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Gene regulation and signaling
pathways in immune response to
respiratory sensitizers: a
database analysis
Taylor Jefferis 1, James Y. Liu 1, Kiera L. Griffin 1,
Matthew Gibb 2 and Christie M. Sayes 1,2*

1Department of Environmental Science, Baylor University, Waco, TX, United States, 2Institute of
Biomedical Studies, Baylor University, Waco, TX, United States
Introduction: Humans are regularly exposed to environmental substances

through inhaled air. Some chemicals or particles are respiratory sensitizers that

can cause adverse respiratory health effects by triggering amplified immune

responses. Understanding the process of respiratory sensitization and identifying

potential sensitizers have been challenging due to the complexity of the

underlying mechanisms.

Methods: This study leverages the transcriptomics from a previous in vitro 3D

human lung model to investigate the pathways of chemical respiratory

sensitization. Differentially expressed genes between two known and two

nonsensitizers are cross-referenced against databases on biological processes

and disease pathways.

Results: The GO results revealed 43 upregulated genes, and the KEGG revealed

52. However, only 18 upregulated genes were common between GO and KEGG.

The GO results revealed 26 downregulated genes, and the KEGG revealed 40.

However, only 9 of those downregulated genes were common.

Discussion: These findings support using multiple databases in perturbed gene

analyses. The results from this study and data available in the scientific literature

contribute toward building a biomarker profile for identifying respiratory sensitizers.
KEYWORDS

KEGG, GO, immune, immunoregulation, pathway analysis
Introduction

The main objective of this paper is to emphasize the benefits of using multiple databases

in pathway analysis to determine the potential of a chemical to act as a respiratory

sensitizer. RNAseq generates an overwhelming number of genes that are either upregulated

or downregulated. RNAseq data must be processed systematically to ensure reliable and
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rigorous interpretation. We propose utilizing online, free, publicly

available bioinformatics database tools to reduce the millions of

genes produced from sequencing to a manageable number that can

generate testable hypotheses in an in vivo study or clinical trial.

Therefore, we have demonstrated another valid reason for

conducting in vitro screening tests to complement the previously

established reasons for conducting in vitro and in vivo testing (1, 2).

Through inhalation, people can be exposed to various exogenous

materials found in the air, including chemical vapors, particulate

matter, and microbes that may cause acute or chronic lung irritation

(2–6). In addition, people can be exposed to asthmagens, which can

lead to hyperreactivity symptoms without an immunological reaction

(7–11), whereas inhalation of respiratory sensitizers may cause long-

term adverse immunological outcomes in the lungs due to amplified

responses from repeated exposures (12).

In a previous study, researchers investigated the transcriptome

of dendritic cells, macrophages, and epithelial cells (2). After

examining these transcriptomes of cells exposed to two known

respiratory sensitizers and comparing them to cells exposed to two

known non-sensitizers, a better idea of the effects of several different

lung cells can be achieved. Compared to a less representative mono-

culture model, the multi-cell culture system helps to mimic the

relative lung compartment’s effects. This data was then used for an

in-depth pathway analysis as a low-cost alternative to traditional in

vivo models (13).

Pathway analysis combines biomolecular function knowledge with

statistical techniques to interpret high-complexity biological data (14–

16). However, these analyses are not routinely reported upon in the

literature. Measuring multiple genes in a single-cell system enables

advanced synthesis into possible perturbed biological processes. To that

end, databases such as the Alliance of Genome Resources Gene

Ontology (GO) Consortium and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) can elucidate pathways associated with the

transcriptome of respiratory sensitizers (17, 18). GO provides

consistent descriptors for gene products and standardizes

classifications for sequences and their features (19–22).

Investigating novel methods for identifying respiratory

sensitizers will ultimately improve health and safety outcomes for

those exposed to these materials. Our findings will contribute to

building a biomarker profile to identify respiratory sensitizers using

pathway analysis. However, the main objective of this paper is to

emphasize the benefit of using multiple databases in pathway

analysis to conclude the ability of a chemical to be a respiratory

sensitizer. It is hypothesized that using multiple databases will

identify more perturbed genes that may arise from exposure to

respiratory sensitizers than previously discovered.
Materials and methods

Experimental overview

Part of the methods for this paper are adapted from the

previously mentioned study (2, 23–27). The only difference in

methods from the previous paper to this one is the addition of
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analysis using KEGG and GO together rather than GO by itself.

This allows for a more comprehensive analysis of the RNAseq data

from the previous study.
The multiple cell culture model system

A multi-cell culture system was developed using epithelial cells

(A549), macrophages (differentiated U937), and dendritic cells

(differentiated THP-1) in a 12-well plate fitted with polyethylene

terephthalate (PET) Transwell® membranes (Corning, Tewksbury,

MA, USA). Cells were cultured in complete RPMI (cRPMI) 1640

(Thermo Fisher Scientific Inc. Waltham, MA, USA) with 10% FBS

and 1% penicillin-streptomycin. The dendritic cells were also

supplemented with 2-mercaptoethanol at a final concentration of

0.05 mM. All cells were maintained at 37°C in a humidified 5% and

CO2 atmosphere.

Monocytes (U937) were incubated for 24 hr with 100 ng/mL

phorbol 12-myristate-13-acetate (PMA) to differentiate into

macrophages (28). The cells were washed twice with sterile 1X

PBS before replenishing the media and allowing them to rest in the

incubator for 72 hours before trypsinization and resuspension to be

counted and plated. Monocytes (THP-1) were centrifuged and

resuspended at 2×105 cells/mL, then cultured in a serum-free

medium supplemented with rhIL-4 (200 ng/mL), rhGM-CSF (100

ng/mL), rhTNFa (20 ng/mL), and 200 ng/mL ionomycin, all

purchased from Thermo Fisher Scientific. To complete

differentiation into dendritic cells, they were left to rest for 48 hr

in the incubator before plating.

Epithelial cells were plated with a seeding density of 28×104

cells/cm2 and allowed to adhere for 72 hr. The inserts were then

inverted and placed into sterile glass Petri dishes so that dendritic

cells could be plated at a seeding density of 7×104 cells/cm2 on the

basal surface of the membrane and allowed to adhere for 4 hr.

Inserts were then reverted and placed back into the well plate to

seed the macrophages at a 1:9 ratio of U937:A549. The media was

supplemented with 2-mercaptoethanol and added to the basolateral

chamber of the wells, and the total volume was replenished to 500

mL. The model was left in the incubator for 24 hr before adding

chemical exposures.
Chemical exposures

Isophorone diisocyanate (IPDI, Thermo Fisher Scientific, Inc.) was

added at 25 mM, and ethylenediamine (ED, Thermo Fisher Scientific,

Inc.) was added at 500 mM as positive controls for respiratory

sensitization (29–33). Chlorobenzene (CB, Thermo Fisher Scientific,

Inc.) was added at 98 mM, and dimethylformamide (DF, Thermo

Fisher Scientific, Inc.) at 500 mM as negative controls/non-sensitizers

(29, 34). Each chemical was introduced only to the apical compartment

in its respective concentration. A vehicle (dimethyl sulfoxide, DMSO)

was used to solubilize IPDI and CB. After 24 hr of chemical exposure,

RNA extraction and sequencing were performed at Azenta Life

Sciences (South Plainfield, NJ, USA).
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RNA extraction

Total RNA was extracted from frozen pellets using RNeasy Plus

Universal mini kit (Qiagen, Hilden, Germany). RNA was quantified

using a Qubit 2.0 fluorometer (Life Technologies, Carlsbad, CA,

USA), and the integrity was checked using Agilent TapeStation

4200 (Agilent Technologies, Palo Alto, CA, USA). Sequencing

libraries were then prepared using the NEBNext Ultra II RNA

Library Prep for Illumina (NEB, Ipswich, MA, USA). mRNAs were

fragmented for 15 min at 94°C and enriched with Oligod(T) beads.

First and second-strand cDNA was synthesized, and universal

adapters were ligated to cDNA fragments, which were repaired

and adenylated at 3’ ends. Then, index addition and library

enrichment by PCR before the libraries were validated on the

Agilent TapeStation (Agilent Technologies) and quantified by

using Qubit 2.0 Fluorometer (Invitrogen) along with quantitative

PCR (KAPA Biosystems, Wilmington, MA, USA).

The sequencing libraries were clustered on a lane of a HiSeq

flow cell, and samples were sequenced using a 2×150 bp paired-end

(PE) configuration. The software then conducted image analysis

and base calling. The raw sequence data (.bcl files) generated by the

sequencer were converted into fastq files and de-multiplexed using

Illumina’s bcl2fastq 2.17 software. One mismatch was allowed for

index sequence identification.
Data analysis

Following sequencing, the raw data was processed for further

analysis. Raw reads were checked for quality, trimmed to remove

adaptor sequences, and mapped to the reference genome

(ENSEMBL; STAR aligner v.2.5.2b). Unique gene hit counts were

calculated using feature counts of reads in exonic regions (Subread

package v.2.5.2b).

Determination of differential expression was done using the R

programming language using the packages gplots, ggplot2, viridis,

dplyr, tidyverse, GO.db, annotate, org.Hs.eg.db, and circlize.
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Log-2-fold-change (L2FC) was calculated for all treatments

normalized to untreated controls and for all sensitizers

normalized to non-sensitizers. Genes with L2FC values > 1 and

p-values < 0.05 (Wald test) were considered as differentially

expressed (35). Differentially expressed genes were then input

into the GO and KEGG databases, and the impacted terms and

pathways were extracted, respectively.

The top ten perturbed GO terms and KEGG pathways were

reported for each compartment using chord diagrams with a

hierarchical distance from the root (biological process) of five.

Data for all the differentially expressed genes was then used to

analyze the top ten most affected GO terms and KEGG pathways for

all samples pooled together.

Differentially expressed genes were extracted from raw hit

counts in R and used for pathway analysis. The most common

terms for GO biological processes with a hierarchical distance of 5

from the root were collected using the differentially expressed genes

grouped by the apical and basal compartments. Chord diagrams

were generated in R using the circlize package, mapping

relationships between the top ten terms and their associated

genes. The process was followed using KEGG pathways, and

chord diagrams were generated using the top 10 pathways.
Results

This study utilized data collected from a previous study to expand

upon the previous understanding and develop a more comprehensive

understanding of the ability to use pathway analysis in distinguishing

sensitizers from non-sensitizers. Figure 1 shows an overview of the

methods used to obtain this information. First, data was obtained

from the previously mentioned study. Then, the differentially

expressed genes from the aggregate of each compartment were

entered into the GO and KEGG databases to aid in forming chord

diagrams to display the results.

GO includes terms that provide unique information to group

genes based on their commonalities, which helps conclude which
FIGURE 1

The overall methods used to obtain the data in this study.
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genes are differentially expressed (29). GO is hierarchal, which splits

into biological processes, cellular components, and molecular

functions (30, 31). KEGG draws information about cells or

organisms based on their genome information (36, 37). This is

used to further information about pathway analysis and is more

specific to disease pathology, similar to the mechanisms involved in

the immune response to respiratory sensitization in humans (36).

GO analysis identifies pathways that may lead to potential

biomarker signatures, which can help determine potential

sensitizers. We prepared chord diagrams representing the data.

These depict the associations between differentially expressed genes

for apical cells (Figures 2A, B) and basal cells (Figures 2C, D) and

GO terms for biological processes (Table 1). Terms with a

minimum distance of 5 from the root are used. Upregulated and

downregulated genes and descriptions of each GO term are shown.

Figure 2 shows TNF, CCL3, CCL3L1, IL1B, FAS, FZD9,

GADD458, FOXF1 , ADAMTS1, CCDC80, MAP3K14, and

PLEKHG5 as upregulated genes in the apical compartment. The

downregulated genes of the apical compartment, according to the
Frontiers in Immunology 04
figure, are CD101, FPR1, CR1, FCGR2B, S100B, S100A12, ADGRG3,

AQP8, ZNF2, SNAI3, TRIM22, ONECUT1.

Figure 2 shows COL11A1, RAD50, RHOB, PMAIP1, BCL6,

HOXA5, CLU, ARID1A, MARK2, SGK1, ROCK2, BAZ1A,

MYBBP1A, SETD2 , ATRX, ABL1 , NUAK2, PLK2 , EGR3,

TNFSF18, ERBB2, TJP1, MSX1, TBX3, BCL3, IGF1R, MYC,

FLNA, THBS1, IL10, SOX9 as upregulated genes in the basal

compartment. The downregulated genes are ATP6V0D2, GPR65,

RGCC, CMKLR1, KIT, FCGR2B, HLA-G, CCR5, ADORA3, GPR34,

P2RY12, ZNF2, ZNF98, PLAG1, ZNF695, SNAI3, TRIM22.

KEGG pathways map the network of gene products, focusing

on disease pathways (38). We prepared chord diagrams

representing the data obtained from KEGG pathway analysis,

shown in Figure 3. These depict associations between

differentially expressed genes for apical cells and basal cells and

KEGG pathways. Upregulated and downregulated genes are shown,

and each KEGG pathway is described (Table 2).

The upregulated genes for the KEGG pathways to be PLEKGH5,

HEY1, FZD9, DUSP2, MAP3K14, GADD45B, CCL3, CCL3L1, FAS,
FIGURE 2

Chord diagrams depicting the associations between differentially expressed genes for cells and GO terms for biological process (minimum distance
of 5 from root). (A) The top 10 GO terms for upregulated genes in the apical compartment. (B) The top 10 GO terms for downregulated genes in the
apical compartment. (C) The top 10 GO terms for upregulated genes in the basolateral compartment. (D) The top 10 GO terms for downregulated
genes in the basolateral compartment.
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IL1B, TNF in the apical compartment, shown in Figure 3. The

downregulated genes for the apical compartment are CR1,

DNAJC5B, P2RX1, SELPLG, FPR1, IFITM1, SIRPB1, TEC,

FCGR2B, ZNF230, ZNF416, ZNF627, ZNF2, ZFP14.

Figure 3 shows the upregulated genes in the basal compartment

to be DEGS2, MGAT5B, DNMT1, XYLT2, ENTPD2, MTR, G6PD,

HBEGF, ITPR3, ITGB4, PPP1R12A, THBS1, MAP3K10, FLNA,

DUSP1, CACNG4, CSF1, CTTN, AFDN, TJP1, ACTN4, MYO10,

MYH14,MYH9, TUBB4A, TPR, JAG2, PTGER4, PMAIP1, LAMA5,

NOTCH3, COL4A5, COL4A2, ABL1, CDH1, AXIN2, TCF7L2,

ERBB2, ROCK2, GADD45B, IGF1R, MYC. The downregulated

genes are IL31RA, CRB3, GRIK2, RXFP1, FPR3, ADORA3, CCR5,

FCGR2B, ALDOC, ATP6V0D2, UQCRHL, ZNF10, ZNF420,

ZNF561, ZNF606, ZNF436, ZNF549, ZNF2, ZNF98, ZNF566,

ZNF230, ZNF773, ZNF416, ZNF671, ZNF250, ZNF816, ZNF324,

ZNF845, ZNF627, ZNF586, HLA-G.

Figures 4, 5 each show the associated gene counts for each GO

and KEGG term, respectively. These demonstrate the number of

perturbed genes from the exposures related to each disease process

or other perturbation.

Figure 4 shows the number of genes associated with each GO

term. Of the 926 genes uploaded into the GO database, 622 were

accepted and able to be processed. 570 of those 622 genes had

uniquely mapping gene IDs. GO terms with less than 200 associated

gene counts were omitted from the figures. Each GO term in the

final figure represented broad categories of cellular function, hence

the high numbers of associated genes.

These differentially expressed genes were then input into the

GO database to reveal common processes regulated by the affected

genes with a hierarchical distance of 3 from the root biological

process (2). For the upregulated genes, the most common GO terms

were G protein-coupled receptor signaling pathway, negative

regulation of cell population proliferation, cell differentiation,

angiogenesis, humoral immune response, regulation of cell cycle,

necroptotic signaling pathway, monoatomic ion transmembrane

transport, osteoblast differentiation, vascular endothelial growth

factor production, positive regulation of cell population

proliferation, mitotic cell cycle, regulation of cell population

proliferation, spermatogenesis, response to xenobiotic stimulus,

microtubule-based movement, and actin cytoskeleton organization.

The downregulated genes had GO terms related to purinergic

nucleotide & adenosine cell surface receptor signaling pathway, G

protein-coupled receptor signaling pathway, innate immune

response, negative regulation of cell population proliferation,

response to a virus, positive regulation of phagocytosis, defense

response, negative regulation of immune response, adaptive

immune response, fol l icular dendritic cel l activation,
TABLE 1 Description of GO Terms.

GO Term Description

GO:0071346 cellular response to type II interferon

GO:0030593 neutrophil chemotaxis

GO:0043065 positive regulation of apoptotic process

GO:0071407 cellular response to organic cyclic compound

GO:0048245 eosinophil chemotaxis

GO:0070098 chemokine-mediated signaling pathway

GO:0030198 extracellular matrix organization

GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB signaling

GO:0051897 positive regulation of protein kinase B signaling

GO:0019722 calcium-mediated signaling

GO:0006355 regulation of DNA-templated transcription

GO:0030183 B cell differentiation

GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB signaling

GO:0043318 negative regulation of cytotoxic T cell degranulation

GO:0002430 complement receptor mediated signaling pathway

GO:0050869 negative regulation of B cell activation

GO:0002865
negative regulation of acute inflammatory response to
antigenic stimulus

GO:0002924
negative regulation of humoral immune response mediated by
circulating immunoglobulin

GO:2001199 negative regulation of dendritic cell differentiation

GO:0002763 positive regulation of myeloid leukocyte differentiation

GO:0043066 negative regulation of apoptotic process

GO:0006355 regulation of DNA-templated transcription

GO:0006468 protein phosphorylation

GO:0006338 chromatin remodeling

GO:0043065 positive regulation of apoptotic process

GO:0042981 regulation of apoptotic process

GO:0006897 endocytosis

GO:0006281 DNA repair

GO:0030198 extracellular matrix organization

GO:0006334 nucleosome assembly

GO:0006355 regulation of DNA-templated transcription

GO:0035589
G protein-coupled purinergic nucleotide receptor
signaling pathway

GO:0001973 G protein-coupled adenosine receptor signaling pathway

GO:0019722 calcium-mediated signaling

GO:2001199 negative regulation of dendritic cell differentiation

GO:0043552 positive regulation of phosphatidylinositol 3-kinase activity

GO:0070098 chemokine-mediated signaling pathway

(Continued)
TABLE 1 Continued

GO Term Description

GO:0051496 positive regulation of stress fiber assembly

GO:1902600 proton transmembrane transport

GO:0016241 regulation of macroautophagy
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spermatogenesis, chemotaxis, negative regulation of immune

response, the establishment of localization in cell, negative

regulation of cytokine production, response to bacterium, and

defense response.

The most common GO pathways for the apical compartment

cells were chemokine receptor signaling, cell cycling, and humoral

responses (upregulated) and G protein-coupled receptor signaling,

innate and adaptive immune responses, and phagocytosis

(downregulated). The pathways for the basal cells were cell

differentiation, actin cytoskeleton organization, microtubule

movement, response to xenobiotic stimulus (upregulated) and

receptor signaling, chemotaxis, negative regulation of immune

response, negative regulation of cytokine production, and defense

response (downregulated).

Figure 5 shows the number of genes associated with each KEGG

pathway. Of the 926 genes uploaded into the KEGG database, 368

were accepted and able to be processed. Those with less than 10

associated gene counts were omitted from the figures.
Frontiers in Immunology 06
The GO database detected a few more upregulated genes in the

apical compartment than the KEGG database. However, in the basal

compartment, the KEGG database found several more genes to be

upregulated than the GO database did. In the same vein, the KEGG

database found more genes to be downregulated in both the apical

and basal compartments. The common genes found to be

upregulated, in both the apical and basal compartment, between

the GO and KEGG database include ABL1, CCL3, CCL3L1, ERBB2,

FAS, FLNA, FZD9, GADD458, IGF1R, IL1B, MAP3K14, MYC,

PLEKHG5, PMAIP1, ROCK2, THBS1, TJP1, and TNF. However,

fewer common genes were downregulated in both the apical and

basal compartments than upregulated. These include ADORA3,

ATP6V0D2, CCR5, CR1, FCGR2B, FPR1, HLA-G, ZNF2, ZNF98.

The top 10 GO terms found to be upregulated in the apical

compartment include GO:0071346, cellular response to type II

interferon; GO:0030593, neutrophil chemotaxis; GO:0043065,

positive regulation of apoptotic process; GO:0071407, cellular

response to organic cyclic compound; GO:0048245, eosinophil
FIGURE 3

Chord diagrams depicting the associations between differentially expressed genes for cells and KEGG pathways (homo sapiens). (A) The top 10
KEGG pathways for upregulated genes in the apical compartment. (B) The top 10 KEGG pathways for downregulated genes in the apical
compartment. (C) The top 10 KEGG pathways for upregulated genes in the basolateral compartment. (D) The top 10 KEGG pathways for
downregulated genes in the basolateral compartment.
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chemotaxis; GO:0070098, chemokine-mediated signaling pathway;

GO:0030198, extracellular matrix organization; GO:0043123,

positive regulation of I-kappaB kinase/NF-kappaB signaling;

GO:0051897, positive regulation of protein kinase B signaling;

GO:0019722, calcium-mediated signaling.

The top 10 GO terms found to be downregulated in the apical

compartment include GO:0006355, regulation of DNA-templated

transcription; GO:0030183, B cell differentiation; GO:0043123,

positive regulation of I-kappaB kinase/NF-kappaB signaling;

GO:0043318, negative regulation of cytotoxic T cell degranulation;

GO:0002430, complement receptor-mediated signaling pathway;

GO:0050869, negative regulation of B cell activation; GO:0002865,

negative regulation of acute inflammatory response to antigenic

stimulus; GO:0002924, negative regulation of humoral immune

response mediated by circulating immunoglobulin; GO:2001199,

negative regulation of dendritic cell differentiation; GO:0002763,

positive regulation of myeloid leukocyte differentiation.

The top 10 GO terms found to be upregulated in the basal

compartment include GO:0043066, negative regulation of apoptotic

process; GO:0006355, regulation of DNA-templated transcription;

GO:0006468, protein phosphorylation; GO:0006338, chromatin

remodeling; GO:0043065, positive regulation of apoptotic process;

GO:0042981, regulation of apoptotic process; GO:0006897,

endocytosis; GO:0006281, DNA repair; GO:0030198, extracellular

matrix organization; GO:0006334, nucleosome assembly.

The top 10 GO terms found to be downregulated in the basal

compartment include GO:0006355, regulation of DNA-templated

transcription; GO:0035589, G protein-coupled purinergic

nucleotide receptor signaling pathway; GO:0001973, G protein-

coupled adenosine receptor signaling pathway; GO:0019722,

calcium-mediated signaling; GO:2001199, negative regulation of

dendritic cell differentiation; GO:0043552, positive regulation of

phosphatidylinositol 3-kinase activity; GO:0070098, chemokine-

mediated signaling pathway; GO:0051496, positive regulation of

stress fiber assembly; GO:1902600, proton transmembrane

transport; GO:0016241, regulation of macroautophagy.

The top 10 KEGG pathways for upregulated genes in the apical

compartment include hsa04060, cytokine-cytokine receptor

interaction; hsa05142, Chagas disease; hsa05163, human

cytomegalovirus infection; hsa05417, lipid and atherosclerosis;

hsa04620, toll-like receptor signaling pathway; hsa05323, rheumatoid

arthritis; hsa04010, MAPK signaling pathway; hsa04061, viral protein

interaction with cytokine and cytokine receptor; hsa05165, human

papillomavirus infection; hsa05200, pathways in cancer.

The top 10 KEGG pathways for downregulated genes in the

apical compartment include hsa05168, Herpes simplex virus 1

infection; hsa04380, osteoclast differentiation; hsa04662, B cell

receptor signaling pathway; hsa05150, Staphylococcus aureus

infection; hsa04080, neuroactive ligand-receptor interaction;

hsa04141, protein processing in endoplasmic reticulum; hsa04613,

neutrophil extracellular trap formation; hsa05152, tuberculosis;

hsa04020, calcium signaling pathway; hsa04145, phagosome.

The top 10 KEGG pathways for upregulated genes in the basal

compartment include hsa05200, pathways in cancer; hsa04814,
TABLE 2 Description of KEGG Pathways.

KEGG Pathway Description

hsa04060 Cytokine-cytokine receptor interaction

hsa05142 Chagas disease

hsa05163 Human cytomegalovirus infection

hsa05417 Lipid and atherosclerosis

hsa04620 Toll-like receptor signaling pathway

hsa05323 Rheumatoid arthritis

hsa04010 MAPK signaling pathway

hsa04061
Viral protein interaction with cytokine and
cytokine receptor

hsa05165 Human papillomavirus infection

hsa05200 Pathways in cancer

hsa05168 Herpes simplex virus 1 infection

hsa04380 Osteoclast differentiation

hsa04662 B cell receptor signaling pathway

hsa05150 Staphylococcus aureus infection

hsa04080 Neuroactive ligand-receptor interaction

hsa04141 Protein processing in endoplasmic reticulum

hsa04613 Neutrophil extracellular trap formation

hsa05152 Tuberculosis

hsa04020 Calcium signaling pathway

hsa04145 Phagosome

hsa05200 Pathways in cancer

hsa04814 Motor proteins

hsa04530 Tight junction

hsa05225 Hepatocellular carcinoma

hsa04010 MAPK signaling pathway

hsa04510 Focal adhesion

hsa05132 Salmonella infection

hsa05205 Proteoglycans in cancer

hsa01100 Metabolic pathways

hsa05130 Pathogenic Escherichia coli infection

hsa05168 Herpes simplex virus 1 infection

hsa01100 Metabolic pathways

hsa04145 Phagosome

hsa05203 Viral carcinogenesis

hsa00190 Oxidative phosphorylation

hsa04080 Neuroactive ligand-receptor interaction

hsa05165 Human papillomavirus infection

hsa04060 Cytokine-cytokine receptor interaction

hsa04142 Lysosome
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motor proteins; hsa04530, tight junction; hsa05225, hepatocellular

carcinoma; hsa04010, MAPK signaling pathway; hsa04510, focal

adhesion; hsa05132, salmonella infection; hsa05205, proteoglycans

in cancer; hsa01100, metabolic pathways; hsa05130, pathogenic

Escherichia coli infection.
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The top 10 KEGG pathways for downregulated genes in the

basal compartment include hsa05168, Herpes simplex virus 1

infection; hsa01100, metabolic pathways; hsa04145, phagosome;

hsa05203 , v i ra l carc inogenes i s ; hsa00190 , ox ida t ive

phosphorylation; hsa04080, neuroactive ligand-receptor
FIGURE 4

Associated gene counts for each GO term. Terms are arranged in order of total gene hit counts. 926 genes were uploaded into the GO database.
From the 622 gene IDs that were accepted and processed, 570 had uniquely mapped IDs. Terms with less than 200 gene counts were omitted from
this figure.
FIGURE 5

Associated gene counts for each KEGG pathway. Terms are arranged in order of total gene hit counts. 926 genes were uploaded into the KEGG
database, and 368 were accepted and processed. Terms with less than 10 gene counts were omitted from this figure.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1470602
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jefferis et al. 10.3389/fimmu.2025.1470602
interaction; hsa05152, tuberculosis ; hsa05165, human

papillomavirus infection; hsa04060, cytokine-cytokine receptor

interaction; hsa04142, lysosome.

By adding KEGG pathway analysis to this data set, this study

can provide a more complete depiction of the genes affected by

respiratory sensitizers (39–42). The genes that are discovered as

upregulated by KEGG, but not by GO terms include ACTN4,

AFDN, AXIN2, CACNG4, CDH1, COL4A2, COL4A5, CSF1,

CTTN, DEGS2, DNMT1, DUSP1, DUSP2, ENTPD2, G6PD,

HBEGF, HEY1, ITGB4, ITPR3, JAG2, LAMA5, MAP3K10,

MGAT5BI, MTR, MYH14, MYH9, MYO10, NOTCH3, PPP1R12A,

PTGER4, TCF7L2, TPR, TUBB4A, XYLT2 (Figure 6A). The genes

that are discovered as downregulated by KEGG but not by GO

terms include ALDOC, CRB3, DNAJC5B, FPR3, GRIK2, IFITM1,

IL31RA, P2RX1, RXFP1, SELPLG, SIRPB1, TEC, UQCRHL, ZFP14,

ZNF10, ZNF230, ZNF250, ZNF324, ZNF416, ZNF420, ZNF436,

ZNF549, ZNF561, ZNF566, ZNF586, ZNF606, ZNF627, ZNF671,
Frontiers in Immunology 09
ZNF773, ZNF816, ZNF845 (Figure 6B). With KEGG pathway

analysis, many genes that were perturbed when using the GO

database were noticed as insignificant. This demonstrates the

need to use multiple databases when performing pathway analysis

to understand the effects of respiratory sensitizers or other irritants.
Discussion

The GO database groups genes based on different subjects and

qualities to develop a database that can annotate genes, gene

products, and sequences (20). Specifically, GO seeks to integrate

consistent gene product descriptors and standardize classifications

for sequences and their features (29, 32). KEGG analysis aids in

developing a list of related genes and assembling those genes into a

proposed biological pathway. The resultant data can be used to

probe protein interaction networks (43). These have shown to be
FIGURE 6

Venn diagrams depicting the similarities and differences between genes associated with GO and KEGG. (A) The common upregulated genes and (B)
the common downregulated genes in KEGG and GO analyses.
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beneficial when used together, such as reviewing chemicals to

determine the difference between carcinogens and non-

carcinogens and other toxic properties of chemicals that may

prevent human exposure to harmful substances (38, 43–45).

While both databases are useful for pathway analysis, they are

structured differently to be useful in different scenarios. While the

KEGG database may be easier to understand due to its list-like

structure, the GO database is used for a more complex view of the

relationships between gene functions (30, 44). Therefore, choosing

which databases to use is up to the researcher based on the

study’s goals.

In a previous study, the GO database was used to evaluate the

different biological processes affected by exposure to respiratory

sensitizers (2). A variety of genes was found to be differentially

expressed between cell culture models exposed to sensitizers versus

non-sensitizers. The cells contained in the apical compartment of

the model, the epithelial (A549) and macrophage (U937) cells, were

compared to those cultured in the basal compartment, the dendritic

cells (THP-1).

Gene expression is fundamentally related to protein expression;

an excess or deficiency of proteins could lead to disease onset. Chen

et al. (2015) (52) pre-classified drug-target interactions (DTI) and

mapped a benchmark dataset consisting of 2,015 drugs that were

assigned to nine biological endpoint categories (G protein-coupled

receptors, cytokine receptors, nuclear receptors, ion channels,

transporters, enzymes, kinases, antigens, and pathogens) using

gene ontology and KEGG pathway enrichment analysis (38). The

same research team, in 2016, connected the toxic properties of

171,266 chemicals retrieved from the Accelrys Toxicity Database

(40). The categories of toxicity effects used in the analysis included

acute toxicity, mutagenicity, tumorigenicity, skin and eye irritation,

and reproductive effects.

Many other in vitro assays have previously focused on utilizing

transcriptomic signatures to identify respiratory sensitizers. These

assess the expression of genes related to the immune system,

inflammatory cytokines, and associated cell signaling pathways

(29, 44, 45). Other notable upregulated pathways for respiratory

sensitizers included oxidative phosphorylation; ubiquinone

metabolism; cytoplasmic/mitochondrial transport of proapoptotic

proteins Bid, Bmf, and Bim; astrocyte differentiation; cell cycle

regulation via Nek; ATP and ITP metabolism; dynein-dynactin

motor complex in axonal transport; and insulin regulation of

translation (29). Several of these pathways were also confirmed to

be upregulated in this analysis. Many of these pathways are

consistent when compared to the adverse outcome pathway for

sensitization of the respiratory tract by low-molecular-weight

chemicals presented by Sullivan et al. (42).

Though past research has investigated leveraging transcriptomics

to identify respiratory sensitizers and distinguish sensitization types,

most focus on a narrow set of endpoints: immune cell recruitment

and inflammatory signaling pathways. Additionally, previous work

has only considered upregulated genes, yet downregulated genes,

which are considered here, also play a role in which proteins are

present in the cellular environment. Finally, most previous studies

used a monoculture cell model for data generation. This study
Frontiers in Immunology 10
expands this view of transcriptomics to a broader range of

outcomes and uses data from a triculture model to create a more

robust and physiologically relevant dataset. This work combines

features from past studies with KEGG and GO data to build a

more nuanced understanding of the genes and pathways affected by

respiratory sensitization (46–54).
Conclusions

The upregulated and downregulated genes identified

through GO and KEGG analyses represent strong candidates for

biomarker identification in respiratory sensitization. These

pathways require further toxicological analyses. Developing a

more comprehensive understanding of how the genes and

pathways affect human health outcomes is essential for better

understanding respiratory sensitization. Additionally, for future

data analyses, utilizing the GO and KEGG analysis results is a

powerful tool for identifying potential biomarkers related to

adverse health conditions.
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14. Garcıá-Campos MA, Espinal-Enrıq́uez J, Hernández-Lemus E. Pathway analysis:
state of the art. Front Physiol. (2015) 6:170515. doi: 10.3389/fphys.2015.00383

15. Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches
and outstanding challenges. PloS Comput Biol. (2012) 8:e1002375. doi: 10.1371/
journal.pcbi.1002375

16. Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO, et al.
Comparison of network-based pathway analysis methods. Trends Biotechnol. (2004)
22:400–5. doi: 10.1016/j.tibtech.2004.06.010

17. KEGG: Kyoto Encyclopedia of Genes and Genomes. (2024). Available online at:
https://www.genome.jp/kegg/ (Accessed July 29, 2024).

18. Gene ontology resource. Gene Ontology. (2024). https://geneontology.org/
(Accessed July 29 2024).

19. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. Nat Genet. (2000) 25:25–9. doi: 10.1038/
75556

20. Consortium GO. The Gene Ontology (GO) database and informatics resource.
Nucleic Acids Res. (2004) 32:D258–61. doi: 10.1093/nar/gkh036

21. Consortium GO. The gene ontology resource: 20 years and still GOing strong.
Nucleic Acids Res. (2019) 47:D330–8. doi: 10.1093/nar/gky1055
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