
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jan Stępniak,
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Background: Ulcerative colitis (UC) is a chronic inflammatory disease of the

colonic mucosa with increasing incidence worldwide. Growing evidence

highlights the pivotal role of nicotinamide adenine dinucleotide (NAD+)

metabolism in UC pathogenesis, prompting our investigation into the subtype-

specific molecular underpinnings and diagnostic potential of NAD+metabolism-

related genes (NMRGs).

Methods: Transcriptome data from UC patients and healthy controls were

downloaded from the GEO database, specifically GSE75214 and GSE87466. We

performed unsupervised clustering based on differentially expressed NAD+

metabolism-related genes (DE-NMRGs) to classify UC cases into distinct

subtypes. GSEA and GSVA identified potential biological pathways active within

these subtypes, while the CIBERSORT algorithm assessed differential immune

cell infiltration. Weighted gene co-expression network analysis (WGCNA)

combined with differential gene expression analysis was used to pinpoint

specific NMRGs in UC. Robust gene features for subtyping and diagnosis were

selected using two machine learning algorithms. Nomograms were constructed

and their effectiveness was evaluated using receiver operating characteristic

(ROC) curves. Reverse transcription quantitative polymerase chain reaction (RT-

qPCR) was conducted to verify gene expression in cell lines.

Results: In our study, UC patients were classified into two subtypes based on DE-

NMRGs expression levels, with Cluster A exhibiting enhanced self-repair

capabilities during inflammatory responses and Cluster B showing greater

inflammation and tissue damage. Through comprehensive bioinformatics

analyses, we identified four key biomarkers (AOX1, NAMPT, NNMT, PTGS2) for

UC subtyping, and two (NNMT, PARP9) for its diagnosis. These biomarkers are

closely linked to various immune cells within the UC microenvironment,

particularly NAMPT and PTGS2, which were strongly associated with neutrophil
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infiltration. Nomograms developed for subtyping and diagnosis demonstrated high

predictive accuracy, achieving area under curve (AUC) values up to 0.989 and

0.997 in the training set and up to 0.998 and 0.988 in validation sets. RT-qPCR

validation showed a significant upregulation of NNMT and PARP9 in inflamed

versus normal colonic epithelia, underscoring their diagnostic relevance.

Conclusion: Our study reveals two NAD+ subtypes in UC, identifying four

biomarkers for subtyping and two for diagnosis. These findings could suggest

potential therapeutic targets and contribute to advancing personalized treatment

strategies for UC, potentially improving patient outcomes.
KEYWORDS

ulcerative colitis, NAD+ metabolism, bioinformatics, machine learning, immune cell
infiltration, subtype, diagnosis
1 Introduction

UC is a chronic inflammatory bowel disease (IBD) that

primarily affects the colonic mucosa, beginning in the rectum and

potentially extending to the entire colon. It is clinically

characterized by recurrent episodes of bloody diarrhea and

abdominal pain. Globally, the incidence of UC is increasing, with

an estimated five million people affected as of 2023 (1). As a chronic

disease, UC significantly affects the quality of life of patients,

necessitating continuous medical care and potentially leading to

severe complications, including colorectal cancer (2). Despite

advancements in treatments, including immunosuppressants and

biologics, 10%–20% of patients suffer from recurrent and

treatment-resistant symptoms, with some requiring colectomy (3).

The complex interplay of environmental triggers, genetic

predispositions, and immune dysregulation complicates the

etiology of UC (4). At the molecular level, UC is characterized by

the activation of immune cells, including T cells, macrophages, and

dendritic cells, which infiltrate the colonic mucosa (5). These
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immune cells release pro-inflammatory cytokines, such as TNF-a,
IL-1b, and IL-6, contributing to the chronic inflammation observed

in UC (6). Additionally, the intestinal epithelial barrier is

compromised, allowing microbial products to trigger further

immune activation and inflammatory responses (7). The

dysregulation of key signaling pathways, such as NF-kB and JAK/

STAT, plays a crucial role in sustaining this inflammatory

environment (8, 9). Furthermore, genetic factors, including

mutations in immune-related genes like NOD2 and IL-23R, have

been associated with an increased risk of UC (10, 11), highlighting

the need for advanced research to develop more effective diagnostic

and therapeutic options and to have a better understanding of

its pathogenesis.

NAD+ is essential in cellular metabolism, which is critical in

oxidative reactions and energy production. Beyond its metabolic

functions, NAD+ is essential for maintaining cellular health, as it is

involved in DNA repair, signal transduction, and cell death

regulation (12). Recent studies have emphasized its importance in

regulating inflammation and immune responses, which are crucial

in the pathophysiology of various chronic diseases, including

autoimmune and inflammatory conditions (13–15). In the

context of ulcerative colitis (UC), disturbances in NAD+

metabolism are associated with the characteristics of the

exacerbated inflammatory environment of the disease (16).

Despite its critical role, the specific impact of NAD+ metabolism

on UC is unknown (17). Therefore, investigating NAD+

metabolism in UC may lead to new therapeutic strategies that can

alleviate inflammation and promote mucosal healing, providing

new directions for research and treatment of the disease.

The genes identified in our study—AOX1, NAMPT, NNMT,

PTGS2, and PARP9—play crucial roles in inflammation and

immune cell metabolism. AOX1 is involved in the regulation of

oxidative stress, a key factor in inflammatory responses (18).

NAMPT plays a pivotal role in NAD+ biosynthesis, thus

influencing immune cell energy metabolism and inflammatory

cytokine production (19–23). NNMT has been linked to
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regulating methylation processes in immune cells, affecting their

activation and function in inflammatory environments (24–27).

PTGS2 (COX-2) is a well-known enzyme involved in the

production of prostaglandins, which mediate inflammation and

immune responses (28, 29). Finally, PARP9 is implicated in DNA

repair and the regulation of immune cell survival, particularly in

response to inflammatory stimuli (30–32). These genes contribute

to the modulation of immune cell infiltration and inflammation in

UC, underscoring their potential as biomarkers for both disease

subtyping and diagnosis.

In this study, we collected UC samples from public databases

and employed unsupervised clustering to categorize them into two

NAD+ metabolism-related subtypes, clusters A and B. Our

analyses revealed that these subtypes exhibited varying

responses to inflammation: Cluster A exhibited improved self-

repair capabilities, whereas cluster B was prone to more severe

inflammation and tissue injury. Subsequently, we identified key

biomarkers related to NAD+ metabolism using differential

analysis, WGCNA, least absolute shrinkage and selection

operator (LASSO) regression, and random forest (RF)

algorithms. These biomarkers exhibited high predictive accuracy

for UC subtyping and diagnosis. RT-qPCR validation of these

findings offers potential new strategies and scientific bases for UC

diagnosis and personalized treatment.
2 Materials and methods

2.1 Data acquisition and processing

Herein, the UC datasets were sourced from the Gene Expression

Omnibus (GEO) database, as presented in the flowchart in Figure 1.

The training sets utilized GSE75214 and GSE87466, comprising 161

UC samples and 32 normal tissue samples (33, 34). GSE75214

contained a total of 97 UC samples, of which 74 were active UC

samples and 23 were inactive UC samples. To ensure the accuracy

of the analysis, we excluded the 23 inactive UC samples, and the

final dataset used for analysis included 74 active UC patients. The

SOFT files from these datasets were imported using the GEOquery

package in R software (version 4.3.1). In order to merge gene

expression data from multiple datasets, we first normalized and

mapped the probe IDs to gene symbols. When multiple probes

corresponded to a single gene, the avereps function from the limma

package was used to compute average expression values.

Subsequently, datasets were merged, and batch effects across

datasets were adjusted using the ComBat function from the sva

package. ComBat adjusts for systematic technical variations

between datasets while retaining biological signal. Principal

Component Analysis (PCA) was used to verify the effectiveness of

the batch effect adjustment, which demonstrated successful removal

of batch effects while maintaining the biological structure of the

data. The external validation sets included GSE92415, GSE206285,

and GSE66407 (35–38), which underwent the same preprocessing

methods as the training set. Supplementary Table 1 presents

detailed information on all datasets.
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2.2 Acquisition of NMRGs

NMRGs were curated from multiple databases, including the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

database (hsa00760), Reactome database (R-HSA-196807), and

GeneCards database (NAD+ Metabolism Pathway). After

removing duplicates, 54 NMRGs were identified. An intersection

with all genes in the training set was performed, resulting in 47

NMRGs selected for subsequent analysis. Supplementary Table 2

presents detailed information of these 47 NMRGs.
2.3 Identification and enrichment analysis
of differentially expressed genes between
UC and normal

Differential expression analysis between UC and normal

samples in the training set was conducted using limma package

(39), with significant differential expression defined by |log2 fold

change (FC)| > 0.5 and false discovery rate (FDR) < 0.05. The

resulting differentially expressed genes (DEGs) were visualized as

volcano plots and heatmaps using the ggplot2 package. Enrichment

analysis of these DEGs for Gene Ontology (GO) and KEGG

pathways was performed using the clusterProfiler package, with

gene annotation facilitated by the org.db package. Pathways with

both p-va lues and q-va lues < 0.05 were cons idered

significantly enriched.
2.4 Identification of NAD+ subtypes by
DE-NMRGs

To focus on NAD+ metabolism-related genes, we intersected

the DEGs between UC and normal with the list of NMRGs. This

intersection resulted in the identification of DE-NMRGs, which

were used for further analysis. We then performed unsupervised

clustering on the UC samples using the ConsensusClusterPlus

package based on the expression levels of these DE-NMRGs to

identify subtypes of UC (40). The optimal number of clusters was

determined by evaluating the cumulative distribution function,

consistency clustering scores, and consensus clustering plots.

Additionally, PCA was utilized to differentiate between the NAD+

subtypes. The boxplot and heatmap of these DE-NMRGs between

subtypes were generated respectively using the ggpubr and

pheatmap packages.
2.5 Identification and enrichment analysis
of DEGs between NAD+ subtypes

Differential expression analysis between NAD+ subtypes was

conducted using limma package, setting thresholds of |log2FC| > 0.5

and an adjusted p-value (FDR) < 0.05 to identify significant DEGs

between NAD+ subtypes. Gene set enrichment analysis (GSEA) was

performed with the clusterProfiler package (41, 42), and results
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were visualized using the enrichplot package. Gene set variation

analysis (GSVA) was performed using the GSVA and GSEABase

packages (43), with visualization facilitated by the pheatmap

package. All gene sets were sourced from the molecular signature

database (MSigDB). Gene sets with an FDR < 0.01 were considered

statistically significant.
2.6 Immune cell infiltration analysis
between NAD+ subtypes

The CIBERSORT package was used to analyze the abundance of

22 types of infiltrating immune cells in all samples (44), and the

results were visualized using the ggplot2 package. Interactions

among immune cells were examined using the corrplot package

to further analyze the impact of immune cells in UC. Comparisons

of relative immune cell abundances between normal samples and

different NAD+ subtypes were visualized using the ggpubr package.

Statistical comparisons were performed using the Wilcoxon rank-

sum test, with P < 0.05 considered statistically significant.
2.7 Construction of co-expression
networks in UC based on WGCNA

Co-expression networks were constructed from UC samples

using the WGCNA package (45). Samples were subjected to

hierarchical clustering to identify and remove outliers. The
Frontiers in Immunology 04
optimal soft-thresholding power was determined based on the

scale-free topology fit index (R2 > 0.85). The gene expression

matrix was transformed into a weighted adjacency matrix, which

was subsequently converted into a topological overlap matrix

(TOM). The TOM facilitated module detection via hierarchical

clustering of the gene dendrogram, employing the dynamic tree-

cutting method to identify modules and compute the module

eigengenes, representing the principal components of gene

expression profiles within each module. Correlations between

each subtype and eigengenes of each module and the

corresponding p-values were calculated to quantify the

association of each module with different NAD+ subtypes. Gene

significance scores within each module were computed to reflect

their relative importance to different NAD+ subtypes.
2.8 Identification of key genes between
NAD+ subtypes and construction of a
classification model through
machine learning

We initially intersected NMRGs, DEGs between NAD+

subtypes, and genes from WGCNA modules, resulting in several

candidate NMRGs to identify key genes for differentiating NAD+

subtypes. Subsequently, we applied two machine learning

techniques, LASSO and RF, to further select these NMRGs.

LASSO regression, performed using the glmnet package in R,

employs regularization to aid in feature selection, aiming to
FIGURE 1

Flowchart of the research.
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enhance the predictive accuracy and interpretability of the model.

Additionally, RF analysis, conducted using the randomForest

package in R, was selected for its high accuracy, sensitivity, and

specificity, making it particularly suitable for handling biological

data with complex interactions. The cross-validated genes identified

were considered hub genes capable of effectively distinguishing

between different NAD+ subtypes of UC. Scatter plots were

generated using the regplot package to evaluate the typing efficacy

of these genes, and ROC analysis was conducted with the pROC

package to further validate the predictive performance of the model.
2.9 Construction of a diagnostic model for
UC based on NMRGs

Similarly, we merged NMRGs, DEGs between UC and normal,

and genes from WGCNA modules to identify several candidate

NMRGs. These NMRGs were further refined using LASSO

regression and RF analyses, with the cross-validated genes

identified as hub genes capable of diagnosing UC. The construction

of the co-expression network for this diagnostic model utilized the

WGCNA package, but the scale-free topology fit index (R2) threshold

was set at 0.80 to meet the specific needs of the diagnostic model. The

constructed diagnostic model was validated using scatter plots and

ROC analysis to assess its efficacy in UC diagnosis.
2.10 Cell culture and RT-qPCR

To validate whether gene expression changes identified in the

diagnostic model could be confirmed experimentally, we used the

normal human colonic epithelial cell line NCM460. The cells were

divided into control and LPS-treated (10 mg/mL) groups. LPS

stimulation was chosen to model the inflammatory environment

characteristic of UC. LPS, a bacterial endotoxin, activates immune

responses through Toll-like receptor 4 (TLR4), which plays a central

role in UC pathogenesis by triggering inflammation and disrupting

the epithelial barrier. LPS-induced inflammation in NCM460 cells

mimics the epithelial cell response tomicrobial stimuli in UC (46, 47).

Cells were cultured in RPMI 1640 medium supplemented with 10%

fetal bovine serum at 37°C in a 5% CO2 atmosphere. After reaching

the logarithmic growth phase, the treatment group cells were exposed

to LPS for 24 h. RNA extraction was performed using TaKaRa’s

RNAiso Plus (Trizol), and reverse transcription was conducted using

TOYOBO’s ReverTra Ace® qPCR RT Master Mix. Fluorescent

quantitative PCR analysis was performed on the ABI 7900HT

FAST system using Thermo’s Power SYBR Green PCR Master

Mix. Experimental data were analyzed using GraphPad Prism 9.5.0

software, with statistical significance assessed using an unpaired

t-test, and P < 0.05 considered statistically significant.
2.11 Statistical analysis

R software (version 4.3.1) was used for data analysis. The

statistical significance of normally distributed continuous
Frontiers in Immunology 05
variables was assessed using independent student’s t-tests, while

differences in non-normally distributed continuous variables were

evaluated using the Wilcoxon rank-sum test. For multiple

comparisons, the Benjamini–Hochberg method was applied to

adjust the p-values and control the FDR. This method ranks the p-

values from all tests and adjusts them based on their rank relative

to the total number of tests, ensuring that the FDR is controlled.

Furthermore, ROC analysis was used to evaluate the typing and

diagnostic biomarkers and models. Spearman correlation analysis

was employed to examine the relationships between infiltrating

immune cells and gene biomarkers. All statistical tests were two-

tailed, with significance levels set at P < 0.05. Significance results

were indicated with asterisks: “ns” denotes P > 0.05, “*” denotes

P < 0.05, “**” denotes P < 0.01, and “***” denotes P < 0.001.
3 Results

3.1 Identification of DEGs in UC

We selected and downloaded two human UC microarray

datasets (GSE75214 and GSE87466) from the GEO online

database. After careful screening, the study included 161 patients

with UC and 32 control participants. Specifically, GSE75214

included 74 UC tissues in an active disease state and 11 normal

colonic tissues, while GSE87466 included 87 UC tissues and 21

normal colonic tissues. After removing batch effects, the two

datasets were merged into a UC training set, resulting in 17,348

genes. Samples from these independent datasets exhibited distinct

clustering before batch effect removal (Figure 2A) but clustered

together post-removal (Figure 2B). Subsequently, using the “limma”

package in R with a threshold of FDR < 0.05 and |log2FC| > 0.5, we

identified 2,935 DEGs, including 1,738 upregulated and 1,197

downregulated genes (Figures 2C, D).
3.2 Functional and pathway enrichment
analysis of DEGs

We conducted GO and KEGG enrichment analyses on the

2,935 DEGs to gain deeper insights into their biological functions.

The GO enrichment analysis revealed that DEGs were significantly

enriched in multiple biological processes, cellular components, and

molecular functions. Specifically, the enriched biological processes

included mononuclear cell differentiation, positive regulation of

cytokine production, and lymphocyte differentiation; the cellular

components primarily involved the collagen-containing

extracellular matrix and the external side of plasma membrane;

and the molecular functions included active transmembrane

transporter activity and actin binding (Figure 2E). In the KEGG

enrichment analysis, genes were predominantly enriched in

pathways, including the mitogen-activated protein kinase

(MAPK) signaling pathway, endocytosis, and chemokine signaling

pathways (Figure 2F).
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3.3 Identification of two UC subtypes
based on DE-NMRGs

We intersected the identified DEGs with NMRGs to elucidate

the NAD+ subtypes in UC and identified 14 NMRGs as DEGs

between UC and normal samples (DE-NMRGs) (Figure 3A). Based

on the expression profiles of these 14 DE-NMRGs, we performed

consensus unsupervised clustering analysis on the 161 UC samples

in the training set. The results indicated that, at k = 2, the patients

with UC clustered into two subgroups with good internal

consistency and stability (Figures 3B–D). Combined with the

results from the consensus matrix heatmap (Figure 3E), we

categorized the 161 UC samples into two subtypes: cluster A (n =

96) and cluster B (n = 65). Furthermore, PCA further confirmed the

clear separation between these two subtypes (Figure 3F). The box

plot and heatmap display the differential gene expression patterns of

DE-NMRGs between subtypes (Figures 3G, H).
3.4 Functional enrichment analysis
between NAD+ subtypes

We conducted GSEA and GSVA enrichment analyses to

explore the biological and behavioral differences between the two

subtypes. In the GSEA analysis, the subtypes exhibited some
Frontiers in Immunology 06
distinctions: pathways including drug metabolism–other enzymes,

and pentose and glucuronate interconversions were significantly

enriched in subtype A (Figure 4A), while pathways such as the

chemokine signaling pathway and complement and coagulation

cascades were significantly enriched in subtype B (Figure 4B).

Furthermore, we performed GSVA analysis to assess the

differences in pathway activities and biological functions between

the two subtypes. The results indicated that pathways including

maturity–onset diabetes of the young and ascorbate and aldarate

metabolism were upregulated in subtype A, whereas

glycosaminoglycan biosynthesis-chondroitin sulfate, and primary

immunodeficiency were upregulated in subtype B (Figure 4C).

Additionally, based on the reactome pathways, subtype A was

primarily involved in sulfide oxidation to sulfate and beta-

oxidation of butanoyl-CoA to acetyl-CoA, while subtype B was

primarily involved in interleukin-10 signaling and CD22-mediated

BCR regulation (Figure 4D).
3.5 Assessment of immune cell infiltration
between NAD+ subtypes

We assessed the infiltration proportions of different immune

cells in UC samples using CIBERSORT to explore further the

potential molecular mechanisms through which molecular
FIGURE 2

Identification and enrichment analysis of DEGs. (A, B) Two datasets (GSE75214, GSE87466) were combined into one dataset after removing batch
effects. Sample relationships before and after batch effect removal. (C, D) Volcano plot and heatmap showing DEGs between UC samples and
normal samples. (E) GO enrichment analysis results of DEGs. (F) KEGG enrichment analysis results of DEGs.
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subtypes influence UC progression, thereby analyzing the

relationship between different NAD+ subtypes and immune cell

infiltration. We found that compared with subtype A, subtype B

exhibited significantly lower expression levels of M2 macrophages

and resting mast cells, while M0 macrophages, M1 macrophages,

activated mast cells, and neutrophils exhibited significantly higher

expression. Additionally, compared to normal tissue, UC exhibited

higher expression of activated memory CD4+ T cells, follicular

helper T cells, M0 macrophages, M1 macrophages, activated mast

cells, and neutrophils, while CD8+ T cells, resting memory CD4+ T

cells, M2 macrophages, and resting mast cells exhibited lower

expression in UC (Figures 5A, B). Consequently, the immune cell

infiltration pattern of subtype A appears to be intermediate between

subtype B and normal tissue. Furthermore, a negative correlation

was observed between neutrophils and M2 macrophages (r = –0.51)
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and a positive correlation between neutrophils and activated mast

cells (r = 0.64), and between resting mast cells and M2 macrophages

(r = 0.54) (Figure 5C).
3.6 Differential analysis and WGCNA
analysis between NAD+ subtypes

We conducted a differential analysis between the two subtypes

and identified 1,597 DEGs. Subsequently, based on the entire gene

expression profile, we applied theWGCNA algorithm to construct a

co-expression network and key modules most correlated with the

NAD+ subtypes. We used Pearson correlation coefficients to cluster

the samples, and after removing outliers, we plotted a sample

clustering dendrogram (Figure 6A). The optimal soft-thresholding
FIGURE 3

Identification of two NAD+ subtypes in UC. (A) Venn diagram showing the overlapping genes between DEGs and NMRGs. (B) Consensus cumulative
distribution function (CDF) plot showing the area under the curve for k = 2-9. (C) Relative change in the area under the CDF curve. (D) Tracking plot
showing the sample subtypes for different values of (k). (E) Consensus matrix heatmap for k = 2. (F) PCA plot showing the distribution of the two
subtypes. (G, H) Boxplot (G) and heatmap (H) displaying the differential expression of DE-NMRGs between the two NAD+ subtypes. * p < 0.05; *** p
< 0.001.
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power was set to 10 to maintain a scale-free topology and high

connectivity (Figure 6B). Using hierarchical clustering, the

clustering tree was divided and merged into six modules with

different colors (Figures 6C, D). Among these modules, the black

module (containing 2,386 genes) exhibited the highest correlation

with subtype B (R = 0.72), and the blue module (containing 1,852

genes) was most correlated with subtype A (R = 0.68) (Figure 6E).

Additionally, module membership in black module and its genes

significance exhibited a significant correlation (cor = 0.87)

(Figure 6F), and the blue module exhibited a correlation of cor =

0.82 (Figure 6G). Therefore, the black and blue modules were

selected for further analysis.
3.7 Construction and validation of an
NAD+ related typing model

We constructed an NAD+-related predictive model to further

clarify the role of NAD+ genes in the heterogeneity of patients with

UC. Initially, we intersected the 1,597 DEGs between NAD+

subtypes, key module genes identified using the WGCNA

algorithm, and all NMRGs, yielding eight intersecting genes

(Figure 7A). Subsequently, we fitted the expression profiles of

these eight intersecting genes into a LASSO regression analysis,

determined the optimal value of l, and selected seven potential key

genes with non-zero coefficients in the training set (Figures 7B, C).
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Additionally, we implemented the RF algorithm in the training set

and identified four effective predictive factors (Figures 7D–E). We

identified four hub genes by merging the genes selected by these

machine learning algorithms (Figure 7F): AOX1, NAMPT, NNMT,

and PTGS2. We constructed a nomogram in the training set

(Figure 7G) using these four hub genes and established ROC

curves to evaluate the classification performance of each gene and

the nomogram (Figures 7H, I) and found that the AUC for these

hub genes were as follows: AOX1 (AUC = 0.914), NAMPT (AUC =

0.891), NNMT (AUC = 0.939), and PTGS2 (AUC = 0.932), with the

nomogram achieving an AUC of 0.989. These results all indicate the

accuracy of this model in predicting the NAD+ subtypes of UC.

We conducted further external validation of these hub genes.

We accessed a UC dataset from the GEO online database,

GSE206285, and constructed a nomogram in this validation set

based on these four hub genes (Figure 8A). We established ROC

curves to evaluate the classification performance of each gene and

the nomogram. The results revealed that in the validation set, the

AUC for these hub genes were as follows: AOX1 (AUC = 0.825),

NAMPT (AUC = 0.965), NNMT (AUC = 0.907), and PTGS2

(AUC = 0.988), with the nomogram achieving an AUC of 0.998.

These results demonstrate the accuracy of these four key genes in

predicting the NAD+ subtypes of UC (Figures 8B, C). Additionally,

we evaluated the impact of these four hub genes on immune

infiltration and conducted Spearman’s correlation analyses

between gene expression levels and immune cell content. The
FIGURE 4

Pathway enrichment analysis reveals distinct biological behaviors of NAD+ subtypes in UC. (A, B) GSEA highlights pathways significantly enriched in
subtype A and B. (C, D) GSVA result, (C) Enriched pathways based on KEGG pathways. (D) Enriched pathways based on Reactome pathways.
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results indicated that all four key genes strongly impacted immune

cells (Figure 8D), and a strong correlation was observed among

these four hub genes (Figure 8E).
3.8 Construction and validation of an
NAD+ related diagnostic model in UC

In addition to the typing model, we established a diagnostic

model related to NAD+ metabolism genes in UC to clarify further

the role of NAD+ genes in predicting UC. Initially, we constructed a

co-expression network and key modules most correlated with UC

and normal samples using the WGCNA algorithm based on the

entire gene expression profile, selecting the brown module (R =

0.65) for further analysis (Figure 9A, Supplementary Figure 1). We

intersected the DEGs identified between UC and normal tissues

with the WGCNA brown module, obtaining seven intersecting

genes (AOX1, CD38, NAMPT, NNMT, PTGS2, PARP14, and

PARP9) (Figure 9B). Subsequently, we further filtered these genes

using LASSO regression (Figures 9C, D) and RF (Figures 9E, F),

merging the genes selected by machine learning algorithms and
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identifying two hub genes (Figure 9G). A nomogram was

constructed based on these two hub genes in the training set

(Figures 9H), and ROC curves were established to evaluate the

classification performance of each gene and the nomogram

(Figures 10A, B). The results demonstrated that the AUCs for

these hub genes were NNMT (AUC = 0.976) and PARP 9 (AUC =

0.976), with the nomogram achieving an AUC of 0.993. These

results indicate the accuracy of this model in predicting UC.

We conducted further external validation of the model using

three UC GEO datasets (GSE206285, GSE92415, and GSE66407)

from the GEO online database. Nomograms was constructed based

on the two hub genes in the validation sets (Supplementary

Figure 2), and ROC curves were established to evaluate the

classification performance of each gene and the nomogram

(Figures 10C–H). The results revealed that in the validation set

GSE206285, the AUC for these hub genes was NNMT (AUC =

0.988) and PARP9 (AUC = 0.807), with the nomogram achieving an

AUC of 0.988 (Figures 10C, D). In the validation set GSE92415, the

AUC values for these hub genes were NNMT (AUC = 0.974) and

PARP9 (AUC = 0.962), with the nomogram achieving an AUC of

0.985 (Figures 10E, F). In the validation set GSE66407, the AUC
FIGURE 5

Immune cell infiltration profiles related to NAD+ subtypes in UC. (A) Heatmap showing the relative abundance of 22 immune cell types in different
NAD+ subtype samples. (B) Boxplot visualizing the distribution and variability of immune cell relative abundance in NAD+ subtypes. (C) Correlation
matrix describing the interactions between different immune cells. ns, not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.
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values for these hub genes were NNMT (AUC = 0.974) and PARP9

(AUC = 0.871), with the nomogram achieving an AUC of 0.976

(Figures 10G–H). These results all confirm the accuracy of these

two key genes in the diagnosis of UC.

Subsequently, we conducted RT-qPCR experiments on the two

hub genes, NNMT and PARP9, to further confirm their roles. The

results revealed that NNMT and PARP9 expression was

significantly increased in colonic epithelial cells following LPS

treatment compared to the control group (Figures 10I, J). These

RT-PCR results further corroborated the differential expression

observed in the dataset analysis, highlighting the potential of

these genes as biomarkers in the diagnosis of UC.
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4 Discussion

UC is a chronic IBD that significantly affects the health and

quality of life of patients. As a major global public health concern,

the complex etiology and recurrent nature of UC make the research

on effective diagnostic and personalized treatment approaches

critical. Previous studies have identified the NAD+ metabolism as

a critical pathway in UC pathogenesis. We categorized 161 UC

samples collected from public databases into two distinct NAD+

subtypes, clusters A and B, to further explore the disease

mechanisms. Cluster A exhibited stronger metabolic regulation

and self-repair capabilities, while Cluster B was associated with
frontiersin.or
FIGURE 6

WGCNA between NAD+ subtypes. (A) Sample dendrogram generated after clustering using Pearson correlation coefficients and removal of outliers.
(B) Determination of the soft-thresholding power in WGCNA. (C) Dendrogram of all DEGs between subtypes, clustered based on differential
measurements, dividing genes into six different modules, each representing a co-expressed gene cluster. (D) Bar graph illustrating the significance
measurements of the identified gene modules. (E) Heatmap of the UC module feature genes and their correlations with different NAD+ subtypes.
(F, G) Scatter plots demonstrating the relationship between module membership and gene significance within the black and blue modules.
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more intense immune responses and severe tissue damage.

Additionally, we demonstrated that NNMT and PARP9 are

effective diagnostic biomarkers in UC, while AOX1, NAMPT,

NNMT, and PTGS2 are discriminative markers for UC subtyping.

Models developed using these biomarkers can predict disease

progression more accurately and optimize treatment plans.

Following the GO and KEGG enrichment analyses of DEGs

between UC samples and normal controls, we further validated the

characteristics of UC as an immune-mediated inflammatory

disease. The GO enrichment analysis revealed the central role of

immune system regulation in UC, particularly the differentiation

and function of monocytes and lymphocytes. Previous studies have

suggested that the aberrant activity of these cells in UC may

exacerbate the condition by promoting the release of

inflammatory mediators and modulating the function of immune
Frontiers in Immunology 11
cells, leading to persistent tissue damage (48–51). Moreover, the

excessive production of cytokines contributes to ongoing tissue

injury (6, 52). KEGG enrichment analysis corroborated the GO

findings, revealing the activation of critical pathways, including the

MAPK and chemokine signaling pathways. Previous studies have

reported that the MAPK signaling pathway is closely associated

with UC progression (53, 54), with several therapeutic drugs

alleviating UC symptoms by modulating this pathway (55, 56).

Activation of the chemokine signaling pathway facilitates the

migration of immune cells, including neutrophils and regulatory

T cells, to inflamed areas, sustaining the inflammatory response and

propelling disease progression (36, 57, 58). This was further

validated in our subsequent analyses of immune cell infiltration.

Elevated activated memory CD4+ T cells, follicular helper T cells,

M0 macrophages, M1 macrophages, activated mast cells, and
FIGURE 7

Construction of an NAD+ related typing model. (A) Venn diagram showing the intersection of DEGs between subtypes, key module genes identified
by the WGCNA algorithm, and NMRGs, resulting in eight intersecting genes. (B, C) Feature gene selection using LASSO regression. (D, E) Feature
gene selection using RF algorithms. (F) Venn diagram displaying four candidate hub genes identified by the aforementioned machine learning
algorithms as the core of the predictive model. (G) Nomogram of the NAD+ related typing model in the training set. (H, I) The ROC curves of the
four hub genes (AOX1, NAMPT, NNMT, and PTGS2) and the nomogram in the training set.
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neutrophil expression in UC tissues highlight the significant

increase in inflammation and immune activation in UC (59, 60).

Conversely, lower expressions of resting memory CD4+ T cells, M2

macrophages, and resting mast cells in UC may reflect the limited

functionality of these regulatory and reparative cells in the disease

(61). These analyses confirm the significance of UC as an immune-

mediated inflammatory disease and provide potential targets for

future therapeutic interventions.

We observed that pathways related to metabolism and

biosynthesis, including drug metabolism, carbohydrate

convers ion, and steroid hormone biosynthes is , were

predominantly enriched in cluster A by comparing enriched

pathways between the two UC subtypes. This suggests that cluster

A possesses enhanced metabolic regulation and self-repair

capabilities, which may help control inflammation spread,

alleviate tissue damage, and promote damaged tissue regeneration

(62–64). Conversely, pathways related to immunity and

inflammation, including chemokine signaling, cytokine-cytokine

receptor interaction, and complement and coagulation cascades,

were significantly enriched in cluster B. This indicates that cluster B

may be associated with more intense immune responses and severe

tissue damage, where active inflammatory pathways could lead to

rapid accumulation of immune cells and amplification of

inflammatory reactions, complicating the disease progression and
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treatment (65, 66). Further analysis of immune cell infiltration

between the subtypes supports these findings.

The infiltration levels of M0 and M1 macrophage, activated

mast cells, and neutrophils are higher in subtype B than in subtype

A. However, levels of M2 macrophage and resting mast cells are

lower. This reflects a significantly different immune environment in

subtype B compared with subtype A, potentially indicative of more

intense inflammatory responses and reduced anti-inflammatory or

tissue repair capabilities (67, 68). Additionally, we found that the

pattern of immune cell infiltration in subtype A lies between that of

subtype B and normal tissues, suggesting that subtype A may more

closely resemble normal tissue compared to subtype B. These

differences reveal fundamental distinctions between subtypes A

and B based on immune response mechanisms, immune cell

types and activity, and potential pathological processes. This

highlights the importance of developing personalized treatment

plans based on specific subtypes to optimize therapeutic outcomes

and improve patient prognosis.

We propose that NNMT and PARP9 are effective diagnostic

biomarkers for UC, while AOX1, NAMPT, NNMT, and PTGS2 can

differentiate between UC subtype clusters A and B following

comprehensive bioinformatics analysis and experimental validation.

Furthermore, NNMT (nicotinamide N-methyltransferase), a

cytoplasmic enzyme primarily involved in the N-methylation of
FIGURE 8

Validation of the NAD+ related typing model. (A) Nomogram of NAD+ related typing model in the validation set. (B, C) ROC curves for the four hub
genes (AOX1, NAMPT, NNMT, and PTGS2) and the nomogram in the validation set. (D) Heatmap of the Spearman correlation coefficients between
the expression of the four hub genes and the content of various immune cells. *p < 0.05; **p < 0.01; ***p < 0.001. (E) Network diagram illustrating
the interrelationships among the four hub genes.
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nicotinamide (Nam), reduces precursors of NAD+ through

methylation and Nam excretion (69). Notably, NNMT helps

maintain high levels of inflammatory signaling and sustained signal

transduction by eliminating excess nicotinamide (24–27, 70).

Consequently, elevated NNMT expression in UC may enhance the

activation of inflammatory pathways and increase disease activity and

tissue damage. Therefore, monitoring NNMT expression levels aids

in diagnosing UC and in differentiating between disease activity states

or subtypes, especially those related to inflammatory responses and

metabolic status.

Besides, PARP(poly(ADP-ribose) polymerase, utilizing NAD+

as a substrate, facilitates ADP-ribosylation reactions during DNA

damage (71), with increased PARP activity leading to decreased

NAD+ levels (72). This process is crucial for DNA repair and

regulating inflammatory responses. PARP9(poly(ADP-ribose)
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polymerase family member 9), a member of the PARP family,

reveals expression patterns closely associated with immune

responses and cellular stress states in various inflammatory

diseases (30, 73–75). In UC, upregulated expression of PARP9

may relate to its role in cellular stress responses.

AOX1(aldehyde oxidase 1), a broad-spectrum oxidase, has

demonstrated potential as a biomarker in various cancers, where

its low expression in clear cell renal cell carcinoma and prostate

cancer correlates with poor prognosis, suggesting its tumor-

suppressing capabilities (76, 77). Although studies in UC are still

limited, the role of AOX1 in regulating oxidative stress and

inflammatory responses indicates its potential as a valuable target

for personalized treatment in UC.

NAMPT(nicotinamide phosphoribosyltransferase) is critical in

regulating the NAD+ pool and inflammatory responses in UC. It is
FIGURE 9

Construction of an NAD+ related diagnostic model in UC. (A) Heatmap of the UC module feature genes and their correlations with UC and normal
in WGCNA. (B) Venn diagram showing the intersection of DEGs between UC and normal, key module genes identified by the WGCNA algorithm, and
NMRGs, resulting in seven intersecting genes. (C, D) Feature gene selection using LASSO regression. (E, F) Feature gene selection using RF
algorithms. (G) Venn diagram displaying two candidate hub genes identified by the aforementioned machine learning algorithms as the core of the
predictive model. (H) Nomogram of NAD+ related diagnostic model in the training set.
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a key enzyme in NAD+ biosynthesis and a cytokine, influencing

cellular metabolism and immune responses within UC (20–23, 78).

Elevated levels of NAMPT may reflect an adaptive response to

metabolic demands and mucosal damage in UC (70, 79, 80),

highlighting its potential as a biomarker for disease severity and

subtype differentiation.

PTGS2 (prostaglandin-endoperoxide synthase 2, COX-2) is a

crucial enzyme that converts arachidonic acid into prostaglandins,

essential in inflammation and pain responses. In UC, significant

upregulation of PTGS2 marks an inflammatory feature of the

disease (81). Studies have reported that increased PTGS2

expression is closely associated with UC severity and progression,

demonstrating its potential as a biomarker for disease activity and a
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therapeutic target (29, 82). Furthermore, the NAD+ metabolism

pathway is closely linked to inflammatory response regulation, and

changes in NAD+ metabolism may affect PTGS2 activity (28, 83),

implying a potential interaction between NAD+ metabolism and

PTGS2 in UC pathogenesis and management.
5 Conclusion

In conclusion, this study identified two UC subtypes associated

with NAD+metabolism, and our analysis of the differences between

these subtypes highlighted the significant role of NAD+metabolism

in UC. We successfully identified key genes, including NNMT and
FIGURE 10

Validation of the NAD+ related diagnostic model in UC. (A, B) ROC curves for the two hub genes (NNMT and PARP9) and the nomogram in the
training set. (C–H) ROC curves for the two hub genes (NNMT and PARP9) and the nomograms in the validation sets. (I, J) RT-qPCR experiment
results of two hub genes (NNMT and PARP9) in NAD+ related diagnostic model. **p < 0.01; ***p< 0.001.
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PARP9, as diagnostic biomarkers for UC, and AOX1, NAMPT,

NNMT, and PTGS2 for differentiating the NAD+ metabolism

subtypes of UC. The nomograms developed from these

biomarkers demonstrated exceptional accuracy and reliability in

the early diagnosis and subtyping of UC, indicating the potential

application of these biomarkers in UC treatment strategies. Future

research should investigate the expression patterns of these genes in

different patients with UC and their impact on treatment responses,

which could help optimize treatment plans and advance therapeutic

strategies for UC.
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each representing a co-expressed gene cluster. (D) Bar graph illustrating the

significance measurements of the identified gene modules. (E) Scatter plots
demonstrating the relationship between module membership and gene

significance within the brown module.
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SUPPLEMENTARY TABLE 1

The information of selected datasets in this study.

SUPPLEMENTARY TABLE 2

List of 47 NMRGs Selected for Subsequent Analysis.
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1479421/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1479421/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1479421
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tian et al. 10.3389/fimmu.2025.1479421
References
1. Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis. Lancet. (2023) 402:571–
84. doi: 10.1016/s0140-6736(23)00966-2

2. Olén O, Erichsen R, Sachs MC, Pedersen L, Halfvarson J, Askling J, et al.
Colorectal cancer in ulcerative colitis: a Scandinavian population-based cohort study.
Lancet. (2020) 395:123–31. doi: 10.1016/s0140-6736(19)32545-0

3. Gros B, Kaplan GG. Ulcerative colitis in adults: A review. N/A. (2023) 330:951–65.
doi: 10.1001/jama.2023.15389

4. Du L, Ha C. Epidemiology and pathogenesis of ulcerative colitis. Gastroenterol
Clin North Am. (2020) 49:643–54. doi: 10.1016/j.gtc.2020.07.005

5. Alghamdi KS, Kassar RH, Farrash WF, Obaid AA, Idris S, Siddig A, et al. Key
disease-related genes and immune cell infiltration landscape in inflammatory bowel
disease: A bioinformatics investigation. Int J Mol Sci. (2024) 25:9751. doi: 10.3390/
ijms25179751

6. Nakase H, Sato N, Mizuno N, Ikawa Y. The influence of cytokines on the complex
pathology of ulcerative colitis. Autoimmun Rev. (2022) 21:103017. doi: 10.1016/
j.autrev.2021.103017

7. Nascimento RPD, MaChado A, Galvez J, Cazarin CBB, Maróstica Junior MR.
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