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Background: Idiopathic pulmonary fibrosis (IPF) is a degenerative respiratory

condition characterized by significant mortality rates and a scarcity of available

treatment alternatives. Cuproptosis, a novel form of copper-induced cell death,

has garnered attention for its potential implications. The study aimed to explore

the diagnostic value of cuproptosis-related hub genes in patients with IPF.

Additionally, multiple bioinformatics analyses were employed to identify

immune-related biomarkers associated with the diagnosis of IPF, offering

valuable insights for future treatment strategies.

Methods: Four microarray datasets were selected from the Gene Expression

Omnibus (GEO) collection for screening. Differentially expressed genes (DEGs)

associated with IPF were analyzed. Additionally, weighted gene coexpression

network analysis (WGCNA) was employed to identify the DEGs most associated

with IPF. Ultimately, we analyzed five cuproptosis-related hub genes and

assessed their diagnostic value for IPF in both the training and validation sets.

Additionally, four immune-related hub genes were screened using a protein–

protein interaction (PPI) network and evaluated through the receiver operating

characteristic (ROC) curve. Lastly, single-cell RNA-seq was employed to further

investigate differential gene distribution.

Results:We identified a total of 92 DEGs. Bioinformatics analysis highlighted five

cuproptosis-related genes as candidate biomarkers, including three upregulated

genes (CFH, STEAP1, and HDC) and two downregulated genes (NUDT16 and

FMO5). The diagnostic accuracy of these five genes in the cohort was confirmed

to be reliable. Additionally, we identified four immune-related hub genes that

demonstrated strong diagnostic performance for IPF, with CXCL12 showing an

AUROC of 0.90. We also examined the relationship between these four genes

and immune cells. CXCL12 was significantly negatively associated with

neutrophils, while CXCR2 was associated exclusively with neutrophils,

consistent with our single-cell sequencing results. CTSG showed a primarily

positive association with follicular helper T, and SPP1 was most strongly

associated with macrophages. Finally, our single-cell sequencing data revealed
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that in patients with IPF, CXCL12 was highly expressed in the endothelial cell

subset (ECs), while SPP1 exhibited high expression in multiple cellular

populations. The expression of the CTSG showed statistically significant

differences in monocyte macrophages.

Conclusion: The research methodically depicted the intricate interplay among

five cuproptosis-related genes, four immune-related hub genes, and IPF, offering

new ideas for diagnosing and treating patients with IPF.
KEYWORDS

idiopathic pulmonary fibrosis disease, cuproptosis -related genes, immune-related
genes, immune infiltration, single-cell RNA-seq
Introduction

Idiopathic pulmonary fibrosis (IPF) represents a long-term,

advancing pulmonary condition with scarce therapeutic choices,

high mortality, and poor prognosis, with a median survival of only

2.5–3.5 years from the time of diagnosis (1–3). Epidemiologic

surveys show that the global incidence of IPF ranges from 0.09 to

1.30 per 10,000 people, with an increasing trend over the years (4).

At present, the pathophysiological mechanism of IPF has not been

fully elucidated. It has been suggested that the occurrence of IPF

may be closely related to persistent or repetitive injury to alveolar

epithelial cells. Dysregulated epithelial cells interact with

mesenchymal cells, immune cells, and endothelial cells through

various signaling mechanisms, which contribute to tissue scarring,

modification of the alveolar structure, and irreversible loss of lung

function (5). Immune cells play a pivotal role in the onset and

progression of fibrogenesis by promoting or exacerbating tissue

structural remodeling (6, 7). Continued damage to alveolar

epithelial cells leads to an increase in neutrophils and monocytes,

triggering inflammatory responses (8). Similarly, macrophages are

crucial in the initiation and progression of IPF (9). In addition, the

wound healing process involves an inflammatory response that

recruits fibroblasts, activates myofibroblasts, and deposits

extracellular matrix in the form of collagen and other proteins

(10). Although pirfenidone and nintedanib are recommended in the

guidelines, their efficacy is limited. Therefore, further exploration of

novel therapeutic strategies for IPF is particularly important (11).

Copper is one of the essential trace elements in the human body

and plays a key role in many biological processes (12). It is involved

in multiple physiological processes, including the regulation of

energy metabolism, mitochondrial respiration, and antioxidant

activity (13–15). Copper ion levels maintain a dynamic

equilibrium, and a loss of this balance can lead to oxidative stress

and abnormal cellular autophagy (16, 17), causing a variety of

copper or copper ion-related diseases. Cuproptosis is a recently

discovered, unique form of cell death. Upon disruption of the

mitochondrial respiratory chain, the lipoylated components of the
02
tricarboxylic acid cycle are directly bound by copper ions, forming

aggregates that ultimately lead to cell death (13). Furthermore, to

date, no studies have demonstrated a relationship between

cuproptosis and fibrosis. Previous studies have shown that the

signaling pathway mediated by the fibrotic cytokine transforming

growth factor b1 (TGF-b1) plays a significant role in lung fibrosis.

TGF-b1 reduces Nicotinamide adenine dinucleotide (NADH) and

NADH/NAD levels, possibly due to alterations in the tricarboxylic

acid cycle, which results in decreased ATP levels and impaired

oxidative phosphorylation in lung fibroblasts (18). Therefore, we

hypothesized that cuproptosis may play a role in the development

of IPF. Genes associated with cuproptosis could serve as new targets

for IPF therapy, although their precise mechanisms remain to be

elucidated. In this study, we conducted bioinformatics analyses to

identify novel biomarkers of IPF that may be associated with

cuproptosis and immunity.
Materials and methods

Collection and data processing of
microarray datasets for IPF

The study flow diagram is shown in Figure 1. Five datasets were

obtained from the Gene Expression Omnibus database (https://

www.ncbi.nlm.nih.gov/geo/). Specifically, GSE24206, GSE35145,

GSE53845, and GSE68239 were utilized as the training sets, while

GSE70866 served as the validation set. Initially, the four training sets

were combined using the R package inSilicoMerging (19).

Subsequently, the method proposed by Johnson et al. (20) was

applied to eliminate batch effects, resulting in a unified Gene

Expression Omnibus (GEO) dataset consisting of 99 samples from

71 IPF patients and 28 normal controls. This unified dataset was then

utilized to identify differentially expressed genes (DEGs). In this

study, differential analysis was performed using the R package limma

(version 3.40.6) to identify genes that exhibit differential expression

between various control groups. Genes meeting the criteria of an
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adjusted p-value < 0.05 and |log2 fold change (FC)| > 1.5 were

classified as DEGs. The volcano plot and heatmap displayed the

expression data of 92 DEGs. Additionally, the density plot and

Uniform Manifold Approximation and Projection (UMAP) plot

results indicated the successful elimination of batch effects. The

microarray preprocessing outcomes were visualized through a

boxplot. Gene ontology (GO) enrichment analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis

were conducted using the org.Hs.eg.db (version 3.1.0) and

“clusterProfiler” (version 3.14.3) package in R to explore the

biological roles of DEGs. The GO annotation and KEGG pathway

analysis were performed with a significance threshold of p < 0.05.
Assessment of immune cell infiltration

The development of IPF is closely linked to the immune system,

and an immune response plays a crucial role at every stage of fibrosis

(21). The CIBERSORT tool was used to explore the differences in the

proportions of 22 immunocyte types between the IPF group and the

controls (22). Using a known reference set, this approach generates a

set of gene expression profiles for 22 immune cell subtypes.
Construction of WGCNA
coexpression network

Using gene expression patterns, we first calculated Media

Absolute Deviation (MAD) for each gene, removed the top 50%

of genes with the smallest MAD values, and excluded outlier genes

and samples using the weighted gene coexpression network analysis
Frontiers in Immunology 03
(WGCNA) GoodSamplesGenes approach in the R package. We

then constructed a scale-free coexpression network using WGCNA,

setting the soft-threshold power to 4. To further analyze the

module, we calculated the dissimilarity of module eigengenes,

selected a cut line for the module dendrogram, and merged

certain modules. In addition, we merged modules with distances

less than 0.25, resulting in 11 coexpression modules. The gray

module was identified as a collection of genes that could not be

assigned to a singular module. Among these, the yellow module was

found to be the most relevant for subsequent research projects.
Acquisition of differentially expressed
genes associated with cuproptosis-
related pathways

A total of 2,181 cuproptosis-related genes (CRGs) were

identified in GeneCard (https://www.genecards.org), and genes

with correlation coefficients above the median were selected,

resulting in 1,090 genes. Additionally, following the guidelines of

Tsvetkov et al. (13), we identified another 2,978 genes associated

with cuproptosis. After combining the two gene sets to remove

duplicates, a total of 3,538 CRGs were selected for subsequent

analysis in this article.
Identification of DEIRGs and establishment
of PPI network

A compilation of immune-related (IRGs) was obtained from the

Immunology Database and Analysis Portal (ImmPort, https://
FIGURE 1

Overview of the multistep approach employed in our systemic analysis.
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www.immport.org/shared/genelists). A total of 24 differently

expressed immune-related genes (DEIRGs) were identified by

intersecting the previously obtained DEGs with IRGs.

Protein–protein interaction (PPI) network was constructed

using the STRING database (http://string-db.org) to identify key

genes. Cytoscape software (version 3.9.1) was utilized to visualize

the PPI networks, and the Cytoscape plugin CytoNCA was

employed to identify genes associated with hub genes.
Immunohistochemistry

Each sample was fixed in a 4% neutral formaldehyde solution

and embedded in paraffin wax. The tissue was sectioned into 4 µM

slices, which were then dewaxed and rehydrated. Initially, the slices

were placed in a preheated repair solution at 65°C, heated to 90°C

for a 30-min incubation, and subsequently cooled to 70°C.

Following this, the slices were washed with PBS and incubated

with hydrogen peroxide for 10 min. The primary antibodies used

for the analysis included STEAP1 (bs-1901R, Bioss, Beijing, China),

CFH (bs-9525R, Bioss, Beijing, China), HDC (bs-1054R, Bioss,

Beijing, China), FMO5 (bs13187R, Bioss, Beijing, China), CXCL12

(bs-4938R, Bioss, Beijing, China), CXCR2 (abs-133162, Absin,

Shanghai, China), and SPP1 (AF0227, Affinity, Jiangsu, China).

The primary antibody reactions were carried out for 30 min,

followed by a 20-min reaction with the secondary antibody (PV-

6000, OriGene, Wuxi, China). The sections were counterstained

with hematoxylin, dehydrated, cleared, and sealed according to

conventional protocols. Images were then captured under a light

microscope, and cells stained brown were considered positive.
Lung specimen preparation

This study included eight human lung specimens, comprising

three from healthy controls and five from patients with IPF. The

healthy control specimens were derived from residual biopsy

specimens deemed unsuitable for lung transplantation, while the

IPF samples were obtained during lung transplantation procedures.

The inclusion criteria for IPF patients were based on the diagnostic

standards set by the American Thoracic Society/European

Respiratory Society. All participants provided written informed

consent after receiving a comprehensive explanation of the study.
Tissue dissociated single cell suspension

Pulmonary nonparenchymal cells were isolated from fresh lung

specimens. Lung samples were sliced into 1–2 mm sheets and

incubated in 2 ml of GEXSCOPE® Tissue Dissociation Solution

at 37°C for 15 min to maintain warmth. The resulting single-cell

mixture was dispensed onto an array and incubated for an

additional 15 min. After digestion, filter the sample through a 40

µm sterile mesh filter, and centrifuge the filtrate at 1000 rpm for 5

minutes. Discard the supernatant and resuspend the cells with 1 ml

of PBS (HyClone). Add 2 mL of GEXSCOP® Erythrocyte Lysis
Frontiers in Immunology 04
Buffer (Singleron, Nanjing, China) and allow to stand for 10

minutes at 25°C. Centrifuge at 500 g for 5 minutes, and

resuspend the cells using 1 ml of PBS. Then stain with Trypan

Blue (Sigma) and count the viable cells and total cells under

a microscope.
Sequencing of single-cell
transcriptome libraries

Single-cell suspensions preserved in PBS at a concentration of

1 × 105 cells/ml were prepared and loaded onto a microfluidic chip.

scRNA-seq libraries were constructed using the GEXSCOPE®

Single-Cell RNA Library Kit (Singleron Biotechnologies, Nanjing,

China) in accordance with the Singleron GEXSCOP® Operating

Instructions. The libraries were then diluted to 4 nM and sequenced

on the Illumina Novaseq6000 sequencing platform using 150 bp

paired-end sequencing mode.
Quality control and analysis of single-cell
sequencing data

Raw sequencing data obtained from the sequencing run were

processed using Singleron’s internal analysis pipeline to generate a

gene expression matrix. Briefly, reads1 without poly-T sequences

were filtered out, and valid cell barcodes and UMIs were extracted.

Reads2 were filtered to remove adapters and poly-A tails (using fastp

V1). The data were then aligned and quantified against the reference

genome from the Ensembl database using STAR (v2.5.3a) and

featureCounts (v1.6.2). The pipeline group reads, UMIs, and genes

sharing the same cell barcode and calculates the number of UMIs for

each gene in every cell for subsequent analysis. The Seurat package

(version 3.0.1) was used for cell type identification and clustering

analysis of the RNA sequencing data. The expression matrix was

imported into R using the read.table function, and cell clustering

analysis was performed using the FindClusters function (with a

resolution parameter set to 0.6). DEGs between different samples or

continuous clusters were identified using the findMarkers function.

The study was reviewed and approved by the Ethics Committee

of The Second Affiliated Hospital of Hainan Medical University.
Statistical analysis

SPSS 22.0 was used to process and statistically analyze the data. p-

values of less than 0.05 were taken as the criterion for statistical

significance. Comparisons of continuous variables were verified using

the Student’s t-test Kruskal–Wallis H test. The Chi-square test or

Fisher’s exact test was used for categorical variables. Associations

between pivotal genes and immune cells were analyzed using

Spearman’s rank sum test or Pearson’s correlation coefficient.

Receiver operating characteristic (ROC) analysis was performed

using the R package pROC (version 1.17.0.1) to determine the

diagnostic accuracy of the hub genes. The results were expressed as

the area under the ROC curve (AUROC) with 95% CI. AUROC ≥ 0.9
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indicates exceptional discrimination, 0.8 ≤ AUROC < 0.9 indicates

excellent discrimination, 0.7 ≤ AUROC < 0.8 indicates acceptable

discrimination, 0.5 ≤ AUROC < 0.7 indicates limited diagnostic

effectiveness, and ROC = 0.5 indicates no discrimination).

Spearman’s rank test or Pearson’s correlation coefficient was used

to analyze the associations between hub genes and immune cells.
Results

GEO dataset collection and preprocessing

After filtering the GEO microarray datasets, we retained four

datasets: GSE24206, GSE35145, GSE53845, and GSE68239

(Figure 2A). These were merged to create an internal dataset. The

box plots illustrate the distribution of differences and confirm the

standardization of the internal datasets (Figure 2B). The results from

the primary density studies indicate a high level of consistency in the

internal dataset after excluding batch effects (Figures 2C, D).
Frontiers in Immunology 05
Furthermore, the UMAP plot demonstrates a convergence of data

distribution across datasets following the elimination of batch effects

(Figures 2E, F).
Identification of DEGs and functional and
pathway enrichment analysis of DEGs

DEGs were analyzed in RNA samples from IPF and normal

controls using the “limma” software package, identifying a total of

92 DEGs, with 41 downregulated and 51 upregulated genes. A

volcanic graph was generated using a 1.5-fold change criterion

(Figure 3A). Figure 3B illustrates the heatmap for DEGs. To

investigate the potential functions of these genes, GO and KEGG

enrichment pathway analyses were conducted using the R

clusterProfiler package. The KEGG analysis revealed that the

DEGs were enriched in the following pathways: cytokine–

cytokine receptor interaction, hematopoietic cell lineage, and

mineral absorption (Figure 3C). The GO-BP analysis (Figure 3D)
FIGURE 2

DEG dataset collection and pre-processing. (A) Detailed information about the collected datasets. (B) Boxplot of normalized microarray data. (C, D)
Density plots showing differences in sample distribution before and after debatching. (E, F) UMAP visualizations illustrating how samples clustered
before and after the removal of the batch effect.
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showed significant enrichment in the immune system process,

immune response, metal ion homeostasis , and cation

homeostasis. In the GO-CC analysis (Figure 3E), we observed

enrichment in the extracellular matrix, cell surface, and

extracellular space. Furthermore, the GO-MF enrichment analysis

(Figure 3F) revealed fibronectin binding, Wnt-protein

binding, interleukin-1 receptor activity, and transforming growth

factor beta-activated receptor activity. These findings suggest that
Frontiers in Immunology 06
the DEGs play a crucial role in IPF and warrant further

investigation.
Assessment of immune cell infiltration

Since immune cells play a key role in the development and

initiation of fibrosis, we analyzed immune cell infiltration. Layered
FIGURE 3

Functional and pathway enrichment analysis of DEGs. (A) Volcano plot of DEGs: blue nodes represent downregulation in IPF, red nodes represent
upregulation, and gray nodes represent no significant difference from controls. (B) Heatmap of 92 IPF-related DEGs. (C) Gene ontology (GO)
molecular function pathway. (D) GO biological processes pathway. (E) GO cellular component pathway. (F) GO molecular function pathway.
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histograms display the abundance distribution of 22 types of

immune cells across each sample (Figure 4A). Different immune

cell types are represented by distinct colors, with the height of each

color indicating the proportion of cells. Figure 4B highlights a

significant difference in the expression levels of 10 different immune

cell marker types. Six immune cell markers (memory B cells,

follicular helper T cells, activated NK cells, M1 macrophages,

resting dendritic cells, and resting mast cells) were significantly

upregulated in the IPF group. Concurrently, the expression levels of

plasma cells, dormant NK cells, M1 macrophages, and neutrophils

were reduced compared to the control group.
Construction of WGCNA

To study the key genes in depth, we selected a soft threshold of 4

(Figure 5A), developed a gene coexpression network utilizing
Frontiers in Immunology 07
WGCNA technology, and identified the modules most closely

related to IPF (Figure 5B). In total, 11 gene modules were

obtained, with the yellow module showing a significant

correlation with IPF (correlation coefficient = 0.63, p < 0.001)

(Figure 5C). The yellow module, identified as the key module,

contains 291 genes. Figure 5D displays the scatter plot of module

eigengenes in the yellow module.
Identification of cuproptosis-related hub
genes and performance in training-focused
diagnostics of IPF

We identified 2,978 CRGs from a previous study (13). A total of

2,181 CRGs were extracted from GeneCards, and 1,090 genes were

obtained after taking the median number. After merging the two genes

and removing duplicates, we ultimately ended up with 3,538 CRGs.
FIGURE 4

(A) Stacked histogram comparing immune cell percentages between IPF and control samples. (B) Boxplot showing the abundance of 22 immune
cell types.
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Five cuproptosis-related hub genes (NUDT16, FMO5, CFH,

HDC, and STEAP1) were identified by crossing the candidate

genes obtained from the DEGs, CRGs, and WGCNA models

(Figure 6A). Figure 6B displays the comprehensive expression

patterns of the hub genes when comparing IPF samples with

normal samples. CFH, HDC, and STEAP1 exhibited prominent

expression in IPF, while the expression of NUDT16 and FMO5 was

reduced in the IPF group (all p < 0.001). The ROC curve showed

that the AUROC for NUDT16 was 0.92 (95% CI = 0.86–0.98), with

sensitivity and specificity of 0.79 and 0.92 (Figures 6C, H). For

FMO5, the AUROC was 0.90 (95% CI = 0.81–0.98), and the
Frontiers in Immunology 08
sensitivity and specificity were 0.86 and 0.86 (Figures 6D, H). The

AUROC for CFH in the diagnosis of IPF was 0.87 (95% CI = 0.80–

0.95), with sensitivity and specificity of 0.96 and 0.65 (Figures 6E,

H). The AUROC of HDC was 0.86 (95% CI = 0.77–0.94), with

sensitivity and specificity of 0.86 and 0.75 (Figures 6F, H). The

sensitivity, specificity, and AUROC of STEAP1 were 0.86, 0.68, and

0.78 (95% CI = 0.70–0.88), respectively (Figures 6G, H).

We also performed a correlation analysis of the five hub genes

(Figure 6I). The results showed that NUDT16 was only positively

correlated with FMO5 (r = 0.70, p < 0.001), significantly negatively

correlated with HDC (r = 0.65, p < 0.001), and moderately
FIGURE 5

(A) The power index of 4 was chosen as the appropriate soft threshold, achieving a scale-free coexpression network. (B) The branches of the
dendrogram correspond to 11 gene modules. (C) The correlation coefficients and corresponding p-values between each module and IPF. (D) Scatter
plot of module eigengenes in the yellow module.
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negatively correlated with CFH (r = 0.56, p < 0.001) and STEAP1 (r

= 0.45, p < 0.001). FMO5 was negatively correlated with CFH (r =

0.60, p < 0.001), HDC (r = 0.62, p < 0.001), and STEAP1 (r = 0.66,

p < 0.001). HDC was moderately positively associated with STEAP1

(r = 0.43, p < 0.001). In summary, the results suggest that most of

the five genes are highly correlated.
Frontiers in Immunology 09
Performance of hub genes in diagnosing
IPF in the validation set and the results
of immunohistochemistry

The diagnostic efficacy of the five genes in the validation set

(GSE70866) was also excellent (Figure 7). The validation group
FIGURE 6

(A) Venn diagram showing the intersection of diagnostic markers obtained from the three algorithms. Performance of the five hub genes in diagnosing
IPF in the validation set. (B) Expression differences of the five hub genes in IPF and control groups. (C–G) ROC curves of the five hub genes in IPF and
control groups. (H) Diagnostic value of the five hub genes for differentiating between IPF and control groups. (I) Correlation between the five hub genes.
PPV, positive predictive value; NPV, negative predictive value; AUROC, area under the receiver operating characteristic curve. ****p < 0.0001.
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consisted of alveolar lavage fluid specimens, with 196 specimens in

total, including 176 from patients with IPF. Figure 7A shows that

CFH, HDC, and STEAP1 (all p < 0.001) were significantly

overexpressed in IPF, with AUROC of 0.73 (95% CI = 0.62–0.85),

0.77 (95% CI = 0.66–0.88), and 0.75 (95% CI = 0.68–0.83), respectively

(Figures 7D, F). However, the expressions of NUDT16 (p = 0.05) and
Frontiers in Immunology 10
FMO5 (p < 0.001) were significantly lower in the IPF group compared

to controls. The AUROC for these genes were 0.63 (95% CI = 0.55–

0.71) and 0.79 (95% CI = 0.70–0.87) (Figures 7B, C), which is

consistent with the expression we obtained earlier.

Not coincidentally, immunohistochemistry of IPF and normal

tissues also demonstrated similar results. The immunohistochemistry
FIGURE 7

Performance of the five hub genes in diagnosing IPF in the validation set. (A) Expression differences of the five hub genes between IPF and control
groups. (B–F) ROC curves of the five hub genes in IPF and control groups. (G) Diagnostic value of the four hub genes for differentiating between IPF
and control groups. PPV, positive predictive value; NPV, negative predictive value; AUROC, area under the receiver operating characteristic curve.
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(IHC) analysis revealed positive expression of CFH, STEAP1, and

HDC in the IPF group (all p < 0.01), while FMO5 was overexpressed

in the control group (p < 0.05) (Figures 8A, B). Unfortunately, we did

not detect NUDT16 expression.
Analysis focusing on the functionality and
pathway enhancement of differently
expressed immune-related genes

Firstly, we extracted 1,793 immune genes associated with IPF

from the “Immport Shared Data”. As shown in Figure 9A, 24

DEIRGs were screened after intersecting the 92 DEGs with the

1,793 IRGs. In the KEGG analysis (Figure 9B), the most enriched

pathways were cytokine–cytokine receptor interaction, neuroactive

and ligand–receptor interaction, and viral protein interaction with

cytokine–cytokine receptor, among others.

In GO-BP analysis (Figure 9C), the major pathways were

regulation of response to stimulus, defense response, and

immune response. The results of enrichment analysis in GO-

CC (Figure 9D) revealed enrichment in the extracellular

region, an integral component of the plasma membrane, and

others. GO-MF analysis (Figure 9E) indicated that the major
Frontiers in Immunology 11
pathways included signaling receptor activity and cytokine

binding, among others.
Construction of PPI network and screening
of hub genes

We used the STRING online website for PPI network analysis. In

total, a PPI network containing 15 nodes and 23 edges was obtained.

Two of these genes lack association with other molecules and fail to

form a molecular network. Altogether, a PPI network comprising 15

nodes and 23 edges was acquired (Figure 10A). The network was

configured using the standard threshold (interaction score > 0.4). The

Cytoscpe plugin CytoNCAwas used to identify hub genes. Hub genes

(CXCL12, CXCR2, CTSG, SPP1) were selected based on their top four

scores (Figure 10B). Figure 10C shows the value of the four hub genes

in the diagnosis of IPF in the training set. CXCL12, CTSG, and SPP1

were significantly upregulated in the IPF group, while CXCR2 was

highly expressed in the normal group. Moreover, the AUROC values

were 0.92 (95% CI = 0.86–0.97) (Figures 10D, H), 0.74 (95% CI =

0.64–0.85) (Figures 10E, H), 0.79 (95% CI = 0.70–0.88) (Figures 10F,

H), and 0.71 (95% CI = 0.59–0.82) (Figures 10G, H). CXCL12

emerged as the gene most strongly associated with IPF.
FIGURE 8

(A) Representative images of immunohistochemical staining of CFH, STEAP1, HDC, and FMO5 in lung tissues. (B) The areas of CFH, STEAP1, HDC,
and FMO5. *p < 0.05; **p < 0.001.
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The correlation between four hub genes and immune cells is

shown in Figure 11A. CXCL12 was significantly correlated with five

cell types, including a significant negative correlation with

neutrophils (r = − 0.64, p < 0.001) and a significant positive

correlation with resting mast (r = 0.47, p < 0.001). The only

notable association observed between CXCR2 and neutrophils was

(r = 0.66, p < 0.001). There was an inverse relationship between

CTSG and three types of immune cells, most notably with

neutrophils (r = − 0.39, p < 0.001), and it was only positively

correlated with follicular helper T (r = 0.33, p < 0.001). SPP1 was

significantly positively correlated with three immune cells and

negatively correlated with two immune cells. The strongest
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correlation was with Macrophages_M0 (r = 0.58, p < 0.001).

Meanwhile, we found a mild correlation between these four

genes (Figure 11B).

In the validation set (GSE70866), the expression levels of genes

CXCL12, CTSG, and SPP1 were consistent with those in the

experimental set (Figure 12A); however, we regretfully were

unable to detect the expression of CXCR2. The diagnostic efficacy

of the three genes also yielded excellent results. The AUROC of

CXCL12 was 0.66 (95% CI = 0.56–0.76), with sensitivity and

specificity of 0.45 and 0.95, respectively (Figures 12B, E). For

CTSG, the AUROC was 0.65 (95% CI = 0.52–0.79), and the

sensitivity and specificity were 0.96 and 0.35 (Figures 12C, E).
FIGURE 9

(A) Venn diagram showing the intersection of diagnostic markers obtained from DEGs and IRGs. (B) Top 10 KEGG pathways. (C) Top 10 gene
ontology (GO) biological process pathways. (D) Top 10 GO cellular component pathways. (E) Top 10 GO molecular function pathways.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1458341
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2025.1458341
The AUROC of SPP1 in the diagnosis of IPF was 0.96 (95% CI =

0.39–0.99), and the sensitivity and specificity were 0.94 and 0.90,

respectively (Figures 12D, E). We employed immunohistochemical

methods to examine the expression profiles of four genes in both

IPF and normal tissues. The results revealed that CXCL12, CTSG,

and SPP1 were significantly upregulated in IPF tissues, whereas

CXCR2 showed higher expression in normal tissues, which is

consistent with our analytical findings (Figures 12F, G).
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Prediction of expression of immune-
related hub genes in single-cell RNA-
seq profiling

In this study, a total of eight lung tissue specimens were

collected, comprising five cases diagnosed with IPF who

underwent lung transplantation and three cases that underwent

pulmonary nodule surgery but were ultimately determined to be
FIGURE 10

(A) PPI network showing the interactions of 15 immune-related genes. (B) Cytoscape analysis using the CytoNCA plugin identifying hub genes and
their expression differences. (C) Expression differences of the four hub genes between IPF and control groups. (D–G) ROC curves of the four hub
genes in IPF and control groups. (H) Diagnostic value of the four hub genes for differentiating between IPF and control groups. PPV, positive
predictive value; NPV, negative predictive value; AUROC, area under the receiver operating characteristic curve.
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benign. After sequencing the lung tissue cell suspensions using the

10× Genomics platform, a total of 90,722 single-cell high-quality

data points were obtained. Following quality control and filtering,

75,613 cells were utilized for subsequent analysis (Table 1). After
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accounting for batch effects across samples, 26 distinct cellular

populations were identified (Figure 13A). Based on previous

research on canonical cell markers, these 26 cell clusters

were categorized into 11 distinct cell types (Figure 13B).
FIGURE 11

(A) Matrix correlation between immune-related hub genes and immune cell abundance. (B) Correlation analysis between the four hub genes. ***p <
0.001; ****p < 0.0001.
TABLE 1 Number and proportion of different cell types.

IPF Control

Celltype Numbers Percentage Numbers Percentage

Epithelial cells 10321 23.53% 3471 10.93%

Endothelial cells 6902 15.74% 2552 8.04%

Fibroblasts 2015 4.59% 131 0.41%

Mural cells 1608 3.67% 477 1.50%

Proliferating cells 1047 2.39% 326 1.03%

Bcells 969 2.21% 4348 13.69%

Plasma cells 185 0.42% 294 0.93%

Tand NKcells 10506 23.96% 6856 21.59%

Neutrophils 1086 2.48% 1292 4.07%

Mast cells 348 0.79% 555 1.75%

Mononuclear phagocytes 8870 20.22% 11454 36.07%

Sum 43857 100% 31756 100%
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Including epithelial cells, endothelial cell subsets (ECs), fibroblasts,

mural cells, prolific cells, B cells, plasma cells, T and NK cells,

neutrophils, mast cells, and mononuclear phagocytes (MPs).

Figures 13C–F depict the expression of immune-related hub

genes across various specimens, with cell populations represented

through a violin plot.
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Discussion

IPF is a chronic, progressive, and devastating disease, primarily

characterized by fibrosis, structural deformation, honeycomb lungs,

fibrosis of the lamellar lung parenchyma, and the generation of

fibroblastic foci, leading to poor prognosis and shorter survival (23).
FIGURE 12

(A) Expression differences of the five hub genes between IPF and control groups. (B–E) ROC curves of the four hub genes in IPF and control groups.
(F) Representative images of immunohistochemical of CXCL12, CTSG, CXCR2, and SPP1 in lung tissues. (G) The areas of the four hub genes. PPV,
positive predictive value; NPV, negative predictive value; AUROC, area under the receiver operating characteristic curve. *p < 0.05; **p < 0.01;
***p < 0.001.
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The incidence of IPF has risen in the past few years, with over 5,000

new confirmed cases annually in the UK (24). Aging is a major risk

factor for IPF, with incidence rates doubling every decade after the

age of 50 (4). Currently, there are no clinically effective treatments

to stop or reverse pulmonary fibrosis (25). Most patients experience

a gradual decline in lung function, which ultimately leads to severe

respiratory failure and can be fatal (1). Due to the variability and

uncertainty of IPF in the clinical process, early assessment and

intervention of disease progression are particularly important.

Almost all cell types require copper for a multitude of

physiological processes, and maintaining the equilibrium of

copper in cells is critical for cellular physiology and endurance

(26). Abnormalities in copper metabolism, as a novel mode of cell

death, are closely linked to the emergence of numerous human

illnesses (27–29). In addition, research has indicated that certain

fibrotic conditions may be influenced by the levels of copper ions.

One reason is that elevated copper ions in cells activate lysine

oxidase, enhancing the cross-linking of collagen and elastin (30, 31).

Therefore, this study links cuproptosis to the pathogenesis of IPF,

with bioinformatics analysis identifying potential crucial genes and

investigating prospective treatment targets.
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In this study, we investigated the gene expression levels in the

normal group and IPF patients using the GEO database, identifying

a total of 92 DEGs. GO and KEGG enrichment analyses revealed

enrichment in immune system processes, the extracellular matrix,

fibronectin binding, transforming growth factor beta-activated

receptor activity, and the cytokine–cytokine receptor interaction

pathway. In addition, there was a notable difference in the

percentage of immune cells between the IPF-affected group and

the normal group. Our study showed that six immune cell markers

—memory B cells, follicular helper T cells, activated NK cells, M1

macrophages, resting dendritic cells, and resting mast cells—were

significantly highly expressed in the IPF group. Consistent with

previous research, the expression of memory B cells, follicular T

cells, and mast cells was in agreement with the study (32). However,

the role of M1 macrophages in the pathogenesis of IPF remains

controversial. Our results support the involvement of M1

macrophages in fibrosis. The mechanisms of action of activated

NK cells and dormant DC cells in IPF were not identified and

warrant further exploration.

Using bioinformatics analysis, we identified five cuproptosis-

related hub genes that showed significant differences between the
FIGURE 13

(A) UMAP plot of all cells from 26 cell clusters. (B) UMAP plot displaying the cell types in the two groups. (C) Gene expression of CXCL12 in IPF and
normal groups. (D) Gene expression of CXCR2 in IPF and normal groups. (E) Gene expression of CTSG in IPF and normal groups. (F) Gene
expression of SPP1 in IPF and normal groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1458341
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2025.1458341
IPF and healthy groups, demonstrating high diagnostic efficacy.

These results were validated in the Alveolar Irrigation Validation

(GSE70866), further supporting the reliability of our findings.

CFH primarily inhibits the complement substitution pathways

by accelerating the attenuation of the complement alternative

pathway, specifically the C3-converting enzyme C3bBb, and

impairing the production of novel C3b (33). Furthermore, C3b

interacts with other proteins to promote the restoration of normal

immune system functioning (34). Previous studies have shown that

immune disorders drive the pathophysiology of IPF (35). In our

study, CFH was highly expressed in the tissues of IPF patients,

suggesting it may act as a potential disruptor. These findings lead us

to hypothesize that CFH could play a role in IPF as an immune

system suppressor. Previous studies have shown that STEAP1

expression is upregulated in lung adenocarcinoma cells, where it

regulates cellular epithelial–mesenchymal transition (EMT)

through the (JAK2/STAT3) signaling pathway (36). In addition,

studies have shown that STEAP1 is closely linked to abnormal

copper metabolism (37). However, it is still unclear whether

abnormal copper metabolism in epithelial cells plays a role in

mediating EMT. Similarly, in lung adenocarcinoma research,

factors derived from HDC + pmn-mdscs may influence EMT cell

behavior through paracrine models. Blocking these factors inhibits

metastasis in lung adenocarcinoma (38). The study suggests that

HDC knockout improves the progression of liver fibrosis (39).

However, no related literature currently exists regarding IPF,

which may offer new directions for future research. NUDT16 is a

(deoxygenated) creatine diphosphatase, primarily responsible for

protecting cells from the harmful effects of inosine triphosphate

(ITP) in the nucleus. The ITP receptor facilitates the transformation

of lung fibroblasts into myofibroblasts, potentially contributing to

lung fibrosis (40). Our results suggest that NUDT16 is poorly

expressed in IPF patients, indicating that NUDT16 may act as a

protective factor in the mechanisms of IPF. FMO5, a member of the

FMO protein family, is involved in the upregulation of the NRF2-

mediated oxidative stress response (41). NRF2 has been shown to

attenuate renal fibrosis through the PI3K/AKT signaling pathway

(42). Additionally, NRF2 activation has been demonstrated to

protect against various lung diseases, including IPF (43). This

validates our findings. Furthermore, we analyzed the correlation

among these five genes and identified significant synergistic or

antagonistic interactions between them.

All stages of IPF involve both innate and adaptive immune

responses (21). IRGs are essential for immune cells to respond to

immune stimulation and infiltration (44). However, the regulatory

mechanism of IPF through IRG expression remains unclear. From

the IMMport database, we identified 1,793 IRGs and intersected

them with previously identified DEGs, resulting in 24 DEIRGs.

KEGG analysis revealed that these DEIRGs are primarily associated

with the cytokine–cytokine receptor interaction pathway. GO

enrichment analysis indicated the following: defense response,

immune system process, and regulation of immune system

process (biological processes); extracellular (cellular composition);

and enrichment of cytokine binding (molecular function). These

findings align with our initial hypothesis. Subsequently, four hub

genes (CXCL12, CXCR2, CTSG, and SPP1) were identified in this
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study using PPI network analysis. Among these, CXCL12, CTSG,

and SPP1 were highly expressed in IPF, while CXCR2 was expressed

at lower levels, consistent with immunohistochemistry results.

Similarly, the AUROC analysis showed a moderate diagnostic

capability for these genes.

CXCL12 has garnered widespread attention as the sole ligand of

CXCR4, a major chemokine receptor on fibroblasts (45). Research

indicates that the CXCL12-CXCR4 axis plays a role in multiple

pathological processes of fibrosis, including inflammation, immune

responses, epithelial–mesenchymal transitions, and the formation

of new blood vessels (46). Our bioinformatics analysis found that

CXCL12 expression was upregulated in IPF patients, a finding that

was validated by previous studies (47). In our single-cell sequencing,

we found that CXCL12 is predominantly enriched in ECs, providing

new evidence for exploring IPF. CTSG is a protein-coding gene, and

single-cell sequencing showed statistically significant differences in

CTSG expression, primarily in monocyte macrophages, which

regulate damage and repair in various fibrosis models. A recent

study showed that macrophages from both mice and humans

promote fibrosis by overexpressing repair mechanisms in alveolar

damage (48). The study (49) suggests that CTSG is upregulated in

the peripheral blood of IPF patients, consistent with our findings.

Previous research (50) reports that macrophages orchestrate

fibroblast activation via Spp1, Fn1, and Sema3 crosstalk. SPP1 has

been found to play an important role in fibrosis in multiple organs,

including the heart, lungs, and skin (51, 52). Our single-cell

sequencing revealed significant differences in SPP1 expression in

multiple cell types, including ECS, EPI, and NK, with the largest

differences observed in EC subsets. Therefore, we hypothesize that

SPP1 may regulate fibrosis not only through macrophages but also

through ECs, providing a new direction for subsequent analysis.

CXCR2 is a receptor for interleukin 8 (IL-8), which mediates

neutrophil migration to inflammatory sites (53). Our

bioinformatics analysis results suggest that CXCR2 is highly

expressed in normal tissues, and single-cell sequencing results

further confirm that this high expression is predominantly

concentrated in neutrophils. In contrast to some of the current

findings (54), we suggest that the high expression of CXCR2 in

normal tissues stimulates the recruitment of more neutrophils,

rapidly suppresses inflammation, prevents excessive repair of

postinflammatory tissue, and thus reduces fibrosis. However,

this is merely a hypothesis, and further research is needed to

confirm it.

Additionally, we examined the relationship between four

specific genes and immune cells. CXCL12 was significantly

negatively associated with neutrophils, while CTSG and SPP1

were significantly positively correlated with resting mast cells and

macrophages, respectively. CXCR2 was only significantly positively

associated with neutrophils, which is consistent with our single-cell

sequencing results. A moderate correlation was observed between

the four genes. These findings suggest an important association

between IPF and IRGs and may provide novel perspectives and

directions for future research.

This study has some limitations. First, databases of genes

associated with CRGs and IRGs are limited, and more data need

to be mined. Second, the single-cell sequencing results are based
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on single-center clinical specimens with a limited sample size,

and additional cases may be needed for validation due to

patient heterogeneity.
Conclusion

This study confirms that the development of IPF may be

associated with cuproptosis and identifies five key related genes

(CFH, STEAP1, HDC, NUDT16, and FMO5). Additionally, we

found a strong relationship between IPF and immune cells,

leading to the identification of four important genes (FMO5,

CFH, HDC, and STEAP1). Single-cell sequencing results further

elucidated their expression in relevant cell clusters. Therefore, these

selected genes may serve as potential biomarkers and therapeutic

targets for future IPF research.
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