of the cluster analysis of differential proteins between the progressed and beneficiary groups. (H) Heat map showing the results of
the cluster analysis of differential proteins between the mitigated and stabilized groups.
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TABLE 3 The differential proteins between the beneficiary and non-beneficiary groups.

Gene Names Length Mass
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ating enzyme 5, Ubiquitin-
UBA5 UBE1DC1 404 44863

TUBB1 451 50327

HEG1 KIAA1237 1381 147461
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Accession Comparation P.Value Fold.ChangeRatio Fold.Change Entry Name Protein names

A0A0A0MS14 PR+SD VS PD 1.08652E-09 0.032800117 -30.487696 HV145_HUMAN Immunoglobulin heavy varia

A0A0B4J1X8 PR+SD VS PD 3.23403E-05 0.099875454 -10.01247 HV343_HUMAN Immunoglobulin heavy varia

O95972 PR+SD VS PD 0.038580205 1.46247003 1.46247003 BMP15_HUMAN Bone morphogenetic protein

P00390 PR+SD VS PD 0.011719912 0.761090691 -1.3139039 GSHR_HUMAN
Glutathione reductase, mitoc
EC 1.8.1.7

P04746 PR+SD VS PD 0.000243714 0.313993078 -3.1847836 AMYP_HUMAN Pancreatic alpha-amylase, PA

P06315 PR+SD VS PD 0.001279898 0.129021078 -7.7506716 KV502_HUMAN Immunoglobulin kappa vari

P07195 PR+SD VS PD 0.005344483 0.761768869 -1.3127341 LDHB_HUMAN L-lactate dehydrogenase B c

P13727 PR+SD VS PD 0.038859222 0.63628859 -1.5716139 PRG2_HUMAN Bone marrow proteoglycan,

P17538 PR+SD VS PD 1.31551E-06 0.168120627 -5.9481101 CTRB1_HUMAN Chymotrypsinogen B, EC 3.

P20742 PR+SD VS PD 0.031307466 0.556338526 -1.7974667 PZP_HUMAN Pregnancy zone protein

P22314 PR+SD VS PD 9.34808E-05 0.231250165 -4.3243212 UBA1_HUMAN Ubiquitin-like modifier-activ

P26373 PR+SD VS PD 0.000167921 0.157998345 -6.3291802 RL13_HUMAN 60S ribosomal protein L13

P38646 PR+SD VS PD 0.040103948 1.835046276 1.83504628 GRP75_HUMAN Stress-70 protein, mitochond

P55083 PR+SD VS PD 5.84851E-07 0.374990958 -2.666731 MFAP4_HUMAN Microfibril-associated glycop

P62942 PR+SD VS PD 2.59674E-08 0.031870013 -31.377458 FKB1A_HUMAN
Peptidyl-prolyl cis-trans isom
FKBP1A, EC 5.2.1.8

Q13103 PR+SD VS PD 0.007390135 0.696348849 -1.4360618 SPP24_HUMAN Secreted phosphoprotein 24,

Q13228 PR+SD VS PD 0.001065419 0.361369338 -2.7672519 SBP1_HUMAN Methanethiol oxidase, MTO

Q14974 PR+SD VS PD 0.000978067 0.313252529 -3.1923126 IMB1_HUMAN Importin subunit beta-1

Q6ZMI0 PR+SD VS PD 0.000113049 0.087644349 -11.409749 PPR21_HUMAN Protein phosphatase 1 regul

Q96NG3 PR+SD VS PD 0.000159629 0.068986416 -14.495607 ODAD4_HUMAN Outer dynein arm-docking c

Q9GZZ9 PR+SD VS PD 0.001735818 0.110825138 -9.0232236 UBA5_HUMAN
Ubiquitin-like modifier-activ
activating enzyme 5

Q9H4B7 PR+SD VS PD 3.30681E-06 0.032929714 -30.36771 TBB1_HUMAN Tubulin beta-1 chain

Q9ULI3 PR+SD VS PD 0.035527922 1.723700266 1.72370027 HEG1_HUMAN Protein HEG homolog 1
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beneficiary and non-beneficiary groups, and 27 differential metabolites

were obtained, which are shown in Table 2. The cluster analysis was

also performed on the differential metabolites (Figure 1A).

As it can also be seen in Figure 2, a two-by-two rank sum test

comparison between the remission, stabilization, and progression

groups revealed that there were 25 differential metabolites between

the remission group and the progression group (Figure 1B), only 5

differential metabolites between the stabilization group and the

progression group (Figure 1C), 11 human endogenous differential

metabolites between the remission group and the stabilization

group (Figure 1D).

Pathway enrichment analysis was performed on these 27

differential metabolites using the MetaboAnalyst website, and it

was found that a total of 11 pathways were enriched (Figure 2A),

among which were the metabolism of tryptophan and aminoacyl

tRNA biosynthesis pathways had most differential metabolites on

them, and this result was also verified in the subsequent IPA

analysis. For some of the metabolites enriched on the relevant

pathways we will validate this in the next section of our work.

The three two-by-two comparisons had the highest number of

differential metabolites between the PR and PD groups, and the

differences in response to immune checkpoint inhibitor therapy for

non-small cell lung cancer were also the greatest between these two

groups of patients, with the highest number of pathways enriched.

As shown in Figure 3, based on the pathway enrichment analysis of

the three comparisons, it was found that the pathways enriched for

differential metabolites between the remission group and the
Frontiers in Immunology 09
progression group were mainly glutathione metabolism and

unsaturated fatty acid biosynthesis, whereas the metabolic

pathways enriched for endogenous differential metabolites in the

human body between the remission group and the stabilized group

were mainly porphyrin metabolism and tryptophan metabolism.

However, due to the lack of differential metabolites between

stabilized group and progression group, corresponding pathway

enrichment was not successful.
Proteomics

Preliminary analysis of the proteomic mass spectrometry data

was performed using Proteomics Discoverer software. 585

endogenous plasma proteins were identified in this study, and 23

proteins with statistically significant differences in expression levels

between the beneficiary group and the non-beneficiary group, of

which 20 proteins had higher expression levels in the non-

beneficiary group, while only three proteins, namely GDF-9B

(Growth/differentiation factor 9B), Stress-70 protein and Protein

HEG homolog 1, had higher levels in the beneficiary group,

respectively. GDF-9B, Stress-70 protein and Protein HEG

homolog 1 were expressed at higher levels in the beneficiary

group, which were respectively derived from BMP15 GDF9B,

HSPA9 GRP75 HSPA9B mt-HSP70 and HEG1 KIAA237 gene

translation as shown in Table 3. 27 differential proteins were

identified between the progression group and the stabilization
FIGURE 4

The top 20 entries with the smallest p-value under the three tertiary classifications of biological process (A), molecular function (B), and cellular
components (C) in the GO analysis for differential proteins in the enrichment results under the three levels of classification and the GO level where
they are located, and the horizontal coordinate is the percentage of differentiated proteins enriched by the entry.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1479550
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1479550
group, 56 differential proteins between the stabilization group and

the remission group, and 38 differential proteins between the

progression group and the remission group, and the results of the

cluster analysis are shown in Figure 4.

PLS-DA analysis was performed on the detected proteins by

subgroups to show the trend of aggregation or dispersion of the

samples within and between groups. As shown in Supplementary

Figure 2 the PLS-DA analysis of the benefit group and the non-

benefit group showed a better trend of separation between the two

groups and a better trend of aggregation between the samples

within the groups; if grouped according to the progression group,

the stabilization group, and the remission group, the comparisons

of any two of the three groups including the progression group

versus the stabilization group, the stabilization group versus the

remission group, and the progression group versus the remission

group were included, and these comparisons were all in the PLS-DA

analysis showed a better trend of intra-group aggregation and inter-

group separation, while the PLS-DA between the three groups

proved that the inter-group differences between the three groups

were significant whi le the intra-group samples were

highly aggregated.

Subsequently, a volcano plot was drawn for the detected

proteins, which is a scatter plot taking the log2 value of the fold
Frontiers in Immunology 10
change as the horizontal axis and the -log10 value of the p-value as

the vertical axis, and proteins with up-regulation of expression

levels were labeled in red, proteins with no change in expression

levels were labeled in gray, and proteins with down-regulation of

expression levels were labeled in blue, and as can be seen in Figure 3,

even though the expression levels of most detected proteins were

not statistically changed in the comparison of the groups, there were

some proteins that still demonstrated an up- or down-regulation

trend in the comparison. In the comparison between the benefit

group and the non-benefit group, only 3 differential proteins were

expressed at higher levels in the benefit group, while 20 proteins

showed a tendency to be expressed at lower levels in the benefit

group. The hierarchical clustering analysis, in which the color

shades are used to represent the magnitude of protein expression,

is shown as a heat map, which again confirms the trend of

expression levels of differential proteins in the comparison of

groups in the volcano plot.

From the comparison between the PD group and the SD group,

it can be seen that only 4 differential proteins showed a downward

trend in the PD group while the remaining 23 differential proteins

showed an upward trend in the PD group; whereas from the

comparison between the PR group and the PD group, the

difference in the number of differential proteins with upward and
FIGURE 5

Bar graphs of GO enrichment. (A–C) P-values of the top 20 pathways with the most differential proteins enriched between the beneficiary and non-
beneficiary groups. (D–F) FDR values of the top 20 pathways with the most differential proteins enriched under the three tertiary classifications. (G–I)
Horizontal histograms of the top 20 tertiary or quaternary entries with the lowest p-value in the enrichment results under the lowest p-value secondary
classification with the GO tier in which they were selected.
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downward trends was small, with 24 differential proteins with a

higher expression level in the PD group and 14 with a lower

expression level in the PD group; the difference in expression

level between the PR group and the progression group was small.

In the comparison between the PR group and the SD group, there

were 36 different proteins with increased expression levels in the PR

group and 20 proteins with decreased expression levels in the

SD group.

Subsequent bioinformatics analysis based on differential

proteins included GO function analysis, KEGG pathway analysis

with STRING-DB protein interaction network. Differential proteins

in the beneficiary and non-beneficiary groups were firstly

categorized at the first level, which included Biology Process (BP),

Molecular Function (MF), Cellular Component (CC), and

Complement Activation, Antigen Binding, and Vesicles were the

three pathways or cellular components that accounted for the

highest number of differential proteins in the relative

categorization. Complement activation, the bioprocess with the

highest percentage of enriched proteins, is located in the seventh

level of classification, and three differential proteins are located in

the pathway corresponding to this entry; antigen binding, the
Frontiers in Immunology 11
molecular function with the highest percentage of enriched

proteins, is located in the second level of classification, and four

differential proteins are located in this pathway, and the rest of the

pathways that are enriched with more differential proteins and with

lower p-values are immunoglobulin receptor binding, ligase. The

other pathways with low p-values were immunoglobulin receptor

binding, ligase activity to form carbon-sulfur bonds, and heat shock

protein binding, all of which had 2 differential proteins enriched in

the relevant pathway; whereas in the cellular components the

structure of vesicles was enriched in 11 differential proteins, while

the structures of extracellular vesicles, extracellular exocytosis and

extracellular exocytosis were enriched in 10 proteins, which may be

related to the fact that the samples came from peripheral blood

plasma after centrifugation of removed hematopoietic

cells (Figure 4).

Under the primary classification of biological processes, the

pathway of complement activation was enriched with the highest

number of differentially differentiated proteins and the lowest p-

value, with the highest confidence; the pathways with lower p-value

and higher confidence also included protein recombination, De

novo protein folding, erythrocyte differentiation, and lung
FIGURE 6

KEGG enrichment results. (A) The top 4 pathways with the smallest p-value, the vertical coordinates indicate the percentage of proteins in the
pathway to the total number of differential proteins, and the darker the color indicates the smaller the p-value. (B) The vertical coordinates on the
left show the specific metabolic pathways enriched, and the vertical coordinates on the right indicate the abbreviation of the primary and secondary
taxonomic names. (C) P-value of the enriched metabolic pathways in order from the outside in. of the number of proteins enriched in the first 4
entries followed by a pie chart showing the percentage of the number of proteins in each entry. (D) Visualization of KEGG enrichment results in
bubble charts, with the horizontal coordinates indicating the percentage of proteins in the pathway to the total number of differential proteins, and
the color indicating the smaller p-value, and the size of the circle indicating the number of differential proteins in the pathway. (E) KEGG enrichment
results of the differential proteins between the progression group and the stabilization group. (F) KEGG enrichment results of differential proteins
between the remission and progression groups.
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development, which were also characterized by lower FDR values;

and in the secondary classification of biological processes, cellular

component organization/cellular component, CC, antigen binding,

and vesicle were the pathways or cellular components that

accounted for the highest number of differentiated proteins,

respectively, in all three categories (Figure 5). In the secondary

classification of biological processes, the pathway of cellular

components, organization/biosynthesis was the pathway enriched

to account for the largest number of differential proteins. Under the

classification of molecular function, the antigen-binding pathway

had a lower p-value and better FDR value, whereas protein-binding

was the secondary classification under molecular function with the

highest proportion of differentially enriched proteins, and

ubiquitin-like modifier-activated enzyme activity was the pathway

with the lowest p-value. Under the primary classification of cellular

composition, vesicles were the cellular structure with the highest

percentage of differentially differentiated proteins enriched to the

structure, and the rest of the structures with a high percentage of

differentially differentiated proteins were extracellular exosomes

and extracellular regions, which also had the lowest p-value and

the best FDR value under this classification. The top 20 entries with

the lowest p-values in the enrichment results under the three

classifications of biological processes, molecular functions, and

cellular constituents were plotted against their GO tiers in a

horizontal bar graph, with the horizontal coordinates of the bar
Frontiers in Immunology 12
graph being the percentage of differentially differentiated proteins

enriched to that entry.

And as seen in Figure 6, the KEGG enrichment results were

visualized in a similar way, the vertical coordinates of the front bar

with the smallest p-value were counted to indicate the percentage of

the proteins in the pathway to the number of differential proteins,

and the darker the color, the smaller the p-value; whereas, the

KEGG seven first-level macroclasses analyzed and their subordinate

second-level classifications under which those pathways enriched

by differential proteins belong to are labeled by means of the

horizontal bar charts. Propionic acid metabolism, starch and

sucrose metabolism belonged to the carbohydrate metabolism

secondary classification under the metabolic classification, sulfur

metabolism belonged to the energy metabolism secondary

classification under the metabolic classification, and pancreatic

secretion and other pathways belonged to the digestive system

classification under the organic system; whereas pancreatic

secretion and other pathways enriched in two differential

proteins, most of the remaining multiplexes were enriched only in

one differential protein, as the amount of proteins enriched by each

pathway was relatively small, and therefore, the number of

differential proteins enriched in each of these pathways was not

large. The KEGG pathway analysis of differential proteins in the

benefit group versus the non-benefit group was less reliable and had

higher p-values for each pathway due to the small number of
FIGURE 7

Results of String analysis of differential proteins. (A) Protein interaction network of differential proteins between the benefited and non-benefited
groups. (B) Protein interaction network of differential proteins between the progressed and stabilized groups. (C) Protein interaction network of
differential proteins between the relieved and progressed groups. (D) Protein interaction network of differential proteins between the relieved and
stabilized groups.
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proteins enriched for each pathway. Whereas the entries with the

highest number of differential proteins enriched in the comparison

of the progression group with the stabilization group were

metabolic pathways, the entries with the highest number of

differential proteins enriched in the comparison of the remission

group with the progression group were phagosomes.

The protein interaction analysis of differential proteins showed

that, as shown in Figure 7, HSPA9 was the core of the interaction

network composed of differential proteins, and the rest of the key

nodes were CTRB1, TTC25, TUBB1, etc., which were closely related

to the mutation of tumor driver genes, especially K-Ras mutation.

In contrast, as shown in Figure 8A, pathway enrichment

analysis using IPA (Integration pathway analysis, QIAGEN,

Dusseldorf, Germany) software showed that the expression levels

of genes such as MYC, CCND1, and TP53 were important factors

affecting the sensitivity of NSCLC to immune checkpoint

inhibitor therapy.
Multi-omics analysis

After screening by random forest and stepwise regression,

metabolomics screened two differential metabolites, 5-

sulfomethylfurfural and o-aminobenzoic acid, as biomarkers, while

proteomics screened two differential proteins, Immunoglobulin heavy

variable 1-45 andMicrofibril-associated glycoprotein 4, as biomarkers.

As shown in Figures 8B–E the early prediction model constructed

based on two metabolic biomarkers, 5-sulfomethylfurfural and o-

aminobenzoic acid, had an AUC of 0.977 in the test set while the early

prediction model constructed based on two protein biomarkers,
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Immunoglobulin heavy variable 1-45 and Microfibril-associated

glycoprotein 4, had an AUC of 0.875 in the test set. The early

prediction model constructed from clinical factors had an AUC of

0.659 in the test set while the early prediction model constructed from

dual omics biomarkers had an AUC of 0.955.
Discussion

Tryptophan is an essential amino acid, and its metabolic

pathway is the most metabolized and reliable metabolic pathway

among the metabolic pathways enriched by differential metabolites

in the beneficiary and non-beneficiary groups, while the metabolism

of tryptophan is closely related to the treatment of immune

checkpoint inhibitors in tumors, and its catabolic metabolism can

reduce the body’s immune system whereas tryptophan itself can

enhance the activity of CD8+ T-cells, increase CD8+ T-cells in

tumor tissue and increase the infiltration of CD8+ T cells in tumor

tissues, thus helping to induce apoptosis of tumor cells and slow

down the growth of lung cancer (14). There are three metabolic

pathways for tryptophan, including the indole pathway in the

intestinal microbiota, the serotonin system pathway in intestinal

chromaffin cells, and the kynurenine pathway in immune cells and

the intestinal wall (15). All three pathways are relevant to immune

checkpoint inhibitor therapy of tumors (16). Indole metabolites and

kynurenine interact with the aryl hydrocarbon receptor to induce T

regulatory cell differentiation, limit immune responses in Th17

cells, Th1 cells and produce anti-inflammatory mediators (17).

Kynurenine leads to a decrease in CD8+ T cells infiltrating tumor
FIGURE 8

(A) IPA pathway enrichment analysis of differential metabolites and differential proteins between the beneficiary and non-beneficiary groups. (B) ROC
curves in the test set based on predictive models constructed from biomarkers screened in metabolomics, proteomics and multi-omics. (C) ROC of
prediction model based on clinical risks. (D) ROC of prediction model based on differential metabolites. (E) ROC of prediction model based on
differential proteins. (F) ROC of prediction model based on both differential metabolites and proteins.
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tissue and mediates immune escape of tumor cells (18). Also, the

serotonin system increases tumor cell proliferation and metastasis,

while indole metabolites significantly reduce tumor growth (19).

Another pathway that was enriched by multiple metabolites in

the comparison of the beneficiary and non-beneficiary groups is the

biosynthesis of aminoacyl-tRNA. Aminoacyl-tRNA synthesis works

by recognizing and catalyzing specific amino acid linkages to

homologous tRNAs via aminoacyl-tRNA synthetases, which

results in the precise matching of amino acids to tRNAs

containing the corresponding paradigm codons, helping to

achieve the accurate synthesis of proteins (20). Aminoacyl-tRNA

synthetases are key enzymes in the translation process of mRNA,

and the 20 essential amino acids correspond to 20 aminoacyl-tRNA

synthetases, but there are fewer reports in the literature on the

therapeutic effects of aminoacyl-tRNAs and anti-PD-L1/PD-1

therapy in tumors (21). Specifically, both threonine and

tryptophan were enriched to aminoacyl-tRNA biosynthesis, and it

is noteworthy that threonine was also an important differential

metabolite between the beneficiary and non-beneficiary groups, and

that serine/threonine is an important site in the WNT/b-catenin
pathway during tumorigenesis, whereas the corresponding serine/

threonine kinase plays an important role in this pathway (22).

Transcriptomics revealed that serine/threonine kinase expression

was negatively correlated with the expression of immune response

markers in CD8+ T cells and the infiltration of dendritic cells,

whereas further studies revealed that serine/threonine kinase

expression levels were higher in patients with malignant tumors

that were insensitive to anti-PD-L1/PD-1 therapy, and that genes

associated with the WNT/b-catenin pathway and the MYC, a target

gene of WNT, both had higher expression levels (23, 24).

Knockdown of the serine/threonine kinase gene induced tumor

shrinkage and increased immune cell infiltration in tumor tissues of

malignant tumors ineffective for anti-PD-1 treatment in animal

experiments, while synergistic effects of combining anti-PD-1

immune checkpoint inhibitors with anti-serine/threonine kinase

targeting drugs could be observed in animal models, and synergistic

effects were observed for the combination of Nivolumab and new

therapy consisting of Nivolumab in combination with the dual anti-

serine/threonine kinase inhibitor KPT-9274 is already undergoing

clinical trials (25).

Immunotherapy for non-small cell lung cancer lung cancer has

a close management with various protein pathways, and the

activation of complement is the pathway with the most enriched

differential proteins in the GO analysis of differential proteins

between non-small cell lung cancer immunotherapy beneficiary

and non-beneficiary groups, which plays an important role in

immune evasion of tumors and activation of CD8+ T-cells,

especially the complement factors produced by tumor cells could

regulate tumor signaling and tumor tissue growth factors (26). For

example, mutations in STK11 gene are thought to be associated

with poor efficacy of immune checkpoint inhibitor therapy in

NSCLC, while animal experiments have confirmed that the

expression of complement pathway, including C3, is significantly

increased in tumor cells with STK11 knockdown, and that

complement C3 in NSCLC cell lines with STK11 knockdown can

lead to a decrease in xenograft tumor growth in nude mice while
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tumor formation in mice with normal immune function basically

disappeared. Mice with normal immune function, while population

experiments have shown differential expression of complement C3

in non-small cell lung cancer patients with STK11 mutations (27).

Whereas tumor cell-derived complement is now a possible target

for immunotherapy in NSCLC, thus enhancing the anti-tumor

capacity of the complement system, combined targeted blockade

of C3aR (Component 3 Antibody Receptor)/C5aR (Component 5

Antibody Receptor) with PD-1/PD-L1 immune checkpoint

inhibitor therapy appeared to have an antitumor synergistic

effect (28).

Immunotherapy of non-small cell lung cancer lung cancer is also

closely related to the expression level of the protein, HSPA9 as the

core of the protein interaction analysis network of differential

proteins, which is thought to be closely linked to the mutation of

the tumor driver gene K-Ras, when there is a mutation in the K-Ras

G12V gene depletion of HSPA9 can lead to the inhibition of the role

of mitochondrial Ca2+ one-way transport protein is reduced and

thus promote the death of normal fibroblasts (29). HSPA9, as a

mitochondrial molecular chaperone, is often highly expressed and

mislocalized in tumor cells with aberrant activation of MEK kinase

and ERK kinase, and its depletion selectively kills tumor cells with

high expression of B-Raf V600E or the chimeric protein DRaf-1:ER,
and MEK-ERK-sensitive regulatory peptides in HSPA9 are not

known to be active in the mitochondria (30). ERK-sensitive

regulatory peptide binding domain in HSPA9 is important for cell

survival or death. MEK-ERK increases mitochondrial permeability by

promoting the interaction between adenine nucleotide translocase 3

(ANT3) and the peptidyl prolyl isomerase procyclic protein D

(CypD), leading to cell death, whereas the depletion of HSPA9

leads to a reduction of its inhibitory effect on the MEK-ERK

pathway and promotes cell death, affecting the cell’s ability to

survive or die. of HSPA9 decreases thereby promoting cell death

and affecting tumor prognosis.

CCND1 gene is one of the most central and associated pathways

in the joint pathway analysis of metabolomics and proteomics, and

it is thought to be associated with poor prognosis of lung cancer. For

example, CCND1 and FGFR1 genes showed a tendency of co-

expression in squamous lung cancer patients, and FGFR1 could

promote the migration and invasion of squamous carcinoma cells

by up-regulating the expression level of CCND1 gene to activate

AKT/MAPK signaling to promote the process of epithelial

mesenchymal transition, while knockdown of CCND1 gene in

squamous lung cancer cell lines could significantly inhibit the

proliferation of tumor cells, invasion and the process of epithelial

mesenchymal transition (31). On the other hand, a study by a

Korean scholar in 2023 found that malignant tumors with TP53

mutation and high expression of CCND1 gene on chromosome 11

tended to have a poor prognosis on treatment with immune

checkpoint inhibitors, and TP53 was also one of the genes with a

high number of associated pathways in the combined two-omics

analysis of this study. As the most common oncogenic driver of

lung adenocarcinoma, mutations in the TP53 gene promoted

resistance to PD-1/PD-L1 inhibitors in a mouse lung

adenocarcinoma model, and mutations in the TP53 gene have

been shown to be associated with lower objective tumor
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remission rates after receiving Nivolumab in a large population-

based cohort of lung adenocarcinomas (32). The MYC genes, on the

other hand, have been closely associated with the function of T cells

in the tumor microenvironment (24). Tumor cells with high

expression of the MYC gene inhibit the JAK/STAT pathway

thereby reducing IFN-g stimulation and thus the efficacy of anti-

PD-1/PD-L1 drugs. In contrast, inhibitors targeting MYC have

been shown to inhibit tumor growth in mice, increase the

infiltration of immune cells in the tumor microenvironment, and

up-regulate the expression level of PD-L1 in tumor tissues making

tumors more sensitive to anti-PD-1 immunotherapy (33).

The efficacy of the prediction model composed of differential

metabolites was significantly higher than that of the prediction

model constructed with biomarkers screened from differential

proteomes, and even higher than that of the prediction model

constructed by the combination of dual-omics, which may be

attributed to the fact that the number of proteins that can be

detected in the peripheral blood plasma is relatively small, and the

total number of proteins detected is much lower than that of the

total number of metabolites. The total number of proteins that can

be detected is much lower than the total number of metabolites

detected, so the biomarkers screened from peripheral blood plasma

proteins may be less reproducible and less reliable than the

biomarkers screened from peripheral blood plasma metabolites.

Another aspect is that although proteins with more than 50%

missing values have been excluded as differential proteins,

differential proteins still have missing values in some samples,

which may affect the modeling accuracy of the prediction models

covering differential proteins.

In regard to the model constructed from clinical factors, there

was no statistically significant difference in the clinical factors

between the benefit and non-benefit groups. Among these factors,

the relationship between CD8+ T cells and sensitivity to

immunotherapy was the most significant. CD8+ T cells play a

critical role in innate anti-tumor immunity, as their infiltration in

tumor-bearing mouse models is associated with tumor size

reduction and increased survival rates (34). However, with

prolonged exposure to tumor antigens, CD8+ T cell function

could deteriorate, showing a trend toward “exhaustion.” Immune

checkpoint inhibitors can restore the function of CD8+ T cells,

enabling them to once again target and eliminate tumor cells.

Therefore, there is a close correlation between the absolute count

of CD8+ T cells and the efficacy of immunotherapy. Additionally,

patient age, BMI, and other cellular markers reflect the general

health status of the patient, while tumor-related markers such as

neuron-specific enolase, carcinoembryonic antigen, soluble

fragments of cytokeratin 19, and squamous cell carcinoma

antigen reflect the characteristics and status of non-small cell lung

cancer (NSCLC). Although these clinical factors are associated with

the efficacy of immunotherapy in advanced NSCLC, the model’s

performance was modest, possibly due to the small sample size, the

weak association between the included clinical factors (except for

the absolute count of CD8+ T cells) and immunotherapy outcomes,

and the fact that the absolute count of CD8+ T cells was measured

in peripheral blood rather than directly in tumor tissue (35).
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Although the metabolomics model, the proteomics model and

the multi-omics model all showed good performance in the test set,

due to the small total number of samples included in this study and

the short period of time to follow up the NSCLC patients, the model

still needs to be validated for model efficacy by long term follow up

in external large scale population cohorts.
Conclusions

Our study confirmed that metabolites and proteins in

peripheral blood plasma can be used as biomarkers for predicting

the immunotherapy sensitivity of unresectable stage III and IV

NSCLC, and the early prediction models of NSCLC susceptibility to

immune checkpoint inhibitors constructed by the combination of

metabolomics, proteomics, and multi-omics showed good

predictive performances, and CCND1, TP53, and MYC were

three important genes affecting the susceptibility of NSCLC

to immunotherapy.
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SUPPLEMENTARY FIGURE 1

(A) PCA plots of the progressed, stabilized, and remission groups with QC
samples in positive ion mode. (B) PCA plots of the progressed, stabilized, and

remission groups with QC samples in negative ion mode.

SUPPLEMENTARY FIGURE 2

(A) Three-dimensional stereogram of PLS-DA for proteomics between the

beneficiary and non-beneficiary groups. (B) Two-dimensional plot of PLS-DA

for PLS-DA analysis between the progression, stabilization, and remission
groups. (C) Two-dimensional plot of PLS-DA analysis between the two

groups of the progression group and the stabilization group. (D) Two-
dimensional plot of PLS-DA analysis between the two groups of the

remission group and the progression group. (E) Two-dimensional plot of
PLS-DA analysis between the remission group and the stabilization group.
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ATP Adenosine triphosphate
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AUC Area Under Curve
CR Complete Response
DIA Data Independent Acquisition
EDTA Ethylene Diamine Tetraacetic Acid
FC Fold Change
FDR False Discovery Rate
HCA Hierarchical Clustering Analysis
IDO1 indoleamine 2,3-dioxygenase 1
KEGG Kyoto Encyclopedia of Genes and Genomes
LC-MS Liquid Chromatography-Mass Spectrometry
NAD+ Nicotinamide adenine dinucleotide
PD-1 programmed cell death protein 1
PCA Principal Component Analysis
ogy 18
PD-L1 Programmed cell death 1 ligand 1
PD Progressive Disease
PLSDA Partial Least Squares Discriminant Analysis
ppm part per million
PR Partial Response
QC Quality Control
ROC Receiver Operating Characteristic
rpm revolutions per minute
SD Stable Disease
SE standard error
SNP Single Nucleotide Polymorphism
TDO Tryptophan-2,3-dioxygenase
TRC Tumor repopulating cell
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