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Background: Gastrointestinal (GI) cancers have high incidence rates and

mortality rates. Anoikis is a special type of cell apoptosis, and anoikis resistance

has been reported to be associated with tumor malignancy. We aimed to explore

the roles of anoikis-related genes (ARGs) in the GI cancer prognosis.

Methods: We extracted RNA sequencing and clinical data from The Cancer

Genome Atlas and Gene Expression Omnibu databases for patients with

esophageal cancer, gastric cancer, colon cancer and rectal cancer and

identified ARGs from GeneCards and Harmonizome. Anoikis-related patterns

were identified via unsupervised clustering analysis. We constructed a prognostic

signature (Anoscore) based on prognostic ARGs through univariate, LASSO, and

multivariate Cox regression analyses. The model was validated and evaluated

using Kaplan–Meier analysis, receiver operating characteristic curves, univariate

Cox regression analysis, multivariate Cox regression analysis, column charts, and

calibration curves. We also performed a single-cell sequencing analysis of

candidate genes via TISCH2. A correlation analysis between the Anoscore, the

tumor microenvironment and drug sensitivity was conducted in GI cancers. The

expression and function of some candidate genes were validated in vitro.

Results: In terms of prognostic ARGs, two anoikis-related patterns, ARG clusters

A and B, were identified. ARG cluster B had a worse prognosis than did ARG

cluster A. Subsequently, the Anoscore was developed as an independent

prognostic factor. It demonstrated the robust predictive capability for the

prognosis of patients with GI cancers. Notably, patients with high Anoscores

exhibited poor outcomes. In addition, we established a nomogram (Ano-

nomogram) based on the Anoscore and clinicopathological factors of patients

to predict the 3-year and 5-year survival probabilities. Moreover, patients with

high Anoscores had higher levels of immune cell infiltration and higher immune

checkpoint expression. The drug sensitivity analysis revealed that patients with

high or low Anoscores were sensitive to different chemotherapies and targeted
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drugs. S100A11 and TLR3, representative candidate genes, exhibited different

expression patterns and biological functions.

Conclusion: This study highlighted the significant potential of the Anoscore in

predicting prognosis and guiding the selection of personalized therapeutic

regimens for patients with GI cancers.
KEYWORDS

gastrointestinal cancers, anoikis, prognostic prediction, immunotherapy, tumor
immune microenvironment
1 Introduction

Malignant tumors are diseases that seriously endanger human

health worldwide. According to data from Global Cancer Statistics

2022 (1), gastrointestinal (GI) cancers, including esophageal cancer

(EC), gastric cancer (GC), colon cancer (CC) and rectal cancer

(RC), account for almost 20% of the 20.0 million new cases and

20.6% of the 9.7 million deaths worldwide. The incidence rates of

EC, GC and colorectal cancer (CRC) ranked 11th, 5th, and 3rd,

respectively, while the mortality rates ranked 7th, 5th, and 2nd,

respectively. At present, comprehensive strategies (including

surgery, radiotherapy, chemotherapy, targeted therapy and

immunotherapy) have been applied to GI cancers. However, the

prognosis of patients with GI cancers is unsatisfactory, and effective

prognostic indicators are still lacking. Therefore, exploring

promising prognostic biomarkers to identify high-risk patients

with GI cancers and apply individual treatments remains an

urgent task.

At present, many prognostic prediction systems, such as mRNA

risk models, have been established to predict the tumor prognosis.

For example, Huang et al. (2) developed a cuproptosis-related

signature for CRC with AUCs of 0.777 and 0.768 at 3 and 5

years, respectively. For EC, Ren et al. (3) reported a fibroblast-

associated mRNA risk score with AUC values of 0.73, 0.76 and 0.78

at 1, 2, and 3 years, respectively. A metabolism-related mRNA risk

signature for GC constructed by Liu et al. had AUC values of 0.700,

0.700 and 0.640 at 1, 3 and 5 years, respectively (4). These

prognostic prediction systems, which are based on mRNAs, have

displayed outstanding accuracy and reliability, suggesting that

developing effective mRNA prognostic signatures is highly

valuable. However, universal biomarkers that are effective for EC,

GC and CRC, which are highly beneficial for clinical applications,

are lacking.

Anoikis is a special type of cell apoptosis that initiates when cells

detach from the neighboring cellular or extracellular matrix (ECM),

which plays an essential role in cellular homeostasis, proliferation

and differentiation (5). When the connections between normal cells

and adjacent cells or the ECM are disrupted, anoikis occurs and

results in cell death (6). However, cancer cells can acquire resistance

to anoikis, which can prevent cell death and maintain cell
02
proliferation. Research has reported that tumor cells with anoikis

resistance can proliferate in distant areas after detaching from nests.

It is one of the important mechanisms by which tumor cells

enhance invasion and metastasis (6). Research has also shown

that anoikis resistance assists in immune escape, alters the tumor

microenvironment (TME) and induces chemotherapy resistance

(7). Although anoikis plays a crucial role in the progression and

metastasis of various solid tumors, systematic investigations of

anoikis-related genes (ARGs) in GI cancers are limited. Therefore,

we aimed to establish an anoikis-associated risk signature for

predicting the prognosis of patients with GI cancers.

Here, we identified prognostic ARGs in GI cancers and

recognized two anoikis subtypes. An original risk model named

the Anoscore, which can predict clinical outcomes effectively, was

subsequently constructed and verified. We also found that the

Anoscore could predict drug sensitivity and was highly related to

immune cell infiltration in GI cancers. Taken together, we identified

ARGs and constructed an Anoscore related to the prognosis and the

tumor immune microenvironment (TIME), which contributed

innovative viewpoints for the prediction of the prognosis and

precise treatment of GI cancers.
2 Materials and methods

2.1 Data and resources

RNA-sequencing (RNA-seq) data and complete clinical

information for esophageal carcinoma (ESCA), stomach

adenocarcinoma (STAD), colon adenocarcinoma (COAD) and

rectum adenocarcinoma (READ) samples from a total of 1255

patients were extracted from The Cancer Genome Atlas (TCGA)

official website (https://portal.gdc.cancer.gov/). The RNA-seq data

were downloaded as Fragments Per Kilobase of transcript per

Million mapped reads (FPKM) values and log2-transformed for

subsequent analysis. Additionally, we obtained the RNA-seq data

and clinical data of 483 GC patients in the GSE84437 dataset and

585 CRC patients in the GSE39582 dataset from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/gds). Furthermore, 647 ARGs in total were acquired from
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GeneCards (https://www.genecards.org/) and Harmonizome

(https://maayanlab.cloud/Harmonizome/).
2.2 Anoikis-related patterns

The differential expression analysis between normal and tumor

samples was performed usingWilcoxon rank-sum test. The criteria for

identifying differentially expressed ARGs were set as |log2FC| > 1 and

false discovery rate (FDR) < 0.05. Gene expression values were

normalized prior to analysis. Univariate Cox proportional hazards

regression analysis was conducted to identify ARGs significantly

associated with overall survival (OS) (P < 0.05). In accordance

with the expression profiles of these ARGs, the R package

‘ConsensusClusterPlus’ was utilized to perform clustering and

identify anoikis-related patterns. The consensus matrix was used to

acquire the optimal number of clusters. Principal component analysis

(PCA), t-distributed stochastic neighbor embedding (t-SNE) and

uniform manifold approximation and projection (UMAP) were

adopted to evaluate the reliability of anoikis-related patterns. Kaplan-

Meier (KM) curves were generated to evaluate the prognostic

differences between clusters. Single-sample gene set enrichment

analysis (ssGSEA) was applied to obtain the immune cell infiltration

abundance. Gene set variation analysis (GSVA) and gene set

enrichment analysis (GSEA) were used to conduct Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis,

characterizing the functions and pathways of genes in different clusters.
2.3 Establishment of a risk score model
(Anoscore) based on ARGs

All GI patients (n = 2220) from the TCGA and GEO databases

were randomly divided into two equal-sized cohorts using the “caret”

R package: a training cohort (n = 1110) and a test cohort (n = 1110).

The training cohort was utilized to develop the risk score model,

named Anoscore, while the test cohort was used for internal

validation. To ensure the robustness of our validation process, we

maintained similar distributions of key clinical characteristics

between the two cohorts through stratified random sampling. The

training cohort was utilized to develop Anoscore through a two-step

selection process. First, least absolute shrinkage and selection

operator (LASSO) regression was applied to reduce dimensionality

and select the most significant candidate genes among the ARGs

associated with OS. Multivariate Cox regression analysis was then

performed on the LASSO-selected genes to further refine the model.

The Anoscore was calculated using the following formula: Anoscore

= S in(Coefi * Xi). X represents the expression level of each gene, and

Coefi represents the weighted coefficient of the corresponding gene.

The accuracy of the Anoscore in the training cohort was evaluated

using KM and receiver operating characteristic (ROC) curves.

Subsequently, the performance of Anoscore was evaluated in

the test cohort through multiple approaches for internal validation.

KM and ROC curves were plotted to validate the accuracy of the

prognostic signature in the test cohort. Moreover, the independent

prognostic value of the Anoscore was determined via multivariate
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Cox regression analysis. Furthermore, the associations among

cluster A, cluster B, the Anoscore and patient survival were

analyzed and visually represented.
2.4 Construction and assessment of a
predictive nomogram (Ano-nomogram)

An Ano-nomogram was constructed using the ‘rms’ R package

to predict OS by integrating Anoscore with key clinical features,

including age, sex, and pathologic N stage, in GI tumor patients.

The Cox proportional hazards regression model was used as the

basis for the nomogram construction. The performance of the Ano-

nomogram was evaluated through various validation methods.

Calibration curves were generated to assess the agreement

between predicted and observed survival probabilities at 1, 3, and

5 years. Additionally, decision curve analysis (DCA) was performed

to evaluate the clinical utility of the Ano-nomogram compared with

individual predictors, including Anoscore, age, gender, T stage, and

N stage, at different time points. Cumulative hazard curves were

also generated by stratifying patients into high- and low-risk groups

based on Ano-nomogram scores to visualize the model’s

discriminative ability.
2.5 Single-cell sequencing analysis

The tumor immune single-cell hub 2 (TISCH2) database

(http://tisch.comp-genomics.org/), which provides detailed cell

type annotations at the single-cell level, was used to analyze the

expression of S100A11 and TLR3 at the single-cell level. The

correlations between the expression of genes and infiltrating

immune cells were also assessed, enabling us to explore the TME

in detail.
2.6 Evaluation of drug sensitivity

Drug response information and information on drug targeting

pathways were obtained from the Genomics of Drug Sensitivity in

Cancer (GDSC) database (https://www.cancerrxgene.org/). Drug

sensitivity was predicted using the oncoPredict algorithm with

empirical Bayes batch correction. Correlation analyses were

performed between the Anoscore and the predicted drug

sensitivity to identify potential therapeutic implications.
2.7 Immune landscape based on
the Anoscore

The TME of GI cancers was comprehensively characterized.

The XCELL, TIMER, QUANTISEQ, MCPOUNTER, EPIC,

CIBERSORT-ABS and CIBERSORT algorithms were used to

estimate the correlation between immune cell infiltration and the

Anoscore. The ESTIMATE algorithm was employed to calculate

immune scores, stromal scores and ESTIMATE scores for both low-
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and high-Anoscore groups. Additionally, the expression of

common immune checkpoints (ICPs) was assessed between the

two subgroups based on the Anoscore. ICPs with significant

differential expression (P < 0.05) were visualized using boxplots.
2.8 Cell culture

The human EC cell line KYSE-150, the GC cell line HGC-27

and the CRC cell line Caco-2 were acquired from the China Center

for Type Culture Collection (CCTCC; Wuhan, China). KYSE-150

cells and HGC-27 cells were cultured in RPMI 1640 media (Gibco,

New York, USA) supplemented with 10% fetal bovine serum (FBS,

Gibco, New York, USA) and 1% antibiotics (Zqxzbio, Shanghai,

China), while Caco-2 cells were cultured in DMEM (Gibco, New

York, USA) supplemented with 15% FBS and 1% antibiotics. All the

cells were incubated at 37°C with 5% CO2.
2.9 Cell transfection

Since S100A11 and TLR3 were identified as the most significant

contributors to the Anoscore, we investigated their biological

functions in detail. S100A11 was knocked down with a small

interfering RNA (siRNA) in KYSE-150, HGC-27 and Caco-2 cells

(the sequences were listed in Additional File 1, Supplementary

Table S1). The siRNAs and the negative control were transfected

into cells using Lipofectamine 3000 (Invitrogen, Carlsbad, CA,

USA). The pcDNA3.1-control and pcDNA3.1-TLR3 plasmids

were designed and synthesized (Boshang Biotechnology, Jinan,

China). The plasmids were transfected into the aforementioned

cells using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA).

Quantitative real-time polymerase chain reaction (qRT-PCR) and

western blotting (WB) were used to confirm the efficiency of

knockdown and overexpression.
2.10 Cell proliferation assay

Cell proliferation was detected using the Cell Counting Kit-8

(CCK-8) (Bioss, Beijing, China). Transfected cells (3×103 cells/well)

and the corresponding controls were seeded into 96-well plates

(Corning Incorporated, Corning, NY, USA). After culture for 24 h,

48 h, 72 h or 96 h, 10 microliters (ml) of the CCK-8 solution was

added to each well, which contained 90 ml of serum-free medium.

The cells were incubated for 2 h at 37 °C. Finally, we measured the

absorbance with a spectrophotometer (Tecan, Männedorf,

Switzerland) at 450 nm and generated growth curves.
2.11 Cell migration assay

Transfected cells (KYSE-150, HGC-27 and Caco-2 cells) (1×105

cells/well) with 200 ml of serum-free RPMI 1640 media or DMEM

were seeded into the upper chamber of a 24-well transwell system

(Corning Incorporated, Corning, NY, USA) in triplicate, while 800 ml
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of RPMI 1640 media or DMEM containing 20% FBS was added to

the lower chamber. After a certain number of hours, the migrated

cells were fixed with methanol, and then a crystal violet solution

(0.1%) was used to stain them. The migrated cells were observed and

counted under a microscope (100×) (Olympus, Tokyo, Japan).
2.12 Colony formation assay

S100A11-knockdown and TLR3-overexpressing cells were

plated into 6-well plates at a density of 1000 cells/well. After 10

days of incubation, the cells were fixed with 4% paraformaldehyde

and stained with 0.5% crystal violet. Visible colonies (more than 50

cells) were counted.
2.13 qRT-PCR

Total RNA was extracted using the RNA Fast 2000 (Fastagen,

Shanghai, China). The RNA concentration and purity were

measured, with the quality criterion of A260/A280 ratio between

1.8 and 2.0. For cDNA synthesis, 2.0 micrograms (mg) of total RNA
was reverse transcribed in a 20 ml reaction using Evo M-MLV RT

Premix for qPCR (Accurate Biology, Hunan, China). The reverse

transcription reaction was carried out at 37 °C for 15 minutes,

followed by 85 °C for 5 seconds to inactivate the enzyme. qPCR was

performed using the BlazeTaq SYBR Green qPCR mix 2.0 Kit

(Accurate Biology, Hunan, China). The cycling conditions were as

follows: initial denaturation at 95°C for 30 seconds, with 40 cycles

consisting of denaturation at 95°C for 5 seconds and annealing and

extension at 60°C for 30 seconds. All RNA extraction and qRT-PCR

experiments were conducted according to the manufacturers’

instructions. The relative expression levels were calculated using

the relative 2-DDCT method with b-actin as the internal control. The

sequences of primers used were listed in Additional File 1,

Supplementary Table S2.
2.14 WB analysis

The cells were lysed on ice with radioimmunoprecipitation assay

(RIPA) lysis buffer (Solarbio, Beijing, China) containing

phenylmethylsulfonyl fluoride (1 mM) and then homogenized via

ultrasonication. The protein concentration was determined with

Omni-Easy™ Instant BCA Protein Assay Kit (EpiZyme, Shanghai,

China). The cell lysate was mixed with loading buffer (Beyotime,

Shanghai, China) and denatured at 95°C for 10 minutes. The protein

samples were electrophoresed on sodium dodecylsulfate

−polyacrylamide gels and transferred to polyvinylidene fluoride

membranes (Millipore, MA, USA). The membranes were blocked

with 5% milk and then incubated with primary antibodies against

S100A11 (1:1000, Proteintech, 10237-1-AP, China), TLR3 (1:1000,

ABclonal, A11778, China), b-actin (1:2000, HUABIO, EM21002,

China), BAX (1:20000, HUABIO, ET1702-53, China), Bcl-2

(1:2000, HUABIO, ET1702-53, China), Caspase-3 (1:2000,

HUABIO, ET1602-39, China), active Caspase-3 (1:1000, HUABIO,
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1477913
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1477913
ET1602-47, China), Caspase-7 (1:1000, HUABIO, JE59-36, China),

active Caspase-7 (1:1000, HUABIO, ER60002, China), PARP1

(1:10000, Proteintech, 66520-1-Ig, China), and cleaved PARP1

(1:10000, Proteintech, 60555-1-Ig, China) overnight at 4°C. After

an incubation with a secondary antibody (1:5000) for 1 hour at room

temperature, exposure and visualization were conducted.
2.15 Statistical analysis

Statistical analysis was conducted using R (version 4.2.2),

GraphPad Prism (version 8.0) and SPSS (version 23.0) software.

The Wilcoxon test was used for the comparison of two independent

samples. T-tests and one-way ANOVA were used to compare

parametric data. The Kruskal-Wallis test was used to compare

nonparametric data across multiple samples. A p-value < 0.05

was considered statistically significant.
3 Results

3.1 Expression of ARGs and genetic
variations in GI cancers

We obtained RNA transcriptome data and corresponding

clinical data from ESCA (N = 185), STAD (N = 443), COAD (N

= 459) and READ (N = 168) patients in TCGA database. Among the

647 ARGs extracted from the GeneCards and Harmonizome

databases, 142 differentially expressed ARGs were recognized

between tumor and normal tissues, including 109 upregulated

and 33 downregulated genes in tumors (Figures 1A, B). After

combining the expression data and clinical information of TCGA,

GSE39582 and GSE84437 cohorts, we performed a univariate Cox

analysis to identify differentially expressed ARGs associated with

the prognosis. The results suggested that 87 ARGs were associated

with the survival status and survival events of patients. Among

them, the expression of 49 genes, such as CHEK2, BID, CDC25C

and PTRH2, was negatively correlated, and the expression of 38

genes, such as MAPK10, NTRK3, PDGFB and BDNF, was

positively correlated with survival (Figure 1C). A network plot

was constructed to visualize the intricate relationship between

ARGs and their prognostic value for GI tumors (Figure 1D).

Copy number variations (CNVs) in ARGs were visualized on

chromosomes (Figure 1E). Our investigation of 87 ARGs revealed

that CNV-related mutations were prevalent, with 49 genes

exhibiting widespread CNV amplification and 38 genes exhibiting

CNV deletions (Figure 1F).
3.2 Stratification of patients based on ARG
expression patterns

We performed an unsupervised clustering analysis to examine

whether anoikis-related patterns could be used to classify patients

with GI cancers based on the expression of the 87 prognostic ARGs.

The results showed that k = 2 was the optimal parameter, which
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meant that patients were classified into two anoikis-related patterns,

termed ARG clusters A and B (Figure 2A). ARG clusters A and B

were distinguished dramatically via PCA (Figure 2B), t-SNE

(Figure 2C), and UMAP (Figure 2D) analyses, which validated

our anoikis-related patterns. A boxplot was generated to visualize

the differentially expressed ARGs in the two clusters, in which 37

ARGs, such as CHEK2, CDC25C and TRAF2, were upregulated in

ARG cluster A, and 48 ARGs, such as PDK4, CXCL12, MAPK10

and NOTCH3, were upregulated in ARG cluster B (Figure 2E). A

heatmap was generated to visualize the detailed expression of ARGs

and the clinical characteristics of clusters A and B (Figure 2F). The

KM analysis revealed a difference in patient survival between ARG

clusters A and B. The prognosis of patients in ARG cluster B was

dramatically worse than that of patients in ARG cluster A (p <

0.001) (Figure 2G). By analyzing immune cell infiltration via

ssGSEA, we observed that immune cells, such as CD8-positive T

lymphocytes (CD8+ T cells), activated natural killer (NK) cells,

dendritic cells (DCs), macrophages, and activated B cells, were more

abundant in ARG cluster B (Figure 2H). These results indicated that

anoikis-related patterns were correlated with the immune landscape

of GI cancers. ARG cluster A tended to represent cold tumors,

whereas ARG cluster B tended to represent hot tumors. Thus,

patients in ARG cluster B might be more sensitive to

immunotherapy. GSVA revealed that multiple cancer-related

pathways, such as ECM-receptor interaction, focal adhesion,

regulation of the actin cytoskeleton, the mitogen-activated protein

kinase (MAPK) signaling pathway, gap junctions and cell adhesion

molecules, were significantly activated in ARG cluster B (Figure 2I).

GSEA revealed that DNA replication and peroxisomes were more

strongly activated in ARG cluster A (Figure 2J). In addition, ECM-

receptor interaction, focal adhesion and cell adhesion molecules

were more enriched in ARG cluster B, which was consistent with

the results of GSVA (Figure 2J).
3.3 Construction and validation of
the Anoscore

We systematically divided patients into a training cohort (n

=1110) and a test cohort (n = 1110). Then we used the LASSO

algorithm (Figure 3A) and multivariate Cox analysis (Figure 3B) to

further identify the significant prognostic ARGs for patients in the

training cohort. Finally, we obtained 12 ARGs with p < 0.05 that were

utilized to construct the prognostic signature. The risk score of each

patient was calculated as follows: Anoscore = 0.179 × ExpPDK4 +

0.078 × ExpCDKN2A − 0.180 × ExpMYC + 0.130 × ExpFGF2 –

0.291 × ExpTLR3 + 0.124 × ExpIL1RAP + 0.120 × ExpCD36 − 0.222

× ExpTRAF2 + 0.145 × ExpTNFRSF12A + 0.134 × ExpNOTCH3 +

0.260 × ExpS100A11 − 0.109 × ExpWNT2 (Additional File 1,

Supplementary Table S3). The heatmap depicted the expression

levels of the ARGs that comprised the Anoscore in different risk

groups (Figure 3C). FGF2, PDK4, CD36, CDKN2A, S100A11,

IL1RAP and NOTCH3 were significantly upregulated in patients

with high Anoscores (Figure 3C).

The KM analysis revealed a significant relationship between the

Anoscore and the prognosis of patients with GI cancers. ROC
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curves were constructed to evaluate the sensitivity and specificity of

the risk model. The outcomes were assessed based on the area under

the ROC curve (AUC). The model demonstrated robust

performance in both cohorts. In the training cohort, significant

prognostic stratification was observed, with the high-Anoscore

group showing markedly shorter survival times compared to the

low-Anoscore group (p < 0.001, Figure 3D). Furthermore, the
Frontiers in Immunology 06
model exhibited strong discriminative power, achieving AUCs of

0.689, 0.707, and 0.695 for 1-, 3-, and 5-year survival predictions,

respectively (Figure 3E). Validation in the test cohort confirmed the

model’s reliability, with significant prognostic stratification

maintained (p < 0.001) and the low-Anoscore group consistently

demonstrating better clinical outcomes (Figure 3F). The

discriminative performance of Anoscore remained stable, with
FIGURE 1

Expression of ARGs and genetic variations in GI cancers. (A) Heatmap of 142 differentially expressed ARGs between tumor and normal tissues
from TCGA database. (B) Volcano plot showing differentially expressed ARGs with an FDR < 0.05 and |log2FC| >1. Genes upregulated in tumors
were marked in red, downregulated genes in blue, and non-significant genes in black. (C) Univariate Cox regression analysis to identify prognostic
ARGs (p < 0.05). Hazard ratios and confidence intervals were provided for each ARG. (D) Network plot showing the correlation of ARGs in
GI cancers. The size of each circle represented the p values of ARGs in the prognostic analysis, while the lines represented the interaction strengths
between ARGs. (E) Copy number variations (CNVs) in ARGs are visualized on chromosomes. (F) Bar chart visualizing the CNV frequencies of
87 prognostic ARGs in GI cancers.
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AUCs of 0.628, 0.660, and 0.637 for 1-, 3-, and 5-year survival

predictions (Figure 3G). The similar performance metrics between

the training and test cohorts indicated good model generalizability.

The KM analysis further revealed that all patients with high

Anoscores had generally worse prognoses (p < 0.001) (Figure 3H),

with 1-, 3-, and 5-year AUCs of 0.656, 0.683, and 0.666, respectively
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(Figure 3I). The robustness of Anoscore was further confirmed

through cancer-type specific analyses, showing consistent

performance. We evaluated the relationships between OS and the

Anoscore in patients with ESCA, STAD, COAD and READ using

KM analyses. Patients with high Anoscores had shorter OS times,

consistent with the analysis of all patients with GI cancers
FIGURE 2

Stratification of patients based on ARG expression patterns. (A) Two anoikis patterns were established via unsupervised clustering analysis.
(B-D) Visualization of the clustering results using three dimensionality reduction methods: PCA (B), t-SNE (C), and UMAP (D), confirming the
separation of ARG clusters. (E) Boxplot showing differentially expressed ARGs between ARG clusters A and B. (F) Heatmap visualizing the detailed
expression of ARGs and clinical characteristics of clusters A and B. Rows represented genes, and columns represented patients, with hierarchical
clustering demonstrating clear separation of subgroups. (G) KM analysis comparing the OS of patients in ARG clusters A and B. (H) Abundances of
immune cells in the two clusters. (I) Heatmap showing the pathways activated in ARG clusters analyzed using GSVA. (J) The pathways enriched in
ARG clusters A and B were analyzed using GSEA. *p < 0.05;**p < 0.01; and ***p < 0.001.
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FIGURE 3

Construction and validation of an anoikis-related prognostic signature (Anoscore) and nomogram (Ano-nomogram). (A, B) LASSO algorithm (A) and
multivariate Cox regression analysis (B) identified 12 prognostic ARGs from TCGA and GEO datasets. (C) A heatmap was generated to visualize the
expression of the 12 candidate genes that comprised Anoscore in the low- and high-Anoscore groups. (D) KM survival analysis for the training
cohort (n=1110), showing that patients in the high-Anoscore group had significantly worse OS than those in the low-Anoscore group. (E) ROC
curves of the Anoscore in the training cohort (n=1110), demonstrating the predictive accuracy of the Anoscore for OS. (F, G) External validation of
the Anoscore in the test cohort (n=1110), with KM survival analysis (F) confirming the significant prognostic difference and ROC curve analysis
(G) verifying prediction consistency. (H, I) A comprehensive analysis of the full patient cohort (n=2220) revealed consistent trends in the KM survival
curve (H), while the ROC curve (I) further validated the prognostic capability of Anoscore. (J) Multivariate Cox regression analysis of the relationships
among clinicopathological factors, the Anoscore and survival. (K) The correlation analysis between the Anoscore and ARG clusters, highlighting the
integration of molecular subtypes and prognostic scores. (L) Sankey diagram showing the interrelationships among ARG clusters, the Anoscore and
the survival status of patients, providing a comprehensive view of patient stratification. (M) Ano-nomogram integrating the Anoscore with clinical
features to predict 1-, 3-, and 5-year OS probabilities for individual patients. (N) The calibration curve illustrated the actual and predicted survival
probabilities using the Ano-nomogram, demonstrating good alignment. (O) Nelson−Aalen cumulative risk curves were used to visualize the
cumulative hazards of different Ano-nomogram groups. (P-R) Decision curve analyses at 1 (P), 3 (Q), and 5 (R) years for the Ano-nomogram,
Anoscore and clinical factors. *p < 0.05; **p < 0.01; and ***p < 0.001.
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(Additional File 2, Supplementary Figure S1). Similarly, the

Anoscore proved highly reliable in patients with STAD, COAD

and READ (Additional File 2, Supplementary Figure S1). However,

perhaps due to the small sample size in the ESCA cohort, the

survival analysis was not statistically significant. Moreover, the

multivariate Cox analysis confirmed the Anoscore as an

independent prognostic factor (hazard ratio [HR] 1.45, 95%

confidence interval [CI] 1.35–1.56) (Figure 3J). Considering these

results, a high Anoscore can be recognized as an effective indicator

of unfavorable OS among patients with GI cancers.

Consistent with our previous findings, we observed the

biological consistency between Anoscore and the ARG clusters

(Figure 3K). We also illustrated the interrelationship among the

two ARG clusters, Anoscore typing, and the survival status of

patients in a Sankey diagram. Patients in ARG cluster A

predominantly corresponded to the low-Anoscore group, of

which surviving patients constituted the majority (Figure 3L).
3.4 Construction and validation of the
Ano-nomogram

We constructed a novel nomogram capable of predicting

survival probabilities at 1, 3, and 5 years that comprised the

clinical factors and the Anoscore (Figure 3M). The hybrid

nomogram was stable and accurate, potentially offering valuable

clinical utility in patient management. Strong agreement between

the actual survival probabilities and the Ano-nomogram-predicted

survival probabilities was exhibited in the calibration curve

(Figure 3N). The cumulative hazards of different groups were

calculated by analyzing the Nelson-Aalen cumulative risk curve.

The cumulative risk of the low Ano-nomogram group increased at a

slower rate over time, indicating that patients with low Ano-

nomogram scores might have better survival outcomes, as shown

in Figure 3O. The 1-year DCA curve revealed that most of the Ano-

monogram curve was in the area above the other lines, which

demonstrated that using the Ano-nomogram to reach a decision on

the prognosis was more reliable and could result in a greater net

benefit (Figure 3P). The 3-year DCA curve (Figure 3Q) and 5-year

DCA curve (Figure 3R) also revealed that the Ano-nomogram had

outstanding performance.
3.5 Single-cell analysis of S100A11 and
TLR3 in GI cancers

S100A11 is a calcium-binding protein that regulates cellular

processes including cell cycle and differentiation (8), while TLR3 is a

pattern recognition receptor crucial for immune response and cell

death signaling (9). According to our previous LASSO algorithm

and multivariate Cox analyses, S100A11 had the largest positive

coefficient, and TLR3 had the largest negative coefficient. Therefore,

we investigated the expression of S100A11 and TLR3 in single-cell

sequencing data from TISCH2. In EC patients (GSE160269), the

expression of these two genes could be clustered into 31 groups

(Figure 4A), and the clustering scatter plot showed the clustering
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results (Figure 4B). The pie chart showed the number of different

cell types, and the stacked bar chart showed the proportions of

different cells in each patient (Figure 4C). S100A11 was highly

distributed and expressed in malignant cells, while TLR3 expression

was lower (Figures 4D, E). The distribution and expression of

S100A11 and TLR3 in different cell types of the dataset were

clearly revealed in the violin plot (Figure 4F). The results revealed

that S100A11 was expressed mainly in tumor cells, monocytes/

macrophages and fibroblasts in GSE160269 (Figure 4F). In contrast,

TLR3 was expressed at very low levels in all cell types, especially in

tumor cells (Figure 4F). In GSE134520 (GC), the clustering analysis

revealed 22 clusters (Figures 4G, H), of which pit mucous cells were

the majority (Figure 4I). The distribution and expression of

S100A11 and TLR3 expression in GSE134520 were shown in the

map (Figures 4J, K). S100A11 was enriched in mast cells, DCs,

malignant cells and myofibroblasts (Figure 4L). Meanwhile, TLR3

was enriched in DCs and myofibroblasts (Figure 4L). With respect

to CRC patients, the clustering analysis clustered the GSE166555

dataset into 32 groups (Figure 4M). The distribution of each cell

type was shown in Figure 4N. The proportion of each cell type was

shown in Figure 4O. S100A11 was expressed at high levels in

monocytes/macrocytes, DCs and malignant cells, whereas TLR3

was expressed at slightly higher levels in fibroblasts and endothelial

cells and at low levels in other cells (Figures 4P–R).
3.6 Immune landscape of the low- and
high- Anoscore subgroups

Immunotherapy plays an important role in tumor treatment.

Considering the relatively low response rate to immunotherapy and

the lack of promising predictors, we conducted an immune-related

analysis to evaluate whether the Anoscore was associated with the

immune status and could predict the immunotherapy response in

GI tumors. We used seven different software packages to estimate

the correlation between the Anoscore and tumor-infiltrating

immune cells. We found that the high Anoscore was significantly

related to increased immune cell infiltration, as shown in the

immune cell bubble chart (Figure 5A). In general, B cells were

positively correlated with the Anoscore across the above cancer

types according to CIBERSORT, CIBERSORT-ABS, EPIC,

MCPCOUNTER, QUANTISEQ, and XCELL (Figure 5B). DCs

were positively correlated with the Anoscore in CIBERSORT,

CIBERSORT-ABS, MCPCOUNTER, QUANTISEQ, TIMER and

XCELL (Figure 5C). Macrophages and neutrophils were positively

correlated with the Anoscore in 6 and 4 datasets, respectively

(CIBERSORT-ABS, EPIC, MCPCOUNTER, QUANTISEQ,

TIMER, and XCELL for macrophages and CIBERSORT,

CIBERSORT-ABS, MCPCOUNTER, and TIMER for neutrophils;

Additional File 2, Supplementary Figures S2A, B). In addition, with

CIBERSORT-ABS, EPIC and XCELL, the number of CD4-positive

T lymphocytes (CD4+ T cells) was positively correlated with the

Anoscore (Additional File 2, Supplementary Figure S2C).

Moreover, CD8+ T cells were positively correlated with the

Anoscore according to the QUANTISEQ, TIMER and XCELL

tools (Additional File 2, Supplementary Figure S2D). NK cells
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FIGURE 4

Single-cell analysis of S100A11 and TLR3 expression in GI cancers. (A, B) The ESCA cohort (GSE160269) was analyzed using single-cell RNA
sequencing data. The number of clusters (A) and clustering results (B) were visualized, identifying distinct cell populations. (C) The numbers of
different types of cells and the proportions of different cells in each patient in GSE160269. (D, E) Map showing the distribution of S100A11 (D) and
TLR3 (E) across cell clusters in the ESCA cohort. (F) Violin plot showing the expression levels of S100A11 and TLR3 in each type of cell in GSE160269.
(G, H) The number of clusters (G) and clustering results (H) for the STAD cohort (GSE134520). (I) The numbers of different types of cells and the
proportions of different cells in each patient in GSE134520. (J, K) Map showing the distribution of S100A11 (J) and TLR3 (K) in GSE134520. (L) Violin
plot showing the expression levels of S100A11 and TLR3 in each type of cell in GSE134520. (M, N) The number of clusters (M) and clustering results
(N) for the CRC cohort (GSE166555). (O) The numbers of different types of cells and the proportions of different cells in each patient in GSE166555.
(P, Q) Map showing the distribution of S100A11 (P) and TLR3 (Q) in GSE166555. (R) Violin plot showing the expression levels of S100A11 and TLR3 in
each type of cell in GSE166555.
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(Additional File 2, Supplementary Figure S2E) and monocytes

(Additional File 2, Supplementary Figure S2F) were also positively

correlated with the Anoscore. Overall, tumors in the high-Anoscore

group exhibited much greater immune cell infiltration, indicating

that these tumors were hot and could respond to immunotherapy
Frontiers in Immunology 11
more sensitively. According to TME scores, the infiltration of

stromal cells and immune cells was greater in the high-Anoscore

group than in the low-Anoscore group, indicating that the TME

differed between the low- and high-Anoscore groups (Figure 5D).

We also analyzed the relationships between the Anoscore and ICPs.
FIGURE 5

Immune landscape of the low- and high-Anoscore groups. (A) Bubble chart showing the relationship between the Anoscore and immune cell
infiltration in GI cancers. (B) The correlation between the Anoscore and B cells in CIBERSORT, CIBERSORT-ABS, EPIC, MCPCOUNTER, QUANTISEQ,
and XCELL, showing consistent trends across methods. (C) The correlation between the Anoscore and DCs in CIBERSORT, CIBERSORT-ABS,
MCPCOUNTER, QUANTISEQ, TIMER and XCELL. (D) Differences in stromal scores, immune scores and ESTIMATE scores between the low- and
high-Anoscore groups. (E) Differences in the expression of immune checkpoints, such as PD-1, CTLA-4, and others, between the low- and high-
Anoscore groups. (F-I) Detailed correlations between the Anoscore and the infiltration of immune cells in ESCA (F), STAD (G), COAD (H) and
READ (I).
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Cooccurrences of ligands and receptor expression were identified.

Nine pairs, including PDCD1LG2/CD274-PDCD1, CD86-CD28/

CTLA4, TNFSF18-TNFRSF18, ICOSLG-ICOS, TNFRSF14-CD160/

TNFSF14/BTLA, TNFSF9-TNFRSF9, CD40-CD40LG, LGALS9-

HAVCR2 and CD200-CD200R1, were highly expressed in the

high-Anoscore group (Figure 5E), suggesting that appropriate

immune checkpoint inhibitors could be effectively applied, based

on the Anoscore for GI cancers. Next, we evaluated the associations

between the Anoscore and the infiltration of immune cells in ESCA

(Figure 5F), STAD (Figure 5G), COAD (Figure 5H) and READ

(Figure 5I). Among these four tumors, the high Anoscore was

associated with increased immune cell infiltration, which is

consistent with the previous overall data.
3.7 Correlation of the Anoscore with
drug sensitivity

Drug treatment, including chemotherapy and targeted drugs,

plays a crucial role in cancer management. However, the

therapeutic outcomes vary significantly due to differences in drug

sensitivity. We evaluated the value of the Anoscore in predicting

drug sensitivity in GI cancers. The low- and high-Anoscore groups

were differentially sensitive to 165 types of drugs in the GDSC2

database. Among them, the high-Anoscore group was more

sensitive to 141 types of drugs, whereas the low-Anoscore group

was more sensitive to 24 types of drugs (Additional File 1,

Supplementary Table S4). The high-Anoscore group was more

sensitive to multiple chemotherapy drugs, including cisplatin,

paclitaxel, oxaliplatin, irinotecan, gemcitabine, cyclophosphamide,

epirubicin and 5-fluorouracil (Figures 6A–H, Additional File 2,

Supplementary Figure S3). Similar results were obtained with

targeted medicine. The patients in the high-Anoscore group

exhibited increased sensitivity to various targeted medicines,

including dabrafenib, erlotinib, foretinib, gefitinib, nilotinib,

sorafenib, osimertinib and palbociclib (Figures 6I–P, Additional

File 2, Supplementary Figure S3). The low-Anoscore group was

more sensitive to drugs that included dasatinib, doramapimod,

IGF1R_3801, AMG-319, AZD1332, AZD2014 and AZD5582

(Additional File 2, Supplementary Figure S3, Additional File 1,

Supplementary Table S4). Our analysis suggested that the two

groups had different sensitivities to medicine. Overall, patients

with high Anoscores were more sensitive to drug treatment,

especially chemotherapy and targeted therapy.
3.8 In vitro validation of S00A11 and TLR3

We conducted experiments to explore the biological functions

of S100A11 and TLR3 in vitro. KYSE-150, HGC-27 and Caco-2 cells

with S100A11 knockdown and TLR3 overexpression were

constructed (Figures 7A, B). Afterward, we evaluated the

expression of apoptosis-related proteins via WB analysis.

Ultralow-attachment 6-well plates were used to suspend EC, GC

and CRC cells, analogous to the conditions of anoikis. After cells

were cultured in suspension for 24 h, S100A11 knockdown and
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TLR3 overexpression increased the expression of active caspase 3,

active caspase 7, cleaved PARP and Bax in KYSE-150, HGC-27 and

Caco-2 cells but reduced the expression of Bcl-2 (Figures 7C, D,

Additional File 2, Supplementary Figure S4). CCK-8 assays revealed

that S100A11 knockdown and TLR3 overexpression inhibited cell

proliferation (Figures 7E, F). Furthermore, we conducted colony

formation assays, which revealed fewer colonies in the S100A11-

knockdown and TLR3-overexpressing groups than in the negative

control groups (Figures 7G, H). The results of transwell migration

experiments revealed that S100A11 knockdown and TLR3

overexpression decelerated the migration of cells (Figures 7I, J).

These results indicated that S100A11 might promote the

proliferation and migration of tumor cells, whereas TLR3 might

have the opposite effects.

In summary, S100A11 knockdown and TLR3 overexpression

promoted anoikis and diminished the malignancy of tumor cells,

indicating that S100A11 expression might be positively correlated

with anoikis resistance and a poor prognosis, whereas TLR3

expression was negatively correlated. The in vitro validation of

S100A11 and TLR3 functions was consistent with the results of our

bioinformatics analysis described above, enhancing the reliability of

our research.
4 Discussion

GI cancers, including EC, GC, CC and RC, have a high burden

and pose a serious threat to the lives of the general public. They are

characterized by easy metastasis, invasion, and a poor prognosis

(10). However, effective predictive biomarkers are still lacking.

Anoikis resistance has been proven to play a crucial role in tumor

metastasis and growth. After tumor cells are isolated from the

primary site, they need to obtain anoikis resistance for survival and

expansion. Nevertheless, the impact of ARGs on the prognosis of

patients with GI cancers still needs further exploration.

In our study, we used an unsupervised clustering algorithm and

ultimately classified patients with GI cancers into two anoikis-

related patterns. Our analysis revealed clear differences in the

survival time of patients between the two subgroups. Patients in

ARG cluster B exhibited poorer prognosis compared to those in

ARG cluster A. Tumors in cluster B might possess a higher degree

of malignancy, which could contribute to increased metastasis and

reduced survival time. Furthermore, we studied immune cell

infiltration between clusters A and B, and notable differences

were found. These findings indicate that anoikis is related to the

immune microenvironment, which strongly influences

tumorigenesis. In summary, our findings demonstrated that

ARGs influence the prognosis and immune responses of patients

with GI cancers.

Research on the development of reliable prognostic biomarkers

for GI cancers is currently a focal point. We constructed the

Anoscore, a risk model based on ARGs, using univariate, LASSO

and multivariate Cox regression analyses. The Anoscore is the first

anoikis-related prognostic model that covers four types of GI

cancers. In this analysis, the twelve most significant ARGs were

obtained. Next, we verified the accuracy of the Anoscore in
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predicting the prognosis of patients with GI cancers, and the results

revealed that the Anoscore had great predictive ability. Moreover,

our analysis revealed that the Anoscore was an independent

prognostic factor; thus, we combined the Anoscore with clinical

factors to construct the Ano-nomogram, which was capable of

forecasting survival probabilities with good performance. The
Frontiers in Immunology 13
Anoscore and Ano-nomogram are useful tools in clinical practice

for predicting the prognosis of patients with GI cancers.

Among the 12 candidate genes, S100A11, TNFRSF12A,

NOTCH3, FGF2, IL1RAP, CD36 and CDKN2A were positively

correlated with the Anoscore, whereas TLR3, TRAF2, MYC, and

WNT2 were negatively correlated. Most genes associated with the
FIGURE 6

Correlation of the Anoscore with drug sensitivity. (A-H) Analysis of the sensitivity of the high- and low-Anoscore groups to chemotherapy drugs,
including cisplatin (A), cyclophosphamide (B), epirubicin (C), gemcitabine (D), irinotecan (E), oxaliplatin (F), paclitaxel (G) and 5-fluorouracil (H). (I–P)
Analysis of the sensitivity of the high- and low-Anoscore groups to targeted drugs, including dabrafenib (I), erlotinib (J), foretinib (K), gefitinib (L),
osimertinib (M), palbociclib (N), nilotinib (O) and sorafenib (P).
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Anoscore were relevant to the prognosis and progression of GI

cancers. S100A11 and TLR3 contributed the most to the Anoscore.

The main function of S100A11, also known as S100C, is to

transduce calcium-dependent cell signals and regulate the cell

cycle, cell differentiation and extracellular matrix secretion. New
Frontiers in Immunology 14
evidence suggests that S100A11 is highly expressed in many cancers

(11–13), and is closely related to malignant proliferation, distant

metastasis and a poor prognosis (14–16). Toll-like receptor 3

(TLR3) is a pattern recognition receptor that plays a critical role

in the immune response. Most studies have focused on the
FIGURE 7

In vitro validation of candidate genes (S100A11 and TLR3). (A, B) The validation of S100A11 downregulation (A) and TLR3 upregulation (B) by qRT-
PCR. (C, D) Validation of the downregulation of the S100A11 protein and upregulation of the TLR3 protein, as well as the expression of anoikis
indicators, in S100A11-depleted (C) and TLR3-overexpressing (D) cells by WB. (E, F) Cell proliferation assays for S100A11-depleted (E) and TLR3-
overexpressing (F) KYSE-150, HGC-27 and Caco-2 cells using CCK-8 method. (G, H) Colony formation assays of S100A11-depleted (G) and TLR3-
overexpressing (H) KYSE-150, HGC-27 and Caco-2 cells. (I, J) Transwell migration assays of S100A11-depleted (I) and TLR3-overexpressing (J) KYSE-
150, HGC-27 and Caco-2 cells. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1477913
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1477913
beneficial role of TLR3 in tumor cells, which can lead to the

production of cytotoxic cytokines and interferons that promote

caspase-dependent cell apoptosis (17). Research has indicated that

high expression of TLR3 is correlated with a decreased risk of some

tumors and favorable clinical outcomes (18–21). In addition, TLR3

agonists can activate tumor-specific immune responses in mice and

patients (22–25). These findings concerning the biology of S100A11

and TLR3 aligned with our findings. We comprehensively verified

the expression and biological behaviors of S100A11 and TLR3 via

multiple approaches, including single-cell analyses, qRT-PCR, WB

and functional assays. Their biological functions were consistent

with previous studies. The Anoscore and these candidate genes may

become new potential targets and biomarkers for GI cancers.

However, further studies of these genes are needed to explore the

specific mechanisms involved.

Immunotherapy has been successfully applied in clinical practice

and has been proven to improve the survival of patients with EC, GC

and CRC (26–30). Nevertheless, effective biomarkers for predicting the

response of GI cancers to immunotherapy remain elusive.We explored

the relationship between the Anoscore and immunity to verify whether

the Anoscore could be used to predict the responsiveness of GI cancers

to immunotherapy, thereby guiding individualized treatment. We

assessed the TIME in the high- and low-Anoscore groups and found

that immune cell abundance and immune checkpoint expression were

significantly different between the two groups. The immune analysis

revealed a surge in the infiltration of various immune cells, including B

cells, DCs, macrophages, and neutrophils, in the high-Anoscore group.

The infiltration of B cells and the formation of tertiary lymphoid

structures are positively correlated with patients’ responses to

immunotherapy (31–33). As vital sentinel cells, DCs play crucial

roles in activating T cells and triggering antitumor immune

responses (34). Macrophages and neutrophils exhibit dual functions

in tumor immunity (35, 36). Our results suggested that

immunotherapy may have better therapeutic effects on patients in

the high-Anoscore group. Moreover, immunosuppressive receptors,

such as CTLA4, ICOS, TIGIT, CD160 and TNFRSF9, and

immunosuppressive ligands, such as CD274 (PD-L1), TNFSF9,

ICOSLG, TNFSF18 and CD40LG, were highly expressed in the high-

Anoscore group, which also suggested that the high-Anoscore group

might react to immunotherapy more effectively.

Pharmacotherapy is a critical component of cancer treatment,

and determining the drug sensitivity of tumors is important for

guiding clinical therapy. Therefore, we analyzed drug sensitivity.

Our analysis identified 141 drugs to which patients with high

Anoscores were more sensitive, including chemotherapeutic

agents, targeted therapies, and immunomodulatory drugs.

Notably, cisplatin, paclitaxel, oxaliplatin, and 5-fluorouracil were

classified as category 1 treatments for GI cancers, as recommended

by the National Comprehensive Cancer Network (NCCN) Clinical

Practice Guidelines (37–40). Patients in the low-Anoscore group

were more sensitive to 24 types of drugs, most of which were novel

small-molecule inhibitors, such as AMG-319, AZD2014,

doramapimod and IGF1R_3801, than patients in the high-

Anoscore group. The sensitivity analysis helped to distinguish to
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which drugs patients with different Anoscores were sensitive, thus

facilitating the selection of clinical treatment drugs and promoting

personalized treatment.

These results revealed the correlation between the Anoscore and

tumor immunity, highlighting the potential value of the Anoscore

in predicting the response of GI cancers to immunotherapy. We

also analyzed drug sensitivity in GI cancers. In summary,

identifying the Anoscore in patients with GI cancers is beneficial

for selecting optimum drug treatments, including immunotherapy,

chemotherapy and targeted therapy.

Anoscore, as the first prognostic model based on ARGs that

integrated data from four major GI cancers (EC, GC, CC and RC)

holds significant promise for clinical applications. This

comprehensive approach enhanced its clinical applicability,

providing a unified framework for risk stratification and prognostic

evaluation across multiple GI cancer types. Firstly, Anoscore enables

clinicians to more accurately identify high-risk patients. When

combined with clinical characteristics, such as TNM staging, it can

be incorporated into the Ano-nomogram to predict prognostic

probabilities. Secondly, Anoscore serves as a valuable tool for both

baseline assessments and dynamic monitoring during follow-up,

facilitating timely adjustments to treatment strategies. Moreover,

Anoscore can play a crucial role in identifying potential targets for

immunotherapy, thereby broadening its application in personalized

treatment planning. By elucidating the immune landscapes of GI

tumors, Anoscore may assist clinicians in tailoring immunotherapy

strategies to individual patients, optimizing treatment efficacy. In

addition, our research demonstrated that patients in the high- and

low-risk Anoscore groups exhibited distinct drug sensitivities.

Anoscore has the potential to complement existing therapeutic

regimens by guiding the selection of chemotherapy and targeted

therapies. We anticipate that with continued research and

refinement, Anoscore will enhance the scientific basis and precision

of clinical decision-making. By integrating with current treatment

paradigms, it is poised to advance the personalized medicine.

Despite the various methods used to establish our model,

several limitations remain. The data used in this study were

derived from public databases, which are limited in quantity and

have incomplete clinicopathological information. Second, our study

was a retrospective study. The above factors might contribute to

biases in the construction of the Anoscore. Additionally, the

mechanism by which anoikis affects the prognosis requires

further research. Moreover, although we have conducted some

validation experiments, the expression of some prognostic genes

is still unclear, and how these genes affect the occurrence and

development of GI tumors still needs further investigation.

Future research should focus on several critical areas to further

establish the utility of Anoscore. Expanding the sample size and

incorporating diverse patient populations will help assess the

predictive performance of Anoscore across various cohorts. The

roles and mechanisms of key genes in Anoscore, such as S100A11

and TLR3, in biological functions, including anoikis, tumor

progression, immune modulation and drug sensitivity, warrant

further comprehensive investigation through in vitro and in vivo
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experiments. Moreover, incorporating multi-omics data or

integrating Anoscore with established biomarkers like PD-L1 and

microsatellite instability (MSI) is one of the future research directions,

which may enhance its predictive capacity and expand its clinical

applications. Ultimately, further validation through prospective

studies and clinical trials will be essential for assessing the real-

world applicability of Anoscore in personalized medicine.
5 Conclusion

Overall, this study identified anoikis-associated molecular

subgroups in GI cancers (ESCA, STAD, COAD, and READ) and

developed a prognostic risk model based on ARGs, named Anoscore.

The Anoscore performed effectively in predicting clinical outcomes for

patients. Notably, the differences in the TIME and drug sensitivity

between the high- and low-Anoscore groups highlighted its potential to

distinguish cold and hot tumors and predict responses to drug

therapies. Our findings are highly important for risk assessments and

the personalized treatment of patients with GI cancers.
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22. Smith M, Garcıá-Martıńez E, Pitter MR, Fucikova J, Spisek R, Zitvogel L, et al.
Trial Watch: Toll-like receptor agonists in cancer immunotherapy. Oncoimmunology.
(2018) 7:e1526250. doi: 10.1080/2162402X.2018.1526250

23. Adams S. Toll-like receptor agonists in cancer therapy. Immunotherapy. (2009)
1:949–64. doi: 10.2217/imt.09.70

24. Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautès-Fridman C, et al.
Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology.
(2014) 3:e29179. doi: 10.4161/onci.29179
Frontiers in Immunology 17
25. Devaud C, John LB, Westwood JA, Darcy PK, Kershaw MH. Immune
modulation of the tumor microenvironment for enhancing cancer immunotherapy.
Oncoimmunology. (2013) 2:e25961. doi: 10.4161/onci.25961

26. Zhao Q, Yu J, Meng X. A good start of immunotherapy in esophageal cancer.
Cancer Med. (2019) 8:4519–26. doi: 10.1002/cam4.v8.10

27. Akin Telli T, Bregni G, Camera S, Deleporte A, Hendlisz A, Sclafani F. PD-1 and
PD-L1 inhibitors in oesophago-gastric cancers. Cancer Lett. (2020) 469:142–50.
doi: 10.1016/j.canlet.2019.10.036

28. Gambardella V, Castillo J, Tarazona N, Gimeno-Valiente F, Martıńez-
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