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Background: Glutathione (GSH) metabolism supports tumor redox balance and

drug resistance, while long non-coding RNAs (lncRNAs) influence lung

adenocarcinoma (LUAD) progression. This study developed a prognostic

model using GSH-related lncRNAs to predict LUAD outcomes and assess

tumor immunity.

Methods: This study analyzed survival data from The Cancer Genome Atlas

(TCGA) and identified GSH metabolism-related lncRNAs using Pearson

correlation. A prognostic model was built with Cox and Least Absolute

Shrinkage and Selection Operator (LASSO) methods and validated by Kaplan-

Meier analysis, Receiver Operating Characteristic (ROC) curves, and Principal

Component Analysis (PCA). Functional analysis revealed immune infiltration and

drug sensitivity differences. Quantitative PCR and experimental studies

confirmed the role of lnc-AL162632.3 in LUAD.

Results: Our model included a total of nine lncRNAs, namely AL162632.3,

AL360270.1, LINC00707, DEPDC1-AS1, GSEC, LINC01711, AL078590.2,

AC026355.2, and AL096701.4. The model effectively forecasted patient

survival, and the nomogram, incorporating additional clinical risk factors,

satisfied clinical needs adequately. Patient stratification based on model scores

revealed significant disparities in immune cell composition, functionality, and

mutations between groups. Additionally, variations were noted in the IC50 values

for key lung cancer medications such as Cisplatin, Docetaxel, and Paclitaxel. In

vitro cell experiment results showed that AL162632.3 was markedly upregulated,

while AC026355.2 tended to be downregulated across these cell lines.

Ultimately, suppressing lnc-AL162632.3 markedly reduced the growth,

mobility, and invasiveness of lung cancer cells.
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Conclusion: This study identified GSH metabolism-related lncRNAs as key

prognostic factors in LUAD and developed a model for risk stratification. High-

risk patients showed increased tumor mutation burden (TMB) and stemness,

emphasizing the potential of personalized immunotherapy to improve

survival outcomes.
KEYWORDS

lung adenocarcinoma, Glutathione metabolism, lncRNA, prognostic prediction,
immune microenvironment
1 Introduction

Lung cancer is among the most prevalent and lethal cancers

worldwide, accounting for a significant proportion of all cancer-

related deaths (1). Non-small cell lung cancer (NSCLC) comprises

the majority of lung cancer cases, with LUAD as the primary

subtype, and is more frequently observed in non-smokers and

women (2). Despite the numerous existing treatment options,

only about 20% of lung adenocarcinoma patients benefit from

them, and the majority of patients still experience poor survival

outcomes (3). Conventional treatments have limited effects on

advanced LUAD, and although targeted therapies and

immunotherapy are effective, resistance and tumor heterogeneity

still significantly impact treatment outcomes and patient survival

rates (4). Recent advances in molecular biology and genomics have

revealed complex mechanisms of tumor development, increasingly

highlighting the importance of molecular markers in the diagnosis,

prognostic assessment, and treatment decision-making (5). The

lncRNA, as an emerging molecular marker, exhibits unique

functions in regulating gene expression and affecting the tumor

microenvironment (6). Exploring new lncRNA molecular markers

and related prognostic models can facilitate early cancer screening,

precise diagnosis, and the formulation of personalized treatment

plans, thereby improving therapeutic effectiveness.

lncRNAs are RNAmolecules exceeding 200 nucleotides in length

and do not code for proteins (7). Although lncRNAs do not encode

proteins, they are critical in gene expression regulation, chromatin

modification, and post-transcriptional control. Recently, research on

lncRNAs has greatly expanded their applications in the biomedical

field, particularly in cancer research (8). For example, MALAT1

(Metastasis Associated Lung Adenocarcinoma Transcript 1) is highly

expressed in lung cancer and is closely associated with poor

prognosis, promoting tumor metastasis by regulating gene

transcription and RNA splicing (9). In breast cancer, high

HOTAIR expression promotes chromatin changes, enhancing

tumor invasion and metastasis, and correlates with lower survival

rates (10). Additionally, H19, a significant lncRNA, regulates multiple

signaling pathways in liver and colorectal cancer, affecting tumor cell

proliferation and survival (11). Importantly, lncRNAs not only

regulate the onset and progression of tumors but also serve as
02
potential therapeutic targets and prognostic markers. For instance,

studies have shown that lncRNA-ATB can alter the growth

characteristics of liver cancer cells by enhancing the TGF-b signal

to promote their metastasis (12). Currently, the specific roles of

lncRNAs in the tumor microenvironment and their potential clinical

applications still require further exploration.

GSH is a crucial intracellular antioxidant composed of glutamic

acid, cysteine, and glycine (13). GSH plays a significant role in

maintaining cellular redox balance by reducing hydrogen peroxide

and lipid peroxides, thus protecting cells from oxidative stress

damage (14). In tumor cells, GSH metabolism pathways are often

remodeled to cope with oxidative stress and metabolic demands

brought about by rapid proliferation (15). Tumor cells resist the

toxicity of chemotherapy drugs by enhancing GSH synthesis or

reducing its consumption, leading to chemotherapy resistance (16).

Furthermore, it has been found that inhibiting GSH synthesis can

enhance the efficacy of immunotherapy, boosting the anti-tumor

immune response (17). Investigating the metabolic functions of

GSH in tumors aids in the creation of novel therapeutic approaches

for tackling tumor resistance and immune escape, ultimately

enhancing patient treatment outcomes and survival rates (18).

Through the analysis of TCGA dataset, this research has

identified long lncRNAs related to GSH metabolism and has

developed a new type of risk assessment model accordingly. We

developed and validated a nomogram model that integrates features

of GSH metabolism-related lncRNAs with clinical factors.

Additionally, based on functional analysis of model differential

genes, we also explored whether the model could preliminarily

predict drug treatment outcomes for LUAD patients. Finally, we

performed preliminary validation of the lncRNAs in the model in

both normal and tumor cell lines.
2 Materials and methods

2.1 Data acquisition

By May 9, 2024, our research had retrieved 600 files from the

TCGA official site (https://cancergenome.nih.gov/), encompassing

RNA-seq expression matrices and clinical data for 517 LUAD
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patients. This study utilized Active Perl software for preprocessing

the raw files, creating a consolidated table of gene and clinical

information. Using the metadata gene annotation file downloaded

from the official website, this study converted Ensembl IDs to

common official gene names using Active Perl. Before analyzing the

expression data, al l data were normalized using log2

transformation. Somatic mutation information for all LUAD

patients was downloaded from the TCGA official website. After

excluding 10 patients with incomplete clinical information, further

analys is included 507 patients . This s tudy used the

createDataPortion package to randomly split patients into

training (355 individuals) and test (152 individuals) groups.

Additionally, the grouped data passed clinical statistical difference

testing. Based on the annotation files from the Ensembl human

genome browser GRCh38, this study performed iterative processing

on all genes using Active Perl, extracting the expression matrices for

mRNA and lncRNA. Integrating published papers and data from

the GSEA official site, this study identified 87 crucial genes. Since all

data in this study came from publicly accessible databases and

followed TCGA database publication guidelines, ethics committee

approval was omitted. This study adhered to the 2013 revised

Declaration of Helsinki.
2.2 Identification of lncRNAs related to
GSH metabolism

Based on the research by Shi et al. (19) and MSigDB, we

identified 78 genes associated with GSH metabolism. From the

obtained gene list, we extracted expression data for GSH-related

genes. The limma software package was utilized for co-expression

analysis. Using filters with a Pearson correlation coefficient greater

than 0.4 and a p-value below 0.001, we identified 1748 lncRNAs

associated with GSH metabolism. These thresholds were chosen to

balance biological relevance, statistical significance, and clinical

translational feasibility. Based on the identified lncRNA gene

names, we extracted the corresponding expression matrix for

GSH metabolism-related lncRNAs.
2.3 Construction and validation of a
prognostic model for GSH-related
lncRNA characteristics

Employing the Survival software, COX univariate regression

analysis was conducted on lncRNA expression and survival data for

the training cohort, with a filter threshold of p < 0.001.

Subsequently, feature lncRNAs in the prognostic model were

selected using a combined LASSO-COX model (20). Additionally,

the independent correlation of the key lncRNAs selected in the

model must meet the requirements of multiple linear stepwise

regression analysis. Concurrently, the minimum Akaike

Information Criterion (AIC) is calculated to obtain optimal

simulation effects (21). Ultimately, the prognostic model includes

9 lncRNAs, with the risk scoring formula as:
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Risk score  =  on
i ai �  bi

where a i represents the regression coefficient of the ith lncRNA

obtained from the multivariate Cox regression analysis, and b i

represents the expression value of each GSH metabolism-related

lncRNAs.These coefficients are fixed values derived from the

training dataset.The expression levels of the selected lncRNAs,

which vary with each patient sample, were then multiplied by

their respective coefficients to compute the individualized Risk

score. Using the “survival” and “survminer” packages, KM curves

for OS and PFS were plotted, with statistical differences assessed via

the log-rank test. The “timeROC” package was utilized for receiver

operating characteristic (ROC) analysis, computing the AUC value.

The C-index value was derived through the Hmisc package in

conjunction with patient survival information analysis. The

“scatterplot3d” package was used for PCA principal component

analysis and visualization of model-related lncRNAs, all genes, and

GSH-related genes and lncRNAs.
2.4 Construction and calibration of
predictive nomograms

In this study, we used the median risk score as the cutoff value

for grouping, evenly distributing patients into high-risk and low-

risk groups. By integrating routine clinical data with model risk

assessments, this study utilizes the rms, regplot, and Survival

packages to construct clinically relevant nomograms. These

nomograms aim to accurately predict patients’ overall survival

(OS) rates. Furthermore, we meticulously generated the

corresponding calibration curves to validate the predictive accuracy.
2.5 Functional enrichment analysis

Using the limma software package, we identified differentially

expressed genes between high and low risk groups of LUAD

patients (log2FC>1,FDR<0.05). According to the descending

order of p-values, we selected the top ten significant and

meaningful results. These results were visualized using different

packages like ggplot2, circlize, and ComplexHeatmap (21, 22). The

GSEA software package was used for gene set enrichment analysis,

comparing pathway gene sets in the KEGG database to evaluate the

association of lncRNAs involved in model construction with these

gene sets. Finally, we visualized the top five results using the

clusterProfiler (23) and enrichplot packages.
2.6 Analysis of tumor mutational burden
and tumor immune microenvironment

Through the CIBERSORT package, the immune infiltration results

in tumor samples of LUAD patients were obtained. The study

comprehensively assessed how model risk scores correlate with

various immune cell types using multiple algorithms (24–30). The
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GSVA package evaluated the correlation between 13 immune function

genes and LUAD transcriptome expression (31). The Maftools

software package (32) is used to process and analyze the proportions

of missense mutations, nonsense mutations, frameshift deletions,

frameshift insertions, inframe deletions, and multiple mutations in

high-frequency mutated genes and tumor-related genes.
2.7 Prediction of immunotherapy efficacy
and potential chemotherapeutic
drug screening

The limma package integrated the immunotherapy data with

patient risk group information, and the ggpubr package generated

violin plots for cohorts. Screening of potential chemotherapeutic

drugs is conducted using the oncoPredict package (33). Obtain the

GDSC2 training dataset (https://www.cancerrxgene.org/)

containing 198 chemotherapy drugs from the oncoRespond

section on the OSF site. Conduct drug sensitivity analysis using

the calcPhenotype function to calculate IC50. Set the significance

filtering threshold to a p-value less than 0.001.
2.8 cell line culture

HBE cells and NSCLC cell lines were acquired from the Chinese

Cell Resource Center. Cells were cultured in complete medium with

10% fetal bovine serum (FBS, Gibco brand), under incubator

conditions of 5% CO2, 37°C, and 95% humidity.
2.9 Cell transfection

RNAi reagents and transfection aids were supplied by

genepharma, with detailed interference sequences available in

Supplementary Table 1. Cells were plated a day before

transfection, ensuring that cell density reached approximately

50%-60% confluency on the day of transfection. RNAi reagents

were preincubated with transfection enhancers and subsequently

allowed to equilibrate at room temperature for 20 minutes to

optimize complex formation. During the resting period, medium

exchange was conducted, and the settled transfection complex was

introduced to the culture plates, with timely replenishment or

replacement of the medium depending on cell growth conditions.

Transfection efficiency was assessed 48 hours after the procedure.
2.10 Real-time quantitative PCR

Total RNA was extracted from cells using TRIzol reagent as per

the protocol outlined in the manual (Vazyme, Cat No. R701-01).

The RNA concentration and purity were then assessed using the
Frontiers in Immunology 04
Nanodrop 2000 spectrophotometer. By adhering to the cDNA

synthesis kit’s instructions (Vazyme, Cat No. Q141-02/03),

reverse-transcribed cDNA was generated through RT-PCR

amplification. The quantitative results of gene expression were

collected and analyzed on the StepOne Plus system. The data

were analyzed using the 2^(-DDCt) method. GAPDH was used as

an internal reference gene to normalize the target genes.
2.11 colony formation assays

Cells in good condition 48 hours post-transfection were selected

for counting. Both experimental and control plates were prefilled

with serum-free medium. Based on the calculations, 500 cells were

evenly seeded per well and incubated for two weeks. After culturing,

cells were washed twice with PBS and fixed in 4% paraformaldehyde

for 10 minutes. After a PBS wash, cells were stained with crystal

violet for 10 minutes, rinsed under running water for 5 minutes, and

the plates were dried and photographed.
2.12 CCK8 proliferation assays

Digest and count cells in good condition and in the logarithmic

growth phase after transfection, adjusting the cell density to 5×10³

cells/ml with blank medium. Add 200 μl of the adjusted cell

suspension to each well of a 96-well plate, and measure the

optical density (OD) at 24, 48, 72, and 96 hours post cell

adherence. Subsequently, 10 μl of CCK8 reagent was meticulously

added to each well, followed by an incubation period of 2 hours.

Absorbance was then precisely measured at 450 nm using

a spectrophotometer.
2.13 Cell invasion assay

Prior to the experiment, evenly distribute the matrix gel at the

bottom of the Transwell chambers and incubate until the gel

completely solidifies. On the experiment day, select well-

conditioned and logarithmically growing post-transfection cells

for trypsin digestion and counting. Resuspend the cells in serum-

free medium, adjusting the density to 2.5×10^5 cells/ml. Extract the

Transwell chambers, aspirate excess medium or liquid from the

upper compartment, and add 200 μl of adjusted cell suspension to

it, along with 500 μl of complete medium to the lower

compartment. Continue culturing the Transwell chambers in the

incubator for 48 hours, then proceed with further processing.

Remove the old medium, wash the chambers twice with PBS, and

fix the cells in 4% paraformaldehyde for 10 minutes. After removing

the fixative, apply 0.1% crystal violet stain for 10 minutes. Next,

remove the staining solution and wash the Transwell chambers

three times with deionized water to eliminate excess dye. Lastly, use
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a damp cotton ball to gently wipe the upper surface of the chamber,

removing cells that have not penetrated the matrix gel. Allow the

chambers to air dry at room temperature, then examine and

photograph the results under a microscope.
2.14 Wound healing test

Prior to the experiment, each well of the culture plate is prefilled

with 2 ml of blank medium. Digest and count cells in good

condition and in the logarithmic phase after transfection,

resuspending them in blank medium. Add 400,000 cells evenly to

each well. Once cells adhere, remove them using a 200 μl pipette tip

and wash once with PBS. Add blank medium and incubate for 48

hours. Remove the plate, wash with PBS, and use a microscope to

photograph and document the scratch healing process.
2.15 Xenograft model

Ten genetically defined, 5-week-old female nude mice were

procured from the Jiangsu Jicui official website and randomly

assigned into two groups. Prior to the experiment, target cells and

empty vector control cells, both in optimal condition and the

logarithmic growth phase, were precultured. Cells were

trypsinized, resuspended in sterile Phosphate-Buffered Saline

(PBS), and the concentration was adjusted to 4×10^3 cells/μl.

Each mouse received a subcutaneous injection of 200 μl of this

suspension into the right axillary region. Tumor dimensions were

measured every three days with calipers. After one month, the mice

were euthanized, and the tumors were excised, weighed, and

measured for volume. The study was approved by the Yangzhou

University Animal Experiment Ethics Review Committee, adhering

strictly to ethical guidelines.
2.16 Statistical analysis

Statistical analysis was conducted in R (version 4.3.0). For

evaluating the differences between pairs of groups, the Wilcoxon

rank-sum test was employed. In contrast, differences across

multiple groups were determined using the Kruskal-Wallis test.

Results were deemed statistically significant at a p-value below 0.05.
3 Results

3.1 Identification of GSH metabolism-
related lncRNAs

Figure 1 showed the flowchart of this study. This study included

samples from 541 cancer patients, identifying 16,876 lncRNAs from
Frontiers in Immunology 05
59,427 genes in the transcripts. The GSH-related gene set used in

this study included 87 genes such as ABCC1, ABCC4, ABCC5. A

comprehensive analysis revealed 1,748 lncRNAs associated with

GSH metabolism, characterized by a correlation coefficient

exceeding 0.4 and a p-value below 0.001 (Figure 2A).
3.2 Development and assessment of the
prognostic GSH-based risk model

This study included 507 samples for the construction of a

GSH-related lncRNA risk model. Using the createDataPartition

package, we randomly assigned all samples into a training

set (355 persons) and a testing set (152 persons), without

statistical differences in clinical data between the two groups

(Supplementary Table 2). Through LASSO-COX analysis

(P<0.05), we identified 9 lncRNAs significantly associated with

prognosis (Figures 2B, C; Supplementary Table 3). Risk scores for

patients in both the training and testing groups were calculated

using the formula, and patients were divided into high and low

risk groups based on the median value (Supplementary Table 4).

The correlation heatmap in Figure 2D showed the relationship

between the GSH metabolism gene set and the model-building

lncRNAs. The K-M analysis demonstrated that high-risk patients

have significantly lower overall survival (OS) than low-risk

patients in both the training and testing groups (Figures 3A–C).

The PFS analysis results were consistent with the aforementioned

OS results, P<0.05 (Figure 3D). The risk curves indicated a

positive correlation between rising risk scores and increasing

patient mortality. The correlation heatmap showed that the

expression of lncRNAs such as AL162632.3, AL360270.1,

LINC00707, DEPDC1-AS1, GSEC, and LINC01711 increases

with rising risk scores, while the expression of AL078590.2,

AC026355.2, and AL096701.4 decreases (Figures 3E–G).
3.3 Validate the independence of the
constructed model in LUAD

Independent prognostic evaluation consistently showed that the

model yielded hazard ratios (HRs) exceeding 1, with highly

significant p-values observed across univariate and multivariate

Cox regression analyses (Figures 4A, B). We conducted ROC

curve analyses to explore the model’s predictive capability on

patient prognosis (Figure 4C). The prognostic model

demonstrated the highest AUC and C-index values compared to

clinical factors (e.g., age and stage) (Figures 4D, E). To investigate

the model’s applicability across different cancer stages, we divided

patients into early and late stages and conducted OS analysis; the

results demonstrated that, in both early and late stages, the high and

low-risk scores clearly distinguished between patients’ survival

durations (Figures 5C, D).
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3.4 PCA and nomogram

PCA presented in Figures 4F–I showed that the lncRNAmodel we

developed could best distinguish patients. Figures 5A, B showed the

clinical nomogram, where each clinical factor is scored, and the sum of

all factors’ scores was the total composite score. According to the scale

for the composite score, one can estimate the survival probabilities for 1

year, 3 years, and 5 years for patients. For instance, a patient with a total

score of 146 exhibited survival probabilities of 0.961 at 1 year, 0.853 at 3

years, and 0.708 at 5 years, respectively.
3.5 Functional enrichment analysis

We conducted a detailed investigation into the prognostic

influence of critical lncRNAs on LUAD survival by differentially

analyzing high and low risk groups (logFC > 1, FDR < 0.05),

identifying 447 significant genes (Supplementary Table 5). GO
Frontiers in Immunology 06
functional analysis indicated that the differentially expressed

genes primarily cluster in immune cell infiltration (like

chemotaxis induction, migration of myeloid cells), immune

act iva t ion (such as ant imicrobia l humoral response

(GO:0019730), humoral immune response (GO:0006959), and

antimicrobial peptide-driven humoral immunity (GO:0061844)),

extracellular matrix (ECM) remodeling (including collagen-rich

ECM, cytoplasmic vesicles, lamellar bodies), and cytokine-

cytokine receptor interactions (such as regulation of

endopeptidase activity) (Figures 6A, B).The results of the KEGG

pathway analysis, represented through bubble charts and

histograms, demonstrated an enrichment of these different genes

in pathways that regulate immune cells, including the ras signaling

pathway, the pi3k-akt signaling pathway, and cytokine-cytokine

receptor interactions (Figure 6C). GSEA analyses were conducted

for each gene within the model, such as AL360270.1, which showed

that most lncRNAs are linked to pathways involved in cancer,

immunity, and metabolism (Figure 6D).
FIGURE 1

Flow diagram.
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3.6 Evaluation of tumor-immune landscape
and analysis of immune related function

Figure 7A showed the proportions of typical immune cells in

LUAD patient samples from the TCGA database. Figure 7E
Frontiers in Immunology 07
demonstrated that while there were no significant differences in

stromal cell scores, patients classified as high-risk exhibited notably

lower immune cell scores within TME and overall estimation scores

compared to those at low risk. We employed tools like XCELL,

TIMER, QUANTISEQ, and MCPCOUNTER for correlation
FIGURE 2

Identification and Prognostic Model Construction of GSH Metabolism-related lncRNAs. (A) The Sankey diagram shows the co-expressed GSH
metabolism-related genes and lncRNAs. (B) ten-fold cross-validation. (C) LASSO coefficient curves. (D) Correlation heatmap between lncRNAs and
gene sets.
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analysis, as depicted in the bubble chart of Figure 7B. We further

explored the interactions between these immune cells. Figure 7D

depicted the correlations between immune cells in the tumors of

these patients. Figure 7C showed the heatmap of correlations
Frontiers in Immunology 08
between LUAD samples and immune functions, indicating

significant differences between the high and low risk groups in

classical immune functions such as Type II IFN Response, Type I

IFN Response, HLA, etc.
FIGURE 3

Survival analysis and validation. (A) K-M curves for OS in the training set, (B) validation set, (C) overall cohort. (D) K-M curves for PFS in the overall
cohort. (E) (training set), (F) (validation set), (G) (overall set) risk score plots, survival status graphs, and heatmaps.
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3.7 TMB

Tumor mutational burden analysis revealed higher mutation

rates in key genes including TP53, KRAS, and COL11A1 in the

high-risk group. Waterfall and violin plots demonstrated that the

tumor mutational burden in the high-risk group is significantly

higher than that in the low-risk group (Figures 8A–C). Kaplan-

Meier analysis showed significantly longer survival in patients with

high TMB compared to those with low burden (Figure 8D). Finally,

we divided all patients into four groups based on risk scores and

levels of tumor mutational burden to analyze differences in survival.

The results showed that high TMB and low-risk groups had the

longest survival time, while those in the low TMB and high-risk

groups had the shortest survival time, with statistically significant

differences in survival among the four groups (Figure 8E).
Frontiers in Immunology 09
3.8 Immunotherapy for risk signature and
prediction of potential drugs.

Based on the discovery that risk scores were closely related to

immunity, we further used existing TIDE data to predict patient

drug response. The findings reveal markedly reduced TIDE scores

in the high-risk cohort relative to the comparison group (Figure 8F).

Furthermore, analysis of tumor stem cell indices demonstrated a

positive correlation with risk scores, indicating increased tumor

stemness (Figure 7F). Subsequently, we used the oncoPredict

package to screen for potential sensitivity drugs. The results

indicated that drugs like Cisplatin, Docetaxel, Gemcitabine,

Vinorelbine, and Paclitaxel significantly differed in IC50

values (Figure 9). Detailed results were presented in the

Supplementary Files.
FIGURE 4

Independent prognostic analysis and PCA analysis. (A, B) Cox regression analysis. (C) Time-dependent ROC curves for overall survival (OS). (D) ROC
curves and (E) C-index for risk scores and other clinical risk factors. (F) PCA for the whole genome, (I) GSH metabolism genes, (G) all GSH
metabolism-related lncRNAs, and (H) model-related lncRNAs.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1477437
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2025.1477437
3.9 Expression confirmed through in
vitro experiments

We used qPCR to verify the expression levels of lncRNAs with

independent prognostic significance to validate the importance of

lncRNAs in the model. Compared to the normal cell line HBE, the

expression of AL162632.3 significantly increased in the selected

cancer cell lines PC9, H1299, A549, and H1975, particularly in

H1299 cells. Expression of LINC01711 rose in lung cancer cell lines

including PC9, H1299, and H1975 but fell in A549.GSEC showed

no significant changes in expression in these cancer cell lines

(Figure 10A). AC026355.2 was significantly downregulated in all

four cancer cell lines. Conversely, expression of AL096701.4

declined in the PC9, H1299, and A549 cell lines, while it

increased in H1975 (Figure 10B).
3.10 Decreased lnc-AL162632.3 expression
inhibited LUAD proliferation, migration
and invasion

Using RNAi technology, we effectively knocked down the highly

expressed lnc-AL162632.3 in H1299 and A549 lung cancer cell

lines. The RNAi efficiency was validated through qPCR, identifying
Frontiers in Immunology 10
RNA3 as the most effective. Consequently, we selected siRNA3 for

all subsequent experiments. CCK8 proliferation and colony

formation assays showed that knocking down lnc-AL162632.3

significantly reduced cell growth compared to the control group.

Wound healing and invasion assays further demonstrated that

suppression of lnc-AL162632.3 markedly weakened the motility

of the cancer cells (Figure 11). In vivo, tumors in the lnc-

AL162632.3 knockdown mice were noticeably smaller and lighter

than the controls (Figure 12).
4 Discussion

Lung cancer is one of the most common malignancies

worldwide and is a leading cause of cancer-related deaths (1). In

China, LUAD represents the predominant subtype of non-small cell

lung cancer (34). The majority of patients are diagnosed at

advanced stages, at which point surgery is often no longer viable.

Despite some effectiveness of targeted and immunotherapies, the

issue of resistance persists, resulting in poor long-term survival

rates. Hence, the investigation and detection of molecular markers

are crucial for identifying patients suitable for specific therapies and

monitoring resistance, thereby enhancing treatment strategies and

prognoses. GSH metabolism is pivotal in the onset, progression,
FIGURE 5

Nomogram Development and Validation (A) Nomogram. (B) Corresponding calibration curve. (C, D) K-M analysis of OS.
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and immune response of tumors (35, 36). GSH regulates cell

proliferation, apoptosis, and immune function (37). Novel

therapeutic approaches targeting GSH metabolism could enhance

treatment efficacy and address drug resistance. LncRNAs have been

reported to play an irreplaceable role in many cancers, particularly

in lung cancer research, with examples including MALAT1 and

LINC00707 (9, 36). This study aims to investigate and validate GSH

metabolism-related lncRNAs in LUAD, to assess their role in

prognosis and immune response, and to enhance personalized

treatment outcomes.

Initially, lncRNAs related to GSH metabolism were identified

through co-expression analysis, and prognostically significant

lncRNAs were selected using LASSO-Cox analysis. The criteria

for lncRNA selection (Pearson correlation > 0.4, p < 0.001) were

established to balance biological relevance, statistical significance,

and clinical feasibility. This ensured the identification of highly

relevant lncRNA features, enhancing model interpretability and

predictive accuracy and avoiding unnecessary complexity. Six risk

factors (AL162632.3, AL360270.1, LINC00707, DEPDC1-AS1,
Frontiers in Immunology 11
GSEC, and LINC01711) and three protective factors (AL078590.2,

AC026355.2, and AL096701.4) were included. LINC00707 has been

shown to play significant biological roles in various cancers by

interacting with Smad proteins to regulate TGFb signaling and

promote cancer cell invasion (38). Its oncogenic function is further

supported by studies in breast and gastric cancers, where elevated

LINC00707 expression is associated with reduced patient survival

(39). DEPDC1-AS1, an antisense RNA of DEPDC1, promotes

proliferation and migration of human gastric cancer cells

HGC-27 via the R-F11R pathway (40). LINC01711 can also

promote hepatic fibrosis cell proliferation and migration by

regulating XYLT1 (41). Moreover, this study is the first to report

that AL162632.3, AL360270.1, GSEC, AL078590.2, AC026355.2,

and AL096701.4 may be related to the prognosis of LUAD.

Although not previously associated with tumor prognosis, these

lncRNAs provide new insights into LUAD pathogenesis and

warrant further investigation.

Samples were randomly divided into training and validation

sets at a 7:3 ratio, and patients were stratified into high- and low-
FIGURE 6

Gene function enrichment analysis. (A) Bar graphs and (B) chord diagrams displaying significant GO enrichment outcomes. (C) Bubble charts
illustrating significant KEGG enrichment findings. (D) GSVA analysis for lncRNA (AL360270.1).
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risk groups using the median risk score. Kaplan-Meier analysis

showed significantly worse prognosis for the high-risk group, which

was consistent across different cohorts, with DFS and risk curves

aligning with OS results. The model outperformed clinical factors in

predicting LUAD prognosis, as confirmed by ROC and C-index

analyses. PCA demonstrated that the lncRNAs in the model

effectively differentiated risk groups. The nomogram integrating

clinical features enabled personalized prognostic stratification for

post-surgical LUAD patients. High-risk individuals may benefit

from additional treatments, such as immunotherapy or adjuvant

chemotherapy. Enhanced follow-up strategies could further aid in

early recurrence detection.

Functional analysis of differentially expressed genes revealed

enrichment in immune-related pathways, including cytokine-
Frontiers in Immunology 12
cytokine receptor interactions and hematopoietic lineage. These

findings highlight their critical role in immune regulation.

CIBERSORT analysis showed increased immunosuppressive

Tregs and M2 macrophages in the high-risk group, alongside

reduced CD8+ T cells and M1 macrophages, indicating an

immunosuppressive microenvironment conducive to tumor

progression. Furthermore, the high-risk group exhibited impaired

immune functions, including reduced Type II interferon responses.

In contrast, the low-risk group demonstrated enhanced MHC class

I expression and cytotoxic activity, underscoring the importance of

immune modulation in prognosis and therapy.

Mutation analysis revealed significantly higher TMB in the

high-risk group, primarily driven by mutations in key genes such

as TP53, KRAS, and MUC16 (42–44). High TMB correlated with
FIGURE 7

Immunological relevance analysis. (A) Stacked bar charts showing the composition ratios of classic immune cells in LUAD patient samples.
(B) Bubble charts showing immune cell infiltration. (C) Analysis of the correlation between risk scores and immune pathways. (D) Correlation
heatmap. (E) Violin plots showing the stroma, immune, and estimated scores. (F) Correlation analysis between risk scores and tumor stemness.
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better survival rates (p=0.024), but patients in the high-risk group

with low TMB had the worst outcomes, which is likely attributable

to reduced immunogenicity and increased tumor aggressiveness.

Conversely, patients with high TMB and low-risk scores had the
Frontiers in Immunology 13
best survival, suggesting a favorable response to immunotherapy.

Tumor stemness analysis showed that higher RNAss correlated

with increased risk scores (R = 0.22, p = 3.7e−07). This finding

indicates that high-risk tumors possess stronger stemness traits
FIGURE 8

Examination of TMB. (A, B) Waterfall plots displaying notable gene mutations. (C) Comparative analysis of TMB. (D) K-M curve analysis evaluating the
effect of high and low TMB on overall survival (OS). (E) K-M curve analysis of patient overall survival (OS) according to TMB and risk scores.
(F) Analysis of the relationship between risk scores and immunotherapy responses. *** p < 0.001.
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linked to aggressiveness and treatment resistance. Clinically,

targeting tumor stemness could improve patient outcomes. TIDE

analysis revealed that low-risk tumors, despite their better

prognosis, exhibited strong immune evasion features, highlighting

the importance of developing personalized immunotherapy

strategies. Chemotherapy sensitivity analysis showed reduced

efficacy of standard agents in the high-risk group but increased

sensitivity to targeted therapies like Selumetinib, Ribociclib, and

Axitinib. These findings highlight the reliance of high-risk
Frontiers in Immunology 14
tumors on specific pathways, providing guidance for future

therapeutic strategies.

Additionally, we conducted independent prognostic analyses on

9 lncRNAs involved in the model construction and identified 5

statistically significant lncRNAs: 3 risk factors (AL162632.3,

LINC01711, and GSEC) and 2 protective factors (AC026355.2

and AL096701.4). ts showed close alignment with prior

bioinformatics analysis. In particular, AL162632.3 was

upregulated in all selected lung cancer cell lines, with the most
FIGURE 9

Drug sensitivity analysis. (A–G) Currently Approved and Investigational Sensitive Drugs for Lung Cancer Based on Model Predictions.
FIGURE 10

Validation of the expression of lncRNAs in vitro cell experiments. Analysis of expression levels of lncRNAs associated with (A) risk factors and
(B) protective factors in HBE, PC9, H1299, A549, and H1975. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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notable expression in the H1299 cell line. The high expression of

AL162632.3 may promote malignant behaviors in lung cancer cells.

In contrast, AC026355.2 showed marked downregulation in the

selected lung cancer cell lines, suggesting its potential anticancer

activity. The downregulation of AC026355.2 may lead to a

weakened response to growth-inhibiting signals in lung cancer

cells, thereby aiding the progression of lung cancer. Hence,

reinstating the expression of AC026355.2 could suppress lung

cancer cells, providing a potential therapeutic target for lung cancer.

RT-qPCR analysis confirmed significant overexpression of lnc-

AL162632.3 in lung cancer cell lines. To investigate its biological

role, we transiently knocked down lnc-AL162632.3 in H1299 and

A549 cells using RNAi technology. Knockdown significantly

reduced cell proliferation, as shown by CCK8 and colony

formation assays, and impaired migration and invasion in wound

healing and invasion assays. In vivo, subcutaneous tumor models in

nude mice revealed that tumors in the knockdown group were

significantly smaller in volume and weight compared to controls.

These findings indicate that lnc-AL162632.3 overexpression
Frontiers in Immunology 15
promotes lung cancer progression. To elucidate its regulatory

mechanisms, future research will employ transcriptome

sequencing to identify potential targets, such as GSH metabolism-

related enzymes (e.g., GCLC, GSS) or signaling pathways

influencing the tumor immune microenvironment. Additionally,

RNA immunoprecipitation (RIP), chromatin immunoprecipitation

(ChIP), and luciferase reporter assays will be used to validate these

regulatory mechanisms.

This study highlights the role of GSH metabolism-related

lncRNAs in LUAD while acknowledging certain limitations. The

mechanisms by which lncRNAs regulate GSH metabolism remain

unclear. The lack of suitable lncRNA probes has limited external

validation, which we plan to address with RNA-seq in clinical

samples. While LASSO-Cox was used for feature selection, future

studies with larger samples should compare other methods like

random forests. The nomogram predicts LUAD prognosis

effectively but faces challenges such as individual variability in

treatment response and lncRNA detection feasibility in

clinical settings.
FIGURE 11

Downregulation of lnc-AL162632.3 inhibits LUAD growth. (A, B) Verification of interference efficiency. (C, D) CCK8 proliferation curves. (E, F) Colony
formation assay. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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5 Conclusions

This study demonstrated the prognostic importance of GSH

metabolism-related lncRNAs in lung adenocarcinoma and

developed a risk stratification model, which was further

in t eg ra t ed in to a nomogram for enhanced c l in i ca l
Frontiers in Immunology 16
applicability. High-risk patients were characterized by

increased TMB and stemness, suggesting a strong link

between gene mutations and patient outcomes. These

findings underscore the potent ia l o f the model and

nomogram to guide personalized immunotherapy strategies

and improve survival in lung adenocarcinoma.
FIGURE 12

Downregulation of lnc-AL162632.3 inhibits migration and invasion in LUAD. (A, B) Wound healing assay. (C) Invasion assay. (D-F) Xenograft tumor
model in nude mice. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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