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Objective: This study aims to examine the impact of systemic lupus erythematosus

(SLE) on various organs and tissues throughout the body. SLE is a chronic

autoimmune disease that, if left untreated, can lead to irreversible damage to these

organs. In severe cases, it can even be life-threatening. It has been demonstrated that

prompt diagnosis and treatment are crucial for improving patient outcomes.

However, applying spectral data in the classification and activity assessment of SLE

reveals a high degree of spectral overlap and significant challenges in feature

extraction. Consequently, this paper presents a rapid and accurate method for

disease diagnosis and activity assessment, which has significant clinical implications

for achieving early diagnosis of the disease and improving patient prognosis.

Methods: In this study, a two-branch Bayesian network (DBayesNet) based on

Raman spectroscopy was developed for the rapid identification of SLE. Serum

Raman spectra samples were collected from 80 patients with SLE and 81

controls, including those with dry syndrome, undifferentiated connective tissue

disease, aortitis, and healthy individuals. Following the pre-processing of the raw

spectra, the serum Raman spectral data of SLE were classified using the deep

learning model DBayes. DBayesNet is primarily composed of a two-branch

structure, with features at different levels extracted by the Bayesian

Convolution (BayConv) module, Attention module, and finally, feature fusion

performed by Concate, which is performed by the Bayesian Linear Layer

(BayLinear) output to obtain the result of the classification prediction.

Results: The two sets of Raman spectral data weremeasured in the spectral wave

number interval from 500 to 2000 cm-1. The characteristic peaks of serum

Raman spectra were observed to be primarily located at 1653 cm-1 (amide I), 1432

cm-1 (lipid), 1320 cm-1 (protein), 1246 cm-1 (amide III, proline), and 1048 cm-1

(glycogen). The following peaks were identified: 1653 cm-1 (amide), 1432 cm-1

(lipid), 1320 cm-1 (protein), 1246 cm-1 (amide III, proline), and 1048 cm-1

(glycogen). A comparison was made between the proposed DBayesNet

classification model and traditional machine and deep learning algorithms,
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including KNN, SVM, RF, LDA, ANN, AlexNet, ResNet, LSTM, and ResNet. The

results demonstrated that the DBayesNet model achieved an accuracy of 85.9%.

The diagnostic performance of the model was evaluated using three metrics:

precision (82.3%), sensitivity (91.6%), and specificity (80.0%). These values

demonstrate the model’s ability to accurately diagnose SLE patients.

Additionally, the model’s efficacy in classifying SLE disease activity was assessed.

Conclusion: This study demonstrates the feasibility of Raman spectroscopy

combined with deep learning algorithms to differentiate between SLE and

non-SLE. The model’s potential for clinical applications and research value in

early diagnosis and activity assessment of SLE is significant.
KEYWORDS

systemic lupus erythematosus (SLE), Raman spectroscopy, diagnosis and prediction
model, Bayesian net, autoimmune disease (AD)
1 Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune

disease that can affect a wide range of tissues and organs, exhibiting

significant clinical heterogeneity (1). While the long-term prognosis

of patients with SLE has improved markedly in recent years,

irreversible chronic organ and tissue damage caused by the

disease remains a significant challenge (2). A sustained state of

disease activity is an important predictor of organ damage and

mortality (3). It is therefore crucial to facilitate an early and accurate

diagnosis of SLE, coupled with regular monitoring of disease

activity. This enables the development and adjustment of

individualized treatment plans, as well as the control of disease

activity, with the ultimate goal of improving patient prognosis. At

present, the diagnosis of SLE is primarily based on the classification

criteria set forth by the European League Against Rheumatism

(EULAR) in 2019 (4), while the assessment of disease activity is

predominantly conducted using instruments such as the SLICC/

ACR Damage Index (SDI), the SLE Disease Activity Index 2000

(SLEDAI-2K) (5), and the Systemic Lupus Erythematosus Disease

Activity Score (SLE-DAS) (6). These assessment tools integrate a

range of data points, including clinical symptoms, signs, laboratory

markers, organ involvement, and the physician’s subjective

assessment. However, the complexity and heterogeneity of the

clinical manifestations of SLE present significant challenges to the

diagnosis and assessment of disease activity. Firstly, the selection of

assessment tools is somewhat variable, and the results are

susceptible to subjective factors and a lack of clinical experience

among physicians, which may result in early misdiagnosis or

underdiagnosis. Furthermore, although anti-dsDNA and anti-SM

antibodies demonstrate high specificity in the diagnosis of SLE, the

sensitivity of anti-SM antibodies is relatively low (approximately

30% are positive), and these antibodies may also be positive in other

connective tissue diseases (7). Furthermore, traditional clinical
02
indicators are unable to reflect the immunopathological status or

chronic damage of tissues and organs in real-time, resulting in an

inaccurate assessment of disease activity and, consequently, delays

in treatment (8). It is therefore imperative to develop a non-

invasive, efficient, and accurate method for the early diagnosis

and activity assessment of SLE.

Raman spectroscopy is a molecular vibration-based scattering

spectroscopy technique that enables the non-destructive detection

of biomolecules, including proteins, enzymes, and nucleic acids.

The vibrational frequency of the sample reflects its phenotypic

‘fingerprint’ and physiological and biochemical status (9). Owing to

its non-destructive and rapid nature, Raman spectroscopy in

conjunction with artificial intelligence (AI) technology has been

employed with increasing frequency in the field of medical

diagnosis. Prior research has demonstrated the efficacy of

machine learning models in the classification and diagnosis of

autoimmune diseases. Xiaomei Chen et al. employed a

combination of Raman spectroscopy and a PSO-SVM algorithm

to facilitate the classification and diagnosis of patients with primary

desiccation syndrome, achieving an accuracy rate of 94.44% (10).

Xue Wu et al. successfully implemented a rapid diagnosis of

patients with pSS-ILD through the utilization of serum Raman

spectroscopy and machine learning algorithms (11). Chen Chen

et al. proposed a hybrid sampling technique, R-GDORUS, to

address the issue of data imbalance in medical Raman

spectroscopy studies (12). However, traditional machine learning

models typically necessitate time-consuming data preprocessing,

which may result in the loss of band-related information and an

increased risk of overfitting (13). Deep learning, an important

branch of machine learning, is adept at extracting salient features

from complex data, particularly in the domains of image and signal

analysis (14).

In recent years, Raman spectroscopy in conjunction with deep

learning has been extensively employed in the investigation of
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tumors, infectious diseases, and other related fields (15). Wei Shua

and colleagues have demonstrated the potential of Fourier

Transform Infrared Spectroscopy (FTIR) and a deep learning

model for the early diagnosis of rheumatoid arthritis and

ankylosing spondylitis (16). Cheng Ningtao and colleagues

developed a classification model through spectroscopy-based deep

learning and proposed a nano-plasma biosensor chip (NBC)

platform for rapid screening of liver cancer and other types of

cancers (17). Vijayakumar Selvarani et al. employed a combination

of Raman spectroscopy and a deep learning model to facilitate the

diagnosis and staging of breast cancer (18). Lianyu Li et al. utilized a

deep neural network architecture to develop four distinct multi-task

network models for oral cancer, to achieve intelligent diagnosis

through the simultaneous processing of multiple classification tasks,

including tumor staging, lymph node staging, and histological

grading. The accuracy of these models reached 83.0% (19). It has

been demonstrated that the combination of Raman spectroscopy

with deep learning has the potential to facilitate the early diagnosis

and prediction of the activity of chronic diseases. However, in

classification studies of SLE and other connective tissue diseases, the

models are susceptible to overfitting due to the overlap of different

disease features and the overlap of spectral vibrational peaks.

Furthermore, the high degree of consistency in the pathological

features of SLE presents a significant challenge in feature extraction

for activity assessment, which in turn limits the effectiveness of

classification and diagnosis.

In order to address the aforementioned issues, this study

proposes a novel model, the dual-branch Bayesian network

(DBayesNet), which combines the dual-branch structure with

Bayesian ideas. The dual-branch structure enables the handling of

disparate tasks through the utilization of two independent branches,

facilitating the extraction of features from varying perspectives. This

enhances the model’s capacity for representation and renders it

well-suited for the extraction and classification of intricate disease

characteristics. Xiaopu He et al. put forth a novel two-branch

lesion-aware neural network to categorize intestinal lesions,

delving into the intrinsic relationship between diseases to enhance

the efficacy of colon disease classification (20). Xinya Chen et al.

advanced an enhanced two-branch attention network to

expeditiously identify diabetic nephropathies, integrating the

fusion of shallow and deep features, local and global features, and

improving the model’s classification accuracy (21). It is therefore

essential to construct an excellent classification model in order to

facilitate disease recognition. In this study, the Bayesian approach is

further introduced to enhance the robustness and generalization

ability of the model, combining the advantages of feature extraction

from the two-branch structure. The Bayesian approach effectively

addresses the issue of insufficient sample size by quantifying

parameter uncertainty and integrating prior knowledge with

sample data, thereby enhancing the accuracy of prediction and

classification and providing more rapid and reliable support for

disease diagnosis.

In conclusion, this paper proposes a model called the dual-

branch Bayesian network (DBayesNet), which combines the

uncertainty quantification ability of Bayesian ideas with the
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feature extraction advantage of the dual-branch structure. The

incorporation of the Bayesian idea enhances the interpretability of

the model results, while the dual-branching structure improves the

model’s representational ability. This addresses the issue of poor

classification due to the high similarity of disease features in the

complexity of connective tissue disorders and the assessment of SLE

activity. The DBayesNet model is applied to classify and diagnose

SLE and non-SLE, and the experimental results demonstrate that its

accuracy is superior to that of the other eight traditional

classification models. Additionally, the DBayesNet model

demonstrated considerable success in the assessment of SLE

patient activity, substantiating the viability of serum Raman

spectroscopy in conjunction with deep learning algorithms for the

diagnosis and prediction of SLE activity. This study presents an

efficient and accurate assessment and prediction strategy for the

early diagnosis and screening of SLE.
2 Materials and methods

2.1 Study population and
sample preparation

A total of 161 subjects, including 80 patients with systemic

lupus erythematosus (SLE), were enrolled in the study at the

Department of Rheumatology and Immunology of Xinjiang

People’s Hospital between 2022 and 2023. The participants were

classified as having mild, moderate, or severe disease activity

according to the SLE Disease Activity Index 2000 (SLEDAI-2K)

activity level. The onset of SLE is characterized by a higher prevalence

in women of childbearing age; therefore, to avoid any potential gender

imbalance in the control group, a total of 81 age- and gender-matched

serum samples from the same period of time were included,

comprising patients with dry syndrome, undifferentiated connective

tissue disease, and aortitis, as well as healthy individuals. All blood

samples were obtained from peripheral veins without the use of

anticoagulant agents. The samples were subjected to centrifugation

at 4°C and 4000 rpm at high speed. Following a 10-minute

centrifugation period, a top clarification was obtained and stored in

a refrigerator at -80°C. Following the thawing of the serum, Raman

spectroscopic signals were collected.
1. Inclusion criteria: Patients with SLE who have been

definitively diagnosed in accordance with the criteria set

forth by the European League Against Rheumatism

(EULAR) in 2019 (4); patients who have been diagnosed

with dry syndrome in accordance with the classification

criteria established by the American College of Rheumatology/

EuropeanLeagueAgainstRheumatism (ACR/EULAR) in2016

(22).Adiagnosis of undifferentiated connective tissuedisease in

accordance with the classification criteria for undifferentiated

connective tissuedisease proposed in1998 (23); and adiagnosis

of aortic inflammation in accordance with the 2022

classification criteria developed jointly by the ACR and the

European League Against Rheumatism (EULAR) joint
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classification criteria for the diagnosis of aortitis (24). The

SLEDAI-2K (Systemic Lupus Erythematosus Disease Activity

Index-2000) (25) scale allows for the categorization of disease

activity as follows: lowactivity is indicatedby aSLEDAI score of

≤ 6, moderate activity by a score of ≥ 7 and ≤ 12, and severe

activity by a score of > 12.

2. Exclusion criteria: patients with malignant neoplasms,

diabetes mellitus, other rheumatic and immune diseases,

and other systemic disorders.
2.2 Data collection and spectral analysis

Use a pipette to aspirate 15 mL of the sample and drop it on

aluminum foil. After drying at room temperature, the Raman signal

was measured directly. A high-resolution confocal Raman

spectrometer (LabRAM HR Evolution, gora Raman Spectroscopy,

ideal optics, China) was used with a YAG laser excitation

wavelength of 785 nm, a 10× objective lens, an integration time

of 15 s, a laser power of 160 mW, and a continuous acquisition

mode. Raman spectra of serum samples were measured in the range

of 500-2000 cm, and three spectral signals were recorded from

different positions of each sample.
2.3 Data preprocessing

As the serum Raman spectra collected by the spectrometer are

interfered with by factors such as measurement conditions,

detection environment, and hardware facilities, the spectral data

are too complicated, which will affect the analysis effect to a large

extent. Therefore, it is necessary to perform pre-processing

operations on the acquired Raman spectral data. For the raw

spectra, we perform band selection, smoothing, baseline

correction, and then outlier removal and normalization

preprocessing. Firstly, the 500cm-1 to 2000cm-1 band of the
tiers in Immunology 04
Raman spectrum was selected, which belongs to the fingerprint

region of the Raman spectrum, so this band range was used for

analysis. The collected serum spectral data were smoothed and

filtered using the Savitzky-Golay (S-G) algorithm, and the final

selection of the moving window size was 9 and the polynomial order

was 2. The baseline correction used the adaptive iterative

reweighted penalized least squares (airPLS) algorithm to fit the

fluorescence background signals of the Raman spectra, which can

effectively remove the background noise in the Raman spectra and

improve the quality of the spectral data, thus improving the quality

of the spectral data for the subsequent analysis. Data quality, thus

providing more accurate information for subsequent analyses.

Finally, we normalize the integrated area under the preprocessed

Raman spectral curve and scale the eigenvalues to reduce the data

complexity and improve the model convergence speed.
2.4 DBayesNet model

As shown in Figure 1, DBayesNet is mainly composed of a two-

branch structure, each branch consists of a Bayesian Convolution

(BayConv) module, BottleNeck (BottleNeck) module, and

AdaptiveAvgPool, of which the BottleNeck module consists of a

total of four BottleNeck layers, where the parameters of two

branches are set differently to extract different levels of features, and

then the features of the upper and lowerbranches are fused byConcate,

through the Bayesian Linear layer (BayLinear). The parameters of the

two branches are set differently to extract features at different levels,

and then the features of the upper and lower branches are fused by

Concrete and output through the Bayesian Linear layer (BayLinear) to

get the classification prediction results.

In DBayesNet, the innovation of BayConv and BayLinear is the

introduction of the ability to estimate uncertainty. While traditional

convolutional and linear layers learn only deterministic values of

weights, Bayesian neural networks are able to learn the uncertainty

of theweights so that insteadof a singledeterministic value, theweights

obey somekindofprobabilitydistribution.ThisabilityallowsBayConv
FIGURE 1

DBayesNet network diagram.
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and BayLinear to provide probabilistic information for prediction

rather than just a single classification or regression output. In addition,

BayConv and BayLinear are able to output uncertainty estimates at the

time of prediction, which helps themodel to better deal with situations

with high uncertainty and improves the reliability and applicability of

the model. Especially on small sample datasets, BayConv and

BayLinear are able to use uncertainty information to reduce the risk

of overfitting and improve the generalization ability of the model. In

summary, the introduction of BayConv and BayLinear enables

DBayesNet to handle uncertainty and small-sample data more

flexibly, providing more comprehensive and reliable probabilistic

information for model prediction, thus improving the performance

and application value of themodel. The parameter settings ofBayConv

and BayLinear are as follows Table 1 shows.
2.5 Feature extraction

In DBayesNet, BayConv can provide uncertainty estimates for

each feature extraction process. This means that at a shallow level, the

model learns not only to extract features but also the uncertainty of

those features. This uncertainty-guided feature extraction helps the

model to better understand the noise and variations in the data and

thus make more reliable predictions. We can then extract features at

different scales by using different configurations of BayConv in both

branches, capturing multi-level information in the data. At a deeper

level, features from both branches are fused and classified by

BayLinear, which takes into account not only the values of the fused

features but also their uncertainty. This probabilistic feature fusion

helps themodel to take into account the reliability of the features when

making decisions, thus improving the accuracy and robustness of the

predictions. With the two-branch architecture, uncertainty can be

passed from shallow to deep levels and integrated into the final

decision. This helps the model to make more reasonable predictions

in the face of high uncertainty.

In the DBayesNet model, the two branches employ

convolutional kernels of different sizes or different pooling

strategies to extract features at different scales. This multi-scale

feature extraction helps the model to capture different levels of

information in the data, and fusion at a deeper level can achieve

complementary features, make more reasonable predictions in the

face of higher uncertainty, and enable the model to capture more

complex data patterns. Improve the generalization ability of the

model. Overall, by combining BayConv and BayLinear, the two-

branch structure is not only able to extract features of different

scales and perspectives, but also able to fuse the probabilistic
Frontiers in Immunology 05
information of these features at a deep level, thus improving the

prediction accuracy and robustness of the model.
2.6 Modeling indicators

The performance of the classification model in this study was

assessed by sensitivity, precision, specificity, and accuracy as in

Equations 1-4), the confusion matrix is shown in Table 2 shown.

Sensitivity =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

Specificity =
TN

TN + FP
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)
3 Results and discussion

3.1 Population and clinical characteristics

Table 3 presents the data regarding the age and gender of the

SLE patients and controls. The 80 patients with systemic lupus

erythematosus (SLE) were categorized into three activity classes

according to the SLEDAI-2K criteria based on their symptoms and

clinical indicators. The number of cases exhibiting mild, moderate,

and severe activity levels were 44, 30, and 6, respectively.
3.2 Spectral analysis

Figure 2 shows the average preprocessed Raman spectra of

serum samples from SLE patients and controls in the range of wave

numbers 500 to 2000 cm-1. As shown, the spectral peaks of the

spectra of SLE and the control group containing other connective

tissue diseases and healthy people were similar, and the difference

between the two was the magnitude of the peaks of the curve

fluctuations. The characteristic peaks of the serum Raman spectra

were mainly at 559 cm-1, 631 cm-1, 700 cm-1, 840 cm-1, 1046 cm-1,

1246 cm-1, 1320 cm-1 and 1653 cm-1. The corresponding molecular

information of the Raman peaks is listed in Table 4. The strongest
TABLE 1 Parameter settings for BayConv and BayLinear.

Assemblies
Prior distribution
Initial mean

Prior distribution
Standard deviation

Posterior distribution
Initial mean

Posterior distribution
Logarithmic variance

BayConv 0 0.1 (0, 0.1) (3, 0.1)

BayLinear 0 0.1 (0, 0.1) (3, 0.1)
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peak is at 1653 cm-1 (Amide I), which is mainly caused by the

carbon-oxygen (C=O) stretching vibration of the peptide bond, and

the position and shape of the Amide I band in the b-folded structure
can provide important information about the protein structure (26).

The characteristic peak at 1432 cm-1 (CH2 scissoring vibration) is

usually associated with the bending vibration of the methyl group

(-CH2-) in lipid molecules, and this vibration mode can provide

important information about the internal structure of lipid

molecules and intermolecular interactions (27); 1320 cm-1 is the

region of the protein corresponding to the guanine base, which

involves the bending or deformation of the carbon-hydrogen bond

(CH), and this change is reflected in the infrared (IR) and Raman

spectra and can provide important information about the structure

and dynamics of proteins (28, 29);1246 cm-1 represents the amide III

andCH2wobble vibrations,which in vibrational spectroscopic studies

of proteins are involved in the CH2 groups of the Glycine backbone

and Proline side chain of proteins (30). 1046 cm-1 corresponds to a

higher amount of glycogen than the non-SLE population. Glycogen

not only serves as a glucose reservoir but also provides antioxidant

defenses through the production of NADPH and subsequently

reduced glutathione, implying that glycogen exerts important

biological effects through metabolic pathways that are of value in

inflammatory responses and metabolic regulation (31). 840 cm-1

contains the Tyrosine ring breathing vibration (TBR), a vibrational

pattern whose changes can reflect direct and indirect interactions with

the charge distribution of surrounding solvent molecules, indirectly

detecting changes in the protein microenvironment (32). The C-C

torsion vibration in Raman spectroscopymay be a useful probe for the

study of aromatic compounds due to the activity of the C-C torsion

vibration in Raman spectra (33).

In addition, Figure 3 shows the average preprocessed Raman

spectra of SLE patients with different activity levels in the range of

wave numbers from 500 to 2000 cm-1. The characteristic peaks of the

serumspectraweremainlyat559cm-1, 631 cm-1, 1260cm-1, 1444 cm-1,
Frontiers in Immunology 06
and 1653 cm-1, and the magnitude of the peaks of curve fluctuations

varied with different activities, as shown in Table 4 corresponding to

protein, deoxyribose, and amino acids, respectively. The above spectra

showed the differences in chemical substances in the serumof different

patients, which provided an important theoretical basis for the

subsequent classification study.

3.3 Classification model results

3.3.1 Disease diagnosis
In this study, we propose a novel deep learning model-

DBayesNet, which achieves significant results in experiments to

distinguish systemic lupus erythematosus (SLE) from dry syndrome

(SS), thyroid disease (TA), undifferentiated connective tissue

disease (UCTD), and healthy controls (HC). As Table 5

Comparison of experimental results with traditional machine

learning and deep learning models shown, DBayesNet achieves

the best classification results in terms of sensitivity, specificity,

precision, and accuracy, with values of 91.6%, 80.0%, 82.3%, and

85.9%, respectively. In addition, ROC curves of different models are

shown (Figures 4, 5), the area under the ROC curve represents the

AUC value, which can be used to quantify the accuracy of the

classifier; the larger the AUC value, the more reliable the model is.

The results of the experimental study demonstrate that the

DBayesNet model, developed in this study, is an optimal tool for

classifying SLE versus non-SLE populations.
3.3.2 Assessment of disease activity
In this study, to further validate the performance of the model

in classifying the activity level of SLE patients, a classification task

was performed for 76 SLE patients with activity level, and the results

are shown in Table 6 shown, DBayesNet achieved the best results

for its sensitivity, specificity, precision, and accuracy, especially the

accuracy was as high as 93.3%, which was significantly better than

the other models involved in the comparison, and secondly,

DBayesNet’s sensitivity reached 97%, which demonstrated that

DBayesNet was able to identify the true positive cases more

accurately. Compared with traditional machine learning models

such as KNN, SVM, RF, and LDA, DBayesNet improves the

accuracy of activity classification by 2.03%, 19.42%, 6.37%, and

11.59%, respectively, and this result fully demonstrates the powerful

ability of the DBayesNet model in the task of classifying disease

activity. Meanwhile, DBayesNet also improves the accuracy of

activity classification by 2.39%, 6.94%, 2.42%, and 2.42%,

respectively, compared with deep learning models such as ANN,

AlexNet, LSTM, and MLP, which once again proves the superiority

of DBayesNet in the field of deep learning.

In addition, by comparing the ROC curves of different models

(Figures 6, 7), the advantage of the DBayesNet model in classification

performance can be visualized. The ROC curves show that the

DBayesNet model has high sensitivity while maintaining high

specificity, which makes it more accurate in determining the

disease activity of SLE patients in clinical applications and provides

a more reliable diagnosis basis for doctors.
TABLE 3 Summary information on age and sex of patients and
healthy controls.

SLE
(N=80)

Non-
SLE (N=81)

significant
P-value

Age

43.6 ± 13.9 46.9 ± 11.4 P<0.05

Gender

Male 11 9
P>0.05

Female 69 71
TABLE 2 Confusion matrix.

Actual

Predicted Positive Negative

Positive
Negative

TP
FN

FP
TN
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4 Discussion

SLE is a chronic, multi-system autoimmune disease

characterized by widespread inflammation and tissue damage,

with a complex and varied clinical picture, a prolonged and

recurrent course, and an increased risk of organ damage and

death as disease activity increases. Early and accurate diagnosis

and reduction of disease severity and inflammatory response, as

well as minimizing the use of hormones and immunosuppressive

drugs, can improve the long-term prognosis of patients. Currently,

the diagnostic and activity scoring criteria widely used in clinical

practice are influenced by many external factors. Therefore, there is

an urgent need for an objective and accurate test for rapid diagnosis

and activity assessment, especially in the early stages of the disease.

Vibrational spectroscopy, as a non-invasive assay, closely correlates

changes in spectral peaks with disease-specific biochemical changes,

which makes spectroscopy a powerful tool for early diagnosis and

classification of diseases at the molecular level. In this study, we

propose a two-branch Bayesian network structure that compensates

for the high degree of overlap of spectroscopy in connective tissue

diseases for rapid and accurate serological differentiation of SLE

from other non-SLE populations, as well as for activity assessment
FIGURE 2

Normalized mean Raman spectra of serum samples from SLE patients and controls.
TABLE 4 Peak positions and tentative assignments of the main
spectral bands.

Wavenumber
(cm)-1

Corresponding substance

1653 Amide I (b-sheet) Amide I band (protein band)

1432 CH2 scissoring vibration (lipid band)

1425 Deoxyribose (B, Z-marker)

1320 G (DNA/RNA); CH deformation (proteins)

1246 Amide III and CH2 wagging vibrations from glycine
backbone and proline side chains

1260 Amide III (protein band); Protein band

1048 Glycogen

852 Tyrosine ring breathing; Glycogen

720 DNA

631 C-C twist aromatic ring

559 OH out-of-plane bending
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of SLE patients. By comparing with traditional machine learning

and deep models (KNN, SVM, RF, LDA, ANN, AlexNet, LSTM,

MLP), the two-branch Bayesian model proposed in this study

shows stronger classification ability in disease diagnosis and
Frontiers in Immunology 08
activity assessment. Specifically, the classification accuracy of

DBayesNet was improved by 1.43%, 11.76%, 2.6%, and 10.96%,

respectively, compared to the traditional model, and this result fully

demonstrates the powerful ability of the DBayesNet model in

disease diagnosis tasks, and the classification accuracy of the

DBayesNet model was improved by 13.59%, respectively,

compared to other deep learning models, 7.21%, 5.08% and

9.33%, further proving DBayesNet’s advancement in the field of

deep learning. DBayesNe’s high accuracy of 85.9% indicates that the

model possesses excellent prediction performance on the overall

samples; secondly, the accuracy of 82.3% implies that the instances

predicted to be positive samples by DBayesNet are truly positive

samples in a proportion is high, which significantly reduces the

misdiagnosis rate; the sensitivity of 91.6% reflects the high reliability

of the model in identifying SLE patients; and finally, the specificity

of 80.0% indicates that DBayesNet also exhibits good accuracy in

identifying non-SLE patients. Furthermore, the DBayesNet model

demonstrated the capacity to accurately differentiate between the

various activity levels of SLE. Its results were found to be consistent

with the clinical assessment of disease activity in 76 SLE patients,

thereby confirming the effectiveness of the model in classifying

SLE activity.
FIGURE 3

Mean preprocessed Raman spectra of SLE patients with different activity levels.
TABLE 5 Comparison of experimental results with traditional machine
learning and deep learning models.

Model Accuracy Precision Sensitivity Specificity

KNN 0.8458 0.72 0.925 0.667

SVM 0.7416 0.74 0.82 0.59

RF 0.8333 0.82 0.72 0.48

LDA 0.75 0.75 0.69 0.42

ANN 0.7234 0.7234 1.00 0.43

AlexNet 0.53 0. 53 0.67 0.39

LSTM 0.7 0. 67 0.83 0.57

resnet 0.85 0.81 0.92 0.78

DBayesNet 0.8593 0.8228 0.9164 0.7999
Bold values indicate that DBayesNet achieves optimal classification in terms of sensitivity,
specificity, precision, and accuracy.
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Based on the spectrograms, it can be seen that some of the peaks

of the SLE and non-SLE populations are close to each other,

indicating that the two sera have similar biomolecules, and the

differences are reflected in the size of the characteristic peaks of the

two groups, e.g., 1653 cm-1 (Amide I), 1432 cm-1 (Lipids), 1320 cm-1

(Proteins with guanine bases), 1246 cm-1 (Amide III, Proline), 1048

cm-1 (Glycogen), 852 cm-1 (Tyrosine), 720 cm-1 (DNA), 631 cm-1

(Aromatic compounds), and others. In previous studies, it has been

found that when immune cells are exposed to external stimuli, they

promote the conversion of mechanical signals into responses within

the immune cells, and this regulatory mechanism of the immune

system may include the role of amide compounds in immune

signaling (34). In SLE patients, the characteristic peak of activity

at 1260 cm (Amide III) also includes amides, implying that

monitoring amide levels in the serum of SLE patients could be

useful in identifying the disease and predicting activity. From the

spectral peak at 1432cm-1 Regarding the differences in lipid content,

systemic lupus erythematosus (SLE) is associated with an increased

risk of cardiovascular disease because in normal subjects high-

density lipoproteins (HDL) can exert vasoprotective activity by
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promoting the activation of transcription factor 3 (ATF3), which

results in the down-regulation of the inflammatory response

induced by the Toll-like receptor (TLR), whereas in SLE patients

HDL HDL in SLE patients exhibits significant ATF3-inducing and

pro-inflammatory cytokines, and the loss of its anti-inflammatory

effect ultimately leads to immune dysregulation (35). Croca et al.

(2003) demonstrated that serum lipid profiles and abnormalities in

autoantibody and T-lymphocyte responses to lipids may contribute

to the development of atherosclerosis (36). Furthermore, they

established a positive correlation between activity index (SLEDAI)

scores in patients with SLE and an increased risk of cardiac damage.

Consequently, the utilization of rapid and straightforward methods

to monitor and regulate serum lipid levels in early life has

significant implications for reducing the risk of atherosclerosis.

In this study, we also found that the levels of 1246 cm-1 (proline)

and 852 cm-1 (lysine) in SLE patients were significantly different from

those in the control group. YangJie et al. found that proline-rich tyrosine

kinase 2 (Pyk2) may be positively correlated with the pathogenesis and

disease activity of SLE through its involvement in the aberrant activation

of lymphocytes and that patients with combined renal involvement had
TABLE 6 Comparison of model effectiveness in classifying
disease activity.

Model Accuracy Precision Sensitivity Specificity

KNN 0.8178 0.84 0.84 0.8

SVM 0.7416 0.42 0.42 0.94

RF 0.87 0.75 1.00 0.79

LDA 0.75 0.95 0.95 0.73

ANN 0.91 0.89 0.89 0.92

AlexNet 0.82 0. 86 0.67 0.92

LSTM 0.91 0. 89 0.89 0.92

resnet 0.91 0.82 1.00 0.85

DBayesNet 0.933 0.85 0.97 0.92
Bold values indicate that DBayesNet achieves optimal classification in terms of sensitivity,
specificity, precision, and accuracy.
FIGURE 6

ROC curve for machine learning classification model.
FIGURE 4

ROC curve for machine learning classification model.
FIGURE 5

ROC curve for deep learning classification model.
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significantly higher levels of Pyk2 than those with other organ

involvement. Were significantly higher in patients with combined

renal involvement than in those with other organ involvement. In

addition, lysine is involved in neurotransmission, hormone synthesis,

and antioxidant defense, and has become a therapeutic target for various

diseases. Differences in waveforms 720cm-1 and 1425cm-1 deoxyribose

were found between the two groups in diagnostic classification and

activity classification, which is similar to previous studies.DNA and its

associated antibodies in serum play an important role in the diagnosis

and treatment of SLE, and anti-DNA antibody is a marker of

classification and disease activity, contributing to pathogenesis

through the formation of immune complexes deposited in tissues or

stimulating the production of cytokines (37), which means that the

monitoring of antibody titers at the spectral level may help to precede

preclinical diagnosis of the disease and inform the assessment of its

activity and efficacy. Finally, the present study found differences in wave

peaks at 1048 cm-1 (glycogen) between the two groups. Previous studies

have shown that activated lymphocyte-derived DNA (ALD-DNA)

drives macrophage polarization towards M2b, produces

inflammatory cytokines and induces inflammation, and Zhao,

Hanqing et al. performed glucose metabolomics analysis on ALD-

DNA-stimulated macrophages and found that Enhanced

gluconeogenesis (38), which is similar to the present spectral peak

corresponding to more glycogen in SLE patients than controls, which

further deepens our understanding of disease pathogenesis and

provides clues for interventional exploration.

In this study, based on the differences in the characteristic peaks

of serum Raman spectra between SLE and controls, which

correspond to the differences in substances such as proteins,

nucleic acids, glycogen, and lipids, we offer the possibility of using

Raman spectra in combination with a deep learning classification

model to differentiate SLE. The accuracy of DBayesNet proposed in

this study for disease classification and diagnosis is as high as

85.93%, which is significantly higher than that of traditional

machine learning and deep learning models, and we also applied

the model to the activity level classification data of SLE patients,

with an accuracy as high as 93.33%, which demonstrates a strong
Frontiers in Immunology 10
classification efficacy. In addition, we also analyzed the relevant

substances corresponding to the characteristic peaks of the serum

Raman spectra in the spectral data of SLE patients and controls, as

well as the mild and moderate activity levels of SLE patients, which

fully proved the possibility of the two-branch Bayesian model in the

clinical practice, which can not only be used for detecting changes

in serum proteins, nucleic acids, and lipids, but also be used for

early diagnosis of the disease and assessment of the activity level, to

achieve better diagnosis and treatment, and to achieve a more

personalized diagnosis and treatment. It can also be used for early

diagnosis and assessment of disease activity to provide personalized

diagnosis and treatment and achieve a better long-term prognosis.

In addition to the application of Raman spectroscopy to

immunological diseases explored in this study, techniques such as

mass spectrometry and spectroscopy in assisted diagnosis have become

a significant component of clinical medicine. Chen et al. explored the

application of mass spectrometry and spectroscopy combined with

machine learning (ML) in in-vitro diagnostics (IVD), which provides a

new perspective in dealing with complex datasets and highlights the

importance of multimodal analysis in comprehensively analyzing

biological samples (39). Another study revealed the unique metabolic

pattern of SLE patients by constructing a large-scale cohort using nano-

assisted laser desorption/ionization mass spectrometry (LDI MS)

technology and screening four potential metabolic biomarkers, which

provided new insights into the pathological mechanisms and clinical

diagnosis of SLE (40). In contrast, Wang et al. utilized Co3O4/C

composites and LDI MS technology to expedite and cost-effective

acquisition of metabolic fingerprints SMFs from pregnant women’s

serum for the purpose of evaluating SLE activity. They further

developed a diagnostic method employing machine learning to

differentiate between patients with active SLE, thereby providing a

novel instrument for precision medicine in SLE (41). The significance

of metabolic fingerprinting technology and machine learning in the

diagnosis of Systemic Lupus Erythematosus (SLE) and the discovery of

biomarkers is demonstrated by these studies. These techniques can

reveal metabolic differences between SLE patients and healthy

individuals, which is critical for early diagnosis and management of

the disease. The incorporation of technological advancements has been

demonstrated to enhance diagnostic precision, whilst concomitantly

reducing financial expenditure and alleviating patient burden.

Nevertheless, owing to the restricted sample size of the present

study, its findings are subject to certain limitations. Furthermore, in the

context of the study’s objective to examine the classification of patient

activity, it is noteworthy that only six cases of severe activity were

identified. This limitation arises from the consideration that the sample

size was inadequate for the classification to be rendered comparable.

Consequently, the decision was taken to exclude patients with severe

SLE from the classification process. Subsequent studies will augment

the sample size, enhance the portability and real-time performance of

the detection platform, and validate the universality of the biomarkers.

Furthermore, these studies will explore the use of spectroscopy

combined with in-depth modeling in the early diagnosis of different

diseases and activity levels. The combination of multimodal

information will enhance the effectiveness of these approaches and

drive precision medicine and large-scale health management forward.
FIGURE 7

ROC curve for deep learning classification model.
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5 Conclusion

In this study, a new classification and diagnostic model

DBayesNet was proposed based on Raman spectroscopy combined

with deep learning algorithms to be able to accurately differentiate

between SLE and non-SLE populations in a fast and accurate

classification method, which compensated for the shortcomings of

poor classification accuracy due to the high overlap between spectral

peaks and the difficulty of feature extraction in connective tissue

diseases, and achieved a fast and accurate diagnosis of SLE patients,

and meanwhile, spectroscopic analyses revealed that amide, proline

and tryptophan may be the characteristic molecular biomaterials that

differentiate the spectra of diseases., proline and tryptophan are likely

to be the characteristic molecular biomaterials that distinguish the

disease spectrum. Meanwhile, the two-branch Bayesian model

achieved the best classification results in terms of sensitivity,

specificity, precision, and accuracy of 91.6%, 80.0%, 82.3%, and

85.9%, respectively, compared with the traditional classification

model. This study demonstrates that Raman spectroscopy

combined with deep learning methods can help to understand the

differences between SLE and non-SLE substances in serum in

humans, which provides powerful technical support in the early

diagnosis and activity assessment of SLE and also provides a useful

reference for dealing with biomedical data at different scales, which is

of great clinical application and research value.
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