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Prediction model of axillary
lymph node status using an
automated breast volume
ultrasound radiomics nomogram
in early breast cancer with
negative axillary ultrasound
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Jianhui Zhu3, Feng Jiang1* and Chaoxue Zhang2*

1Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College,
Wuhu, China, 2Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University,
Hefei, China, 3Department of Ultrasound, The Second People’s Hospital of Wuhu, Wuhu, China,
4Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, School of Computer Science
and Technology, Anhui University, Hefei, China, 5Department of Ultrasound, West China Second
Hospital, Sichuan University, Chengdu, China
Background: Construction and validation of an automated breast volume

ultrasound (ABVS)-based nomogram for assessing axillary lymph node (ALNs)

metastasis in axillary ultrasound (AUS)-negative early breast cancer.

Methods: A retrospective study of 174 patients with AUS-negative early-stage

breast cancer was divided into a training and test with a ratio of 7:3. Radiomics

features were extracted by combining images of intra-tumor and peri-tumor

ABVS. Select the best classifier from 3 machine learning techniques to build

Model 1and radiomics-score (RS). Differences in ER, PR, Her-2, Ki-67 expression

were analyzed for intra-tumoral and peri-tumoral habitat radiomics features.

Model 2 (based on sonogram features) and Model 3 (based on RS and sonogram

features) were constructed by multivariate logistic regression. Efficiency of the

models was evaluated by the area under the curve (AUC). Plotting the nomogram

and evaluating its treatment in ALN≥3 according to Model 2 and Model 3.

Result: Intratumoral and peritumoral 5 mm radiomics features were screened

using least absolute shrinkage and selection operator (LASSO), and logistic

regression was used as a classifier to build the best-performing Model 1. Using

unsupervised cluster analysis, intratumoral and peritumoral 5mm were classified

into 3 habitats, and they differed in PR and Her-2 expression. Model 2 (combining

diameter and microcalcification) and Model 3 (combining RS and

microcalcification) were created by multivariate logistic regression. Model 3

achieves the highest AUC in both the training (0.827) and validation (0.768)

sets. The Nomo-score was calculated based on nomogram-model2 and
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nomogram-model3, revealing a positive correlation between ALN burden and

Nomo-score. Combined with the optimal thresholds, nomogram-model2

screened 54.6%-100% of patients with ALN ≥3 and nomogram-model3

screened 81.8%-100% of patients with ALN ≥3.

Conclusion: The ABVS-based nomogram is an effective tool for assessing ALN

metastasis, and it can provide a preoperative basis for individualized treatment of

breast cancer.
KEYWORDS

ultrasound, breast cancer, machine learning, radiomics, nomogram, lymphatic
metastasis, automated breast volume ultrasound
Introduction

Axillary lymph node (ALN) status is the most strongly

associated factor affecting the survival and prognosis of breast

cancer patients (1, 2). Although sentinel lymph node (SLN)

biopsy is widely used to detect ALN status. However, the false-

negative rate of SLNB is 5.5%-16.7% (3, 4), and SLNB may be

associated with sensory nerve damage, lymphedema, and limited

shoulder motion (5). In addition, according to the ACOSOG Z0011

trial, patients with SLN metastases of less than 2 early-stage breast

cancers who do not undergo axillary surgery do not have affected

overall survival and disease-free survival rates (6, 7). Therefore,

ALN status is adequately assessed by radiographic methods prior to

surgery to minimize unnecessary invasive exploration.

The most valuable radiological method for assessing ALNs is

axillary ultrasound (AUS) (8–10). Owing to the noninvasive and

inexpensive nature of ultrasound, it is very suitable for long-term

observation of ALNs. Approximately 15.5-35.0% of AUS negatives

show positivity on pathology, which makes it particularly important to

reduce false negatives (11–13). Studies have shown that adding tumor

characteristics to the diagnosis of ALNs can significantly reduce this

deficiency of AUS (13). Certain ultrasound features of primary breast

cancer are associated with ALN metastasis, such as the diameter of the

lesion, microcalcification, architectural distortion, and tumor distance

from the skin (13–18).

Furthermore, with the advancement of pattern recognition tools,

radiomics has attracted increasing interest. Combining the imaging

features of a lesion with radiomics features has greatly improved

diagnostic performance (17, 19, 20). Radiomics is the process of

converting medical images into mineable data by extracting high-

throughput quantitative features that effectively reduce inter-examiner

variability. In the past, free-form imaging methods and the reliance on

adjustable parameters during the examination made the development

of radiomics in ultrasound difficult (21), and the emergence of an
02
automatic breast volume scanner (ABVS) has solved this problem.

ABVS allows comprehensive and standardized scanning of the entire

breast and coronal and sagittal display in specific workstations. The

coronal plane of the lesion provides additional information for

diagnosis (22), and standardized images also open up new

opportunities for ultrasound radiomics (23).

Therefore, we aimed to develop and validate two nomograms

(one based on sonogram features and the other based on radiomics

and sonogram features) for assessing ALN status in AUS-negative

early-stage breast cancers and to explore the value of the nomogram

for the preoperative assessment of patients with ALN ≥3.
Materials and methods

Patient

The study was approved by the Institutional Review Board and

requirement for informed consent was waived (PJ2023-07-11).

A retrospective collection of 499 patients who were diagnosed with

breast cancer by histopathology between November 2017 and August

2021 and underwent ABVS at our institution was performed. The

inclusion criteria were as follows: (1) patients who underwent SLNB or

ALND; (2) unifocal masses ≤ 5 cm in diameter (T1 and T2 stages); (3)

ABVS within 2 weeks prior to SLNB or ALND; and (4) no suspicious

lymph nodes on AUS (asymmetric or diffuse thickening of the lymph

node cortex, an LN with a cortex thickness ≥ 3 mm loss of hilum, and

nonhilar blood flow) (24). The exclusion criteria were as follows: (1)

patients who received chemotherapy, radiotherapy or endocrine

therapy, (2) patients with multifocal or bilateral breast cancer, and

(3) patients with nonoccupying lesions without demarcated borders

(Appendix Figure 1). 174 patients were finally included in this study

and randomized into training and test sets at a ratio of 7:3.
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Baseline clinical data were acquired from the patient medical

record system, including age, pathologic type, immunohistochemical

(IHC) results and postoperative ALN status (ALN+ or ALN-). ALN+

patients were further classified into low burden (1-2 ALNs) and high

burden (≥3 ALNs) groups. IHC was performed to assess HER-2,

Progesterone Receptor (PR), Estrogen Receptor (ER) and Ki-67 status

and recorded as positive (+) or negative (-).
Image acquisition and assessment

Details of image acquisition are provided in Appendix A.1. Reader

1 and Reader 2 (11 and 20 years of experience, respectively) analyzed

these images. Cases of disagreement were independently resolved by a

third Reader (Reader 3, 25 years of experience). None of the

sonographers had knowledge of the pathological results. Orientation

(parallel or not parallel), margin (circumscribed, noncircumscribed),

shape (regular or irregular), echogenicity (hypoechoic, hybrid echo or

extremely low echo), microcalcification, tumor location (left, right),

quadrant (upper inner, lower inner, upper outer, lower outer, central),

convergence sign, distance from nipple, and distance from skin and

maximum diameter of the lesion were recorded.
Frontiers in Immunology 03
Segmentation and extraction of
radiomics features

The flowchart of the study was showed in Figure 1. Tumor regions

of interest (ROIs) were manually depicted slice-by-slice by Reader 1

using ITK-SNAP 3.6. Next, using Python 3.7, areas 1, 3, 5, 7, and 9

mm around the ROI will be generated. Figure 2 shows an example of

the ROI segmentation and expansion process for ABVS. Fifty images

were randomly selected and re-segmented by Reader 1 and Reader 2

after 2 weeks to calculate intra- and inter-class correlation coefficients

(ICC). Radiomics features were extracted using the “PyRadiomics

(3.7.0)” Python package (Detailed in Appendix A.2).
Feature screening, machine learning
classifier, and Model 1 building

The obtained intratumoral region (ITR) features are

preprocessed and the model is constructed using classifiers

employing logistic regression (LR), random forest (RF) and

support vector machine (SVM). An optimal ML classifier was

used to construct a joint ITR and peritumoral region (PTR)

radiomics model, named Model 1. The radiomics-score (RS) was
FIGURE 1

Flowchart of a nomogram for predicting lymph node metastasis in breast cancer.LR, logistic regression; SVM, support vector machine; RF, random
forest; OR, odds ratio; CI, confidence interval.
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calculated for each patient. Methods of preprocessing and ML

classifiers are shown in the Appendix A.3.
Radiomics habitat analysis

The k-means method performed cluster analysis on subregions

using all data without splitting into training and testing sets. The

optimal number of clusters was determined by the elbow method

after plotting the within-cluster sum of squares (WCSS) with k

values (25). The number of clusters from 1 to 10 was tested in this

study. The ITR and PTRs were divided into subregions (habitats)

based on optimal k values. Extraction of valuable radiomics features

in each habitat and analysis of these features in relation to ER, PR,

HER-2, and Ki-67 were conducted.
Construction of Model 2 and Model 3

For sonographic feature variables, univariate logistic regression

was used to evaluate their correlation with lymph node metastasis,

and factors with P<0.1 were introduced into multivariate logistic

regression. Factors with P<0.05 were identified as independent

predictors, whereby an ultrasound feature model was created and

named Model 2. RS was combined with ultrasound features to

create a sonography radiomics model named Model 3. The Nomo-

score was determined for each patient according to Model 2 and

Model 3.
Assessment of the models and
construction of the nomogram

The predictive performance of Model 1, Model 2, and Model 3

was evaluated by area under curve (AUC) of receiver operating
Frontiers in Immunology 04
characteristic (ROC), accuracy, sensitivity, and specificity. Plotting

Decision Curve Analysis (DCA) assesses the net benefits of the

model. Finally, nomogram-model 2 and nomogram-model 3 were

constructed based on Model 2 and Model 3.

Associations between Nomo-scores and ALN burden were

assessed using correlation analysis. Furthermore, the value of the

model for ALN ≥ 3 was assessed based on the Nomo-score cutoff

value. (Statistical analyses, Appendix A.4.)
Results

Patient characteristics

The 174 patients enrolled in this study were randomized into a

training set (n=121) and a test set (n=53) at a ratio of 7:3. Table 1

displays the distribution of the patients, and no significant

difference in training and test sets.
Feature selection, classifiers performance
comparison and Model 1 construction

A total of 1688 features were extracted from the ITR and models

were constructed using LR, SVM and RF classifiers. The AUC of the

LR classifier is highest in the training (0.718) and test (0.725) sets.

Appendix A.5 and Appendix Table 1 provide the data preprocessing

procedure, three classifier structures and performance.

Extracted features of PTR1mm, PTR3mm, PTR5mm, PTR7mm and

PTR9mm PTR. The ITR is modeled in conjunction with the PTR

using the LR classifier. ITR+PTR5mm model had AUCs of 0.761

and 0.753 in the training and test sets, respectively, and showed

balanced sensitivity, specificity, and accuracy. It was used as the

final radiomics model, namedModel 1. Based on this model, RS was

calculated for each patient. The feature screening and building
FIGURE 2

Examples of ROI segmentation on ABVS. The red area represents the ROI of the lesion. (a) image of the lesion. (b–g) ROIs for regions of 1 mm, 3
mm, 5 mm, 7 mm, and 9 mm around the tumor, respectively. (h) 3D image of the intratumoral region of the lesion.
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TABLE 1 The distribution of the patients.

Variables Training set Test set P

Age (y) 51.9 ± 12.02 53.87 ± 11.77 0.319

ALN ALN- 78 (64.5%) 38 (71.7%) 0.351

ALN+ 43 (35.5%) 15 (28.3%)

Histological type Invasive ductal carcinoma 96 (79.3%) 38 (71.7%) 0.508

Invasive lobular carcinoma 8 (6.6%) 4 (7.5%)

Others 17 (14%) 11 (20.8%)

Estrogen receptor Negative 30 (24.8%) 15 (28.3%) 0.627

Positive 91 (75.2%) 38 (71.7%)

Progesterone receptor Negative 28 (23.1%) 10 (18.9%) 0.53

Positive 93 (76.9%) 43 (81.1%)

HER-2 Negative 70 (57.9%) 34 (64.2%) 0.652

Positive 26 (21.5%) 11 (20.8%)

Missing 25 (20.7%) 8 (15.1%)

Ki-67 Negative (<14%) 26 (21.5%) 15 (28.3%) 0.33

Positive (>14%) 95 (78.5%) 38 (71.7%)

Lesion maximum
diameter (mm)

22.26 ± 8.17 21.76 ± 10.06 0.731

Distance from nipple (mm) 41.26 ± 21.24 40.02 ± 20.26 0.719

Distance from skin (mm) 6.78 ± 2.9 7.35 ± 3.78 0.283

Tumor location Left 66 (54.5%) 29 (54.7%) 0.983

Right 55 (45.5%) 24 (45.3%)

Quadrant Upper inner 33 (27.3%) 6 (11.3%) 0.109*

Lower inner 13 (10.7%) 8 (15.1%)

Upper outer 47 (38.8%) 22 (41.5%)

Lower outer 27 (22.3%) 15 (28.3%)

Central 1 (0.8%) 2 (3.8%)

Shape Regular 19 (15.7%) 7 (13.2%) 0.671

Irregular 102 (84.3%) 46 (86.8%)

Margin Circumscribed 12 (9.9%) 7 (13.2%) 0.522

Non-circumscribed 109 (90.1%) 46 (86.8%)

Orientation Parallel 95 (78.5%) 42 (79.2%) 0.913

Non-parallel 26 (21.5%) 11 (20.8%)

Microcalcification Without 80 (66.1%) 36 (67.9%) 0.816

With 41 (33.9%) 17 (32.1%)

Echogenicity Hypo-echoic 105 (86.8%) 48 (90.6%) 0.176

hybrid echo 3 (2.5%) 3 (5.7%)

Extremely low echo 13 (10.7%) 2 (3.8%)

Convergence sign No 42 (34.7%) 18 (34%) 0.924

Yes 79 (65.3%) 35 (66%)
F
rontiers in Immunology
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ALN, axillary lymph node; HER-2, human epidermal growth factor receptor 2 *The likelihood ratio test is used.
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methods are described in Appendix A.6 and Appendix Table 2. The

performance of the radiomics models for the ITR and PTR

combinations are shown in Table 2.
Radiomics habitat analysis

Following the k-means clustering method, ITR and PTR5mm

were classified into three habitats (Appendix Figure 2, Figure 3).

Detailed steps for the habitat analysis are given in Appendix A.7.

The results show that the exponential_ngtdm_Busyness of

PTR5mm Habitat-2 differed in PR expression (P=0.034) and

Exponential_ngtdm_Busyness of PTR5mm Habitat-3 differed differs

in HER-2 expression (P=0.004). Habitat radiomics features with the

distribution of ER, PR, HER-2, and Ki-67 expression are shown in the

Appendix Table 3.
Model 2 and Model 3 establishment

Multivariate regression in the training set showed that diameter

and microcalcification were independent predictors of ALN+

(Table 3). These factors were used to construct Model 2. After

adding RS features to the model, RS and microcalcification were

independent predictors of ALN+, and these factors were used to

construct Model 3. The Nomo-score of the patients was calculated

as follows:

Nomo-score (Model 2) =-2.904 + 1.445* Microcalcification

+ 0.077*Diameter

Nomo-score (Model 3) =-0.521 + 1.063*RS

+1.518*Microcalcification

The performance of Model 1, Model 2, and Model 3 are shown

in Table 4. In the training set, model 3 outperforms model 1 and

model 2 (Delong test, P=0.033 and 0.027, respectively). AUC of

Model 3 was also higher than that of the other 2 models in the test

set. The ROC curves of the three models are shown in Figures 4a, b.
Frontiers in Immunology 06
The DCA curve also reveals that Model 3 had the highest net benefit

in most of the threshold probabilities (Figures 4c, d).
Assessment of the models and
construction of the nomogram

Nomogram-model 2 and nomogram-model 3 were constructed

based on the factors of Model 2 and Model 3, respectively

(Figures 5a, b). The calibration curves and nonsignificant

Hosmer-Lemeshow test statistics (0.894 and 0.568 for the

nomogram-model 2 training and test sets, respectively, and 0.538

and 0.148 for the nomogram-model 3 training and test sets,

respectively) show that the training and test sets are well

calibrated, suggesting that the nomogram can show good

agreement between predictions and observations (Figures 5c–f).

As shown in Figure 6a, the Nomo-score (Model 2) was

positively correlated with the ALN burden (training set r=0.375,

P<0.001; test set r=0.410, P=0.002). The optimal threshold when

using the Nomo-score to predict ALN state was 47.778

(Youden=0.357). When the Nomo-score was ≥47.778, 54.6% (6/

11, training set) and 100% (3/3, test set) of patients had at least

3 ALNs.

As shown in Figure 6b, the Nomo-score (Model 3) was also

positively correlated with the ALN burden (training set r=0.552,

P<0.001; test set r=0.473, P<0.000). The optimal threshold when

using the Nomo-score to predict ALN state was 60.237

(Youden=0.616). When the Nomo-score was ≥60.237, 81.8% (9/11,

training set) and 100% (3/3, test set) of patients had at least 3 ALNs.
Discussion

In this study, we developed nomogram-model 2 and

nomogram-model 3 capable of effectively assessing ALN

metastasis in AUS-negative early breast cancer with AUC,
TABLE 2 The performance of the radiomics model for the intratumor and peritumor combinations.

Train Test

AUC
(95%CI)

ACC SEN SPE AUC
(95%CI)

ACC SEN SPE

ITR 0.718
(0.626-0.81)

0.661 0.814 0.577 0.725
(0.56-0.889)

0.774 0.733 0.789

ITR+ PTR1mm 0.734
(0.639-0.829)

0.669 0.744 0.628 0.774
(0.611-0.936)

0.811 0.667 0.868

ITR+ PTR3mm 0.725
(0.627-0.824)

0.760 0.442 0.936 0.732
(0.569-0.894)

0.774 0.667 0.816

ITR+ PTR5mm 0.761
(0.673-0.85)

0.702 0.767 0.667 0.753
(0.584-0.921)

0.792 0.733 0.816

ITR+ PTR7mm 0.732
(0.636-0.828)

0.694 0.721 0.679 0.718
(0.555-0.88)

0.736 0.600 0.789

ITR+ PTR9mm 0.735
(0.64-0.83)

0.702 0.721 0.692 0.712
(0.55-0.875)

0.736 0.600 0.789
Bold characters in the table indicate the best performance for each metric in this study. ITR, intratumoral region; PTR, peritumoral region; ACC, accuracy; SEN sensitivity; SPE, specificity.
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accuracy, sensitivity, and specificity of 0.708, 0.717,0.733, 0.711;

0.768, 0.755, 0.733, 0.763, respectively. This method was effective in

reducing unnecessary SLNB. Both nomograms are also effective in

assessing axillary lymph node burden, and it helps clinics make

effective treatment decisions, thereby reducing over- or under-

treatment. In addition, habitat analysis showed that the radiomics

features of the PTR5mm subregion differed in the expression of PR

and HER-2, which provided a basis for the validity of the model.

Axillary staging, in addition to biological and anatomical

staging of the tumor, is very important in the treatment and

prognosis of breast cancer. AUS is the most effective radiologic

method for evaluating ALNs (8–10). Ultrasound reporting of

suspicious LNs has been shown in several studies to have a

significant influence in predicting ALN+ (12, 13, 26), but

ultrasound has a high false-negative rate of predicting ALNs

(15.5%-35.0%) (11–13). To maximize the performance of

ultrasound in predicting ALNs, we focused on ultrasound-

negative ALNs.

In the construction of Model 1, we differ from other models that

only analyze the radiomics features within the tumor (12); we

combined ITR and PTR features and obtained the best imaging
Frontiers in Immunology 07
histology model in the ITR+PTR5mm model. Three radiomics

features were screened, one from the ITR (wavelet.LLL_glcm_Imc2)

and two from the PTR (exponential_ngtdm_Busyness,
TABLE 3 Univariate and multivariate logistic regression analysis of variables associated with ALN+.

Univariate Multivariate Model 2 Multivariate Model 3

OR (95%CI) P OR (95%CI) P OR (95%CI) P

Age 1.012 (0.981-1.044) 0.445 – – – –

Lesion maximum diameter(mm) 1.073 (1.022-1.127) 0.005 1.08 (1.026-1.138) 0.004 – 0.769

Distance from nipple (mm) 0.993 (0.975-1.011) 0.429 – – – –

Distance from skin (mm) 0.989 (0.869-1.126) 0.872 – – – –

Tumor location (Ref. center) 0.798(0.376-1.691) 0.556 – – – –

Quadrant

Upper inner Ref. 0.998 – – – –

Lower inner 1.094 (0.291-4.109) 0.894 – – – –

Upper outer 0.903 (0.356-2.292) 0.830 – – – –

Lower outer 1.029 (0.358-2.957) 0.957 – – – –

Central 0 1.000 – – – –

Shape (Ref.Regular) 1.662 (0.555-4.98) 0.364 – – – –

Margin (Ref.Circumscribed) 0.749 (0.223-2.521) 0.641 – – – –

Orientation (Ref.Parallel) 0.95 (0.382-2.361) 0.912 – – – –

Microcalcification (Ref.without) 3.833 (1.726-8.513) 0.001 4.242 (1.825-9.858) 0.001 4.563 (1.816-11.463) 0.001

echogenicity

Hypo-echoic Ref. 0.541 – – – –

hybrid echo 3.833 (0.336-43.719) 0.279 – – – –

Extremely low echo 1.198 (0.365-3.929) 0.766 – – – –

convergence sign (Ref.no) 0.988 (0.452-2.159) 0.976 – – – –

RS 2.718 (1.719-4.299) 0.000 – – 2.896 (1.763-4.758) <0.001
Ref, reference; RS, radiomics-score; OR, Odds ratio;CI, confidence interval.
TABLE 4 Performance of Model 1, Model 2 and Model 3 in the training
and test sets.

AUC (95%CI) ACC SEN SPE P values

Training

Model 1 0.761 (0.673-0.85) 0.702 0.767 0.667 0.033

Model 2 0.742 (0.653-0.831) 0.653 0.767 0.59 0.027

Model 3 0.827 (0.748-0.906) 0.793 0.86 0.756 Ref.

Test

Model 1 0.753 (0.584-0.921) 0.792 0.733 0.816 0.719

Model 2 0.708 (0.534-0.881) 0.717 0.733 0.711 0.352

Model 3 0.768 (0.61-0.927) 0.755 0.733 0.763 Ref.
Ref, reference; P values were derived from the DeLong test; CI, confidence interval; ACC,
accuracy; SEN, sensitivity; SPE, specificity.
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FIGURE 3

Habitat image of breast lesions ITR and PTR5mm. (a) ROI of ITR. (b) habitat image of the ITR. (c) three-dimensional imaging of ITR habitat image.
(d) ROI of PTR5mm. (e) habitat image of the PTR5mm. (f) three-dimensional imaging of the PTR5mm habitat image. Red, green, and blue represent
Habitat-1, Habitat-2, and Habitat-3, respectively. ITR, intratumoral region; PTR, peritumoral region.
FIGURE 4

Receiver operating characteristic (ROC) curves and decision curves (DCA) for the three models in the training and test sets. (a, b) ROC for the
training and test sets of the three models, respectively. (c, d) DCA for the training and test sets of the three models, respectively.
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wavelet.LHL_glszm_SizeZoneNonUniformityNo- rmalized). This

suggests that the PTR improves predictive performance in

radiographic analysis (27). This is because the peritumoral

environment secretes many growth factors and cytokines that can

induce hypoxia and angiogenesis, which play an important role in

tumorigenesis, progression, or metastasis. Integrating tumor and

peritumor data allows for a more comprehensive characterization of

tumor invasion and metastasis (28).

The complex vascular system within a tumor result in

intratumoral heterogeneity. Heterogeneity is uniformly scattered

across the tumor, and regional phenotypic variation inside the

tumor is then overlooked (29). Based on speculation by some

scholars, the subregions containing voxels with similar imaging
Frontiers in Immunology 09
characteristics will share common tumor biology properties (30, 31).

Habitat analysis methods were developed to divide tumors into

subregions containing clusters of voxels with similar characteristics,

which allows for better quantification of heterogeneity within the

tumor (32, 33). Recently the method has made significant

breakthroughs in the assessment of lung, colorectal, and ovarian

cancers (34, 35). In this study, an unsupervised clustering method

was used to classify the ITR and the PTR5mm area of breast tumors

into three categories. The results showed that the distribution of the

exponential_ngtdm_Busyness feature of Habitat-2 and the

exponential_ngtdm_Busyness feature of Habitat-3 in the PTR5mm

was correlated with the expression of PR and HER-2, and it has been

demonstrated that patients with different expression of PR and HER-2
FIGURE 5

Nomogram and calibration curves of Model 2 and Model 3. (a, b) Nomogram-model 2 and nomogram-model 3. (c, d) Calibration curves for
Nomogram-model 2 in training and test sets. (e, f) Calibration curves for Nomogram-model 3 in training and test sets.
FIGURE 6

Correlation between ALN burden and Nomo-score. The red line represents the Nomo-score (Model 2), and the blue line represents the Nomo-
score (Model 3); Spearman’s correlation coefficient suggests that the higher the ALN burden is, the higher the Nomo score. (a) correlation between
ALN burden and Nomo-score in the training set. (b) correlation between ALN burden and Nomo-score in the test set.
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tended to have differences in ALN status (12, 36, 37). This provides

strong evidential support for our model and further demonstrates the

reliability of the model in predicting ALN status in breast tumors.

Ultrasound characteristics of the tumor are also valuable in the

diagnosis of ALN metastases. In a recent report, Xiong et al. (18)

combined sonographic features and clinicopathologic features for

the prediction of AUS-negative ALNs, with AUCs of 0.705 and

0.745 for the training and test sets, respectively, and showed results

similar to those of model 2 in this study. However, pathology

indicators were not included in our nomogram, and some

histopathology can only be assessed after surgical resection or

after aspiration, which may limit the use of the model.

Furthermore, in our study, microcalcification was an important

factor in the diagnosis of ALN+ (13). Calcification of the tumor is

often indicative of a poor prognosis (38), and calcium deposits in

the necrotic areas of the tumor appear as gravel or pinpoints,

occurring mainly in clusters. Xiong et al. (18) did not analyze

calcification, probably because ultrasound does not preserve all

images of the lesion, making it difficult to perform an accurate

analysis in a retrospective study of the presence or absence of

calcification in the lesion. With ABVS, in addition to preserving the

complete breast image for subsequent analysis, it also shows

microcalcifications more clearly than conventional ultrasound

(39). Irregularly shaped ultrasound features in breast cancer

significantly correlate with ALN metastasis (40). In invasive

breast cancer, cancer cells may infiltrate the surrounding tissue at

varying growth rates, creating inconsistent tumor margins. The

margins may produce irregular shapes, whereas margins presenting

as fuzzy, microfollicular, or acinar may not directly form irregular

shapes (13). In our study, however, there was no significant

difference in AUS-negative lesions, but the availability of

peripheral regions in radiomics explains this phenomenon.

Differences in the margins of AUS-negative tumors have altered

textural features, although they cannot be recognized by the naked

eye. The diameter of the lesion is a major predictor of ALN as well

(13, 15–17). Larger breast cancers have more extensive glandular

invasion by cancer cells and a higher likelihood of metastatic ALNs

via lymphatic drainage (41). The results of Model 2 also showed that

tumor diameter was an important predictor of ALN metastasis,

which is consistent with previous reports. In patients with invasive

breast cancer, there is a nonlinear association between tumor size

and ALN metastasis (13, 16), which further emphasizes the

important role of tumor diameter in predicting ALN metastasis.

Sonogram features are usually combined with radiomics features to

further improve diagnostic performance (17, 19, 20). In this study,

Model 3 combines the features of Model 1 and Model 2, and it

obtained the highest AUC (training set: 0.827, test set: 0.768), and

the DCA curve also showed that model 3 had a high net benefit.

Based on the results of the Z0011 trial, the clinical practice

guidelines were updated to state that women with T1 or T2 primary

invasive breast cancer with 1-2 metastatic SLNs who are scheduled to

undergo breast-conserving surgery with whole-breast radiotherapy no

longer need ALND (6, 42). Assessing ALN burden is also critical. The
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nomogram in this study was able to differentiate between ALN- and

ALN+ patients. It also has better results for identifying ALN statuses

with a high burden. A positive correlation between the Nomo-score

and ALN burden is shown in Figure 6. The higher the Nomo-score is,

the greater the likelihood of a high ALN burden. Combined with the

optimal thresholds, nomogram-model 2 screens 54.6-100% of those

with an ALN high burden. Nomogram-model 3 screens 81.8-100% of

those with a high ALN burden. This will increase surgeon confidence in

performing ALND based on a positive SLN.

There are some limitations in this study. First, this was a single-

center retrospective study. The nongeneralizability of the ABVS

examination resulted in a small sample size for this study, and

prospective and multicenter studies may be conducted in the future

for further validation. Second, influenced by different regional

breast cancer management guidelines and subjective patient

factors, some HER-2 positive patients in this study did not

receive neoadjuvant therapy prior to surgery. In future studies, we

will further expand the sample size and include patients receiving

neoadjuvant therapy, so as to provide treatment recommendations

for more breast cancer patients. Third, the ROI for each lesion was

manually defined, and although we removed features with ICCs <

0.75, interobserver variability was unavoidable. In the future, we will

solve this by automatic or semiautomatic segmentation. Lastly,

owing to the difficulty of accurately drawing ROIs for

nonoccupying lesions without borders and the difficulty of

identifying which lesion is the cause of metastatic ALN for

multiple lesions, these two types of lesions were excluded. This

may cause selection bias and nomogram restriction.

In conclusion, two nomograms were developed and validated in this

study: one based on sonogram features named nomograms-Model 2;

and one based on sonogram and radiomics features named

nomograms-Model 3. They can predict ALN status more accurately

in AUS-negative breast cancer patients and also show good performance

in assessing ALN burden. These two nomograms can effectively help

clinicians in the preoperative assessment of ALN status and contribute

to the optimization of clinical decision-making in breast cancer patients.
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