
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Tinka Vidovic,
University of Zagreb, Croatia

REVIEWED BY

Panneerselvam Jayabal,
The University of Texas Health Science
Center at San Antonio, United States
Zongmei Gao,
Columbia University, United States
Dhiraj Kumar,
National Eye Institute (NIH), United States

*CORRESPONDENCE

Zhiyao Ren

zhiyao.ren@ugent.be

Xin Wang

xinxwang.wang@ugent.be

†These authors have contributed
equally to this work and share
first authorship

‡These authors have contributed
equally to this work and share
last authorship

RECEIVED 14 June 2024

ACCEPTED 18 March 2025

PUBLISHED 04 April 2025

CITATION

Pang Y, Liang J, Deng Y, Chen W, Shen Y,
Li J, Wang X and Ren Z (2025) Identification
and validation of HOXC6 as a diagnostic
biomarker for Ewing sarcoma: insights
from machine learning algorithms
and in vitro experiments.
Front. Immunol. 16:1449355.
doi: 10.3389/fimmu.2025.1449355

COPYRIGHT

© 2025 Pang, Liang, Deng, Chen, Shen, Li,
Wang and Ren. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 04 April 2025

DOI 10.3389/fimmu.2025.1449355
Identification and validation of
HOXC6 as a diagnostic
biomarker for Ewing sarcoma:
insights from machine learning
algorithms and in vitro
experiments
Yonghua Pang1†, Jiahui Liang2,3†, Yakai Deng1†, Weinan Chen1,
Yunyan Shen1, Jing Li4, Xin Wang5*‡ and Zhiyao Ren5*‡

1Department of Orthopedics, The 904th Hospital of the Joint Logistics Support Force, People's
Liberation Army of China, Wuxi, Jiangsu, China, 2Department of Breast Surgery, The First Affiliated
Hospital of Anhui Medical University, Hefei, Anhui, China, 3Department of General Surgery, The First
Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China, 4Department of Orthopedics, Linyi
People's Hospital, Linyi, Shandong, China, 5Faculty of Medicine and Health Sciences, Ghent University,
Ghent, Belgium
Introduction: Early diagnosis of Ewing sarcoma (ES) is critical for improving

patient prognosis. However, the accurate diagnosis of ES remains challenging,

underscoring the need for novel diagnostic biomarkers to enhance diagnostic

precision and reliability. This study aimed to identify potential gene expression-

based biomarkers for the diagnosis of ES.

Methods: We selected the GSE17679, GSE45544, and GSE68776 datasets from

the Gene Expression Omnibus (GEO) database. After correcting for batch effects,

we combined ES and normal tissue samples from the GSE17679 and GSE45544

datasets to create a combined cohort. Two-thirds of both the tumor and normal

samples from the combined cohort were randomly selected for the training

cohort, while the remaining one-third served as the internal validation cohort.

Additionally, the GSE68776 dataset was used for external validation. To identify

key diagnostic genes, we applied three machine learning algorithms: least

absolute shrinkage and selection operator (LASSO), support vector machine

recursive feature elimination (SVM-RFE), and random forest (RF).

Results: HOXC6 was identified as a key diagnostic biomarker for ES. It

demonstrated strong diagnostic performance across all cohorts, with area

under the curve (AUC) values of 0.956 (95% CI: 0.909−0.990) in the training

cohort, 0.995 (95% CI: 0.977−1.000) in the internal validation cohort, and 0.966

(95% CI: 0.910−0.999) in the external validation cohort. Functional validation

through HOXC6 knockdown in the RD-ES cell line revealed that its suppression

significantly inhibited cell proliferation and migration. Furthermore,
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transcriptome sequencing suggested potential oncogenic mechanisms

underlying HOXC6 function.

Discussion: These findings highlight HOXC6 as a promising diagnostic biomarker

for ES, demonstrating robust performance across multiple datasets. Additionally,

its functional role suggests potential as a therapeutic target.
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1 Introduction

Ewing sarcoma (ES) is an invasive malignant tumor that primarily

affects bone and soft tissue. ES is a rare malignant tumor with an

annual incidence rate not exceeding 1%. ES is most common in

children and adolescents, typically between the ages of 10 and 20.

The majority of cases involve male patients (1–3). ES is a complex

disease driven by the coordination of multiple signaling pathways, with

EWSR1/FLI1 identified as a key contributor to its pathogenesis (4, 5).

The absence of precursor lesions makes the diagnosis and treatment of

ES a challenge (6). ES is characterized by rapid growth and a tendency

to undergo metastasis (7). The early diagnosis and treatment of ES can

effectively prevent its recurrence and metastasis, thereby improving its

prognosis (8). Currently, diagnostic methods for ES primarily rely on

clinical symptoms, imaging, and pathology. However, achieving an

accurate diagnosis remains relatively challenging. ES patients typically

present with mild symptoms in the early stages and ES is easily

confused with trauma, sports injuries, or growth-related discomfort,

increasing the likelihood of delayed diagnosis and treatment (9). In

addition, imaging techniques have significant limitations in diagnosing

ES because of the lack of characteristic features and a high rate of

misdiagnosis (10). Moreover, the pathological diagnosis of ES is

complex, requiring molecular pathology and multiple diagnostic

approaches to ensure accuracy, particularly in challenging cases (6).

Therefore, there is an urgent need for a precise and simple diagnostic

approach for the early detection of ES.

In recent years, with the completion of the Human Genome

Project, high-throughput sequencing technology has undergone

groundbreaking advancements. These developments have enabled

the acquisition of more accurate gene expression profiles, the

identification of disease-related genes, and an analysis of the

mechanisms underlying complex diseases, driving the advent of the

precision medicine era (11). Additionally, the emergence of machine

learning, which allows computer systems to automatically learn from

data and algorithms to improve their performance, has shown great

potential in omics research (12). Collectively, these advancements offer

considerable potential for the discovery of novel diagnostic biomarkers.

To date, numerous studies have reported the successful use of machine

learning techniques to identify diagnostic biomarkers for various

tumors, such as lung cancer (13), colorectal cancer (14), and breast
02
cancer (15). To our knowledge, no studies to date have focused on

identifying diagnostic biomarkers for ES on the basis of transcriptome

data. Therefore, this study aims to address this gap by identifying

reliable diagnostic biomarkers derived frommRNA expression profiles.

According to the flowchart shown in Figure 1, we first merged the

GSE17679 and GSE45544 datasets using batch effect correction to create

a combined cohort. From this cohort, two-thirds of both the tumor and

normal tissue samples were randomly selected to form the training

cohort, while the remaining one-third were designated as the internal

validation. Additionally, the GSE68776 dataset was utilized for external

validation. We performed gene set enrichment analysis (GSEA) on the

combined cohort to explore functional and pathway enrichment

differences between tumor and normal tissues. Next, we analyzed the

gene expression profiles of ES and normal tissues within the combined

cohort to identify differentially expressed genes (DEGs). Furthermore, on

the basis of the DEGs identified, we used the training cohort to apply

least absolute shrinkage and selection operator (LASSO), support vector

machine recursive feature elimination (SVM-RFE), and random forest

(RF) machine learning algorithms to identify diagnostic biomarkers

associated with the pathogenesis of ES. Among these, HOXC6 emerged

as the sole diagnostic biomarker. We subsequently evaluated and

validated the diagnostic performance of HOXC6 using receiver

operating characteristic (ROC) curve analysis in the training, internal,

and external validation cohorts. Additionally, we assessed immune cell

infiltration via the CIBERSORT algorithm and investigated the

relationship between infiltrating immune cells and HOXC6 expression.

Finally, we performed in vitro experiments in which HOXC6 was

knocked down in the RD-ES cell line to explore its functional role.
2 Methods

2.1 Data collection and processing

We selected the GSE17679, GSE45544, and GSE68776 datasets

from the Gene Expression Omnibus (GEO) database (Table 1). After

removing batch effects using the surrogate variable analysis (SVA)

algorithm (16), the ES and normal tissue samples from the GSE17679

and GSE45544 datasets were combined. We randomly selected two-

thirds of the tumor tissues and two-thirds of the normal tissues from
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the combined cohort to construct the training cohort (68 tumor

samples and 26 normal samples), while the remaining one-third was

used for internal validation (34 tumor samples and 13 normal

samples). We utilized the GSE68776 dataset for the purpose of

external validation (32 tumor samples and 33 normal samples).
2.2 Functional and biological pathway
enrichment analyses

GSEA was conducted to identify significantly altered biological

functions and signaling pathways between tumor and normal tissues in
Frontiers in Immunology 03
the combined cohort. For the purpose of this study, the Gene Ontology

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and

hallmark gene sets were downloaded from the Molecular Signatures

Database (http://www.broadinstitute.org/msigdb) (17).
2.3 Identification of DEGs

The R package “limma” (18) was employed, applying the

criteria of an absolute value of | log2(FC) |>1 and an FDR p value

of <0.05 to identify DEGs between ES and normal tissues in the

combined cohort. The DEGs were subsequently visualized using

heatmaps and volcano plots.
2.4 Screening diagnostic biomarkers via
three machine learning methods

In this study, LASSO (19), SVM-RFE (20) and RF (21) machine

learning algorithms were independently applied to the training

cohort to further screen diagnostic genes from the DEGs. The
TABLE 1 Details of the datasets used in this study.

GEO
series

Tissue sample Cell line

ES Normal ES Normal

GSE17679 88 18 0 0

GSE45544 14 21 7 1

GSE68776 32 33 0 0
FIGURE 1

Flow chart of the comprehensive bioinformatics analysis and in vitro validation of HOXC6.
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overlapping genes across the three sets of results were considered

candidate diagnostic biomarkers for ES. LASSO logistic regression

analysis was conducted using the “glmnet” package in R software.

The SVM-RFE algorithm was applied using the “e1071” package in

R software. The RF algorithm was implemented using the

“randomForest” package in R software.
2.5 Assessment and validation of the
diagnostic value of biomarkers in ES

To further assess the diagnostic value of the identified

biomarkers in ES, ROC curves were generated, and the area

under the curve (AUC) was calculated to evaluate and validate

their predictive performance across the training, internal validation,

and external validation cohorts. This analysis was performed using

the R package “pROC”.
2.6 Evaluation of immune cell infiltration
and correlation analysis between
biomarkers and infiltrating immune cells

The quantification of different cell types involved in immune

cell infiltration within ES gene expression profiles was conducted

using the CIBERSORT algorithm (22). The correlations of

infiltrating immune cells were visualized and analyzed using the R

package “corrplot”. Additionally, a violin plot was generated using

the R package “vioplot” to visualize the differences in infiltrating

immune cells between ES and normal tissues. The correlation

between diagnostic genes and immune cells was analyzed using

the R packages “immuneCor” and “lollipop”. A lollipop chart was

subsequently created to visualize the correlation between diagnostic

gene levels and immune cell levels.
2.7 Cell culture

Human ES cells (RD-ES) were obtained from Qin Qi

Biotechnology Development Co., Ltd., Shanghai, China. The cells

were cultured in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% fetal bovine serum (FBS) under standard

conditions in a humidified incubator with 5% CO2 at 37°C.
2.8 Cell transfection

To knockdown HOXC6 expression, specific short hairpin RNAs

(shRNAs) were designed and transfected into RD-ES cells. The

sequences of the shRNAs used were as follows: sh-HOXC6-1: 5′-
TGCTGTTGACAGTGAGCGCGGAGACAGAAATAAAT

ATTAATAGTGAAGCCACAGATGTATTAATATTT

ATTTCTGTCTCCATGCCTACTGCCTCGGA-3′; sh-HOXC6-2:
Frontiers in Immunology 04
5′-TGCTGTTGACAGTGAGCGACAGTAGGAGAAAATAA

ATAAATAGTGAAGCCACAGATGTATTTATTTATTTT

CTCCTACTGGTGCCTACTGCCTCGGA-3′. The knockdown

efficiency was evaluated using real-time quantitative PCR (RT–

qPCR) after 48 hours of transfection.
2.9 Real-time quantitative PCR

The sequences of the primers used in the experiment were as

follows. For the HOXC6 gene, the primers used were as follows:

forward primer, CCGTCAGTGTTCCTATCCAATTTTC; reverse

primer, ATATTCGAGAACGGACCCAGAG. For ACTB, the

primers used for the housekeeping gene were as follows: forward

primer, CATGTACGTTGCTATCCAGGC; reverse primer,

CTCCTTAATGTCACGCACGAT. After HOXC6 was knocked

down in the RE-DS cell line, total mRNA was extracted from the

cells with TRIzol reagent (TaKaRa, Japan). The concentration and

purity were subsequently evaluated with a NanoDrop 2000

(Thermo Fisher, USA). The extracted RNA was then reverse

transcribed into cDNA using the PrimeScript RT kit (TaKaRa,

Japan) following the manufacturer’s instructions. RT–qPCR was

subsequently performed using the SYBR Premix Ex Taq™ kit

(TaKaRa, Japan) on an ABI StepOne Plus RT–qPCR system to

detect SYBR Green fluorescence signals after each amplification

cycle. Data processing was performed using GraphPad Prism 10.0.0,

and a t test was conducted to compare the values for the

experimental group with those of the control group.
2.10 Cell proliferation assay

Proliferation assays were performed over five consecutive days

on cells seeded in a 96-well plate using the Cell Counting Kit-8

(CCK-8) reagent (Beyotime, China). A total of 2000 cells were

plated per well and incubated at 37°C. The absorbance at 450 nm

was measured daily for five days using a microplate reader.
2.11 Colony formation assays

Approximately 2000 cells per well were seeded into a 6-well

culture plate and incubated at 37°C for two weeks. After being

washed with PBS twice, the cells were fixed with 4%

paraformaldehyde for 15 min and then stained with crystal violet.

Each experiment was repeated three times. ImageJ was used for

image analysis to convert images into cellular count data (23). The

acquired counts were normalized by dividing them by the

corresponding cell count in the control group, yielding percentage

data. Data and image processing were performed using GraphPad

Prism 10.0.0 and ImageJ. The statistical analysis consisted of a t test

conducted on three replicate datasets to compare the values

between the experimental and control groups.
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2.12 Migration assays

A 24-well Transwell plate (Costar) was used for the cell

migration assays. First, 50 ml of serum-free Ham’s F-12K medium

was added to the upper chamber of the Transwell plate without the

addition of a matrix. The plate was incubated at 37°C for 30

minutes. The knockdown cells or negative control (NC) cells were

prepared as described previously. After a 20-minute incubation, 100

ml of the shRNA mixture was mixed with 100 ml of serum-free

Ham’s F-12K containing 1×105 cells. The mixture was transferred

to the upper chamber of the Transwell system. In the lower

chamber, 500 ml of Ham’s F-12K medium supplemented with

10% FBS was added. The mixture was incubated at 37°C for 24

hours. A cotton swab was used to remove nonmigrated cells from

the lower chamber. The upper chamber was removed, and the cells

were washed with PBS. The cells were fixed and stained with

Giemsa. Five fields were randomly selected under an optical

microscope, and the migrated cells were counted.
2.13 Wound healing assay

Wound healing assays were performed following previously

described protocols (24). Briefly, cells were seeded in 6-well plates

and incubated at 37°C until reaching full confluence. A scratch was

then made across the middle of each well to create a wound, and the

medium was replaced with serum-free medium. After 48 hours, the

wound area was measured.
2.14 RNA-seq

RD-ES cells were subjected to RNA sequencing after HOXC6

knockdown. Approximately 2 mg of total RNA was extracted from

each sample and pretreated with the Epicenter Ribo-zero™ rRNA

Removal Kit. An RNA library was then constructed following the

manufacturer’s protocol for the NEBNext® Ultra™Directional RNA

Library Prep Kit (NEB, USA). The procedure was as follows: RNA

was first fragmented into small pieces by treatment with NEBNext

First Strand Synthesis Reaction Buffer at high temperature, and first-

strand cDNA was synthesized using random hexamer primers and

M-MuLV reverse transcriptase. Next, second-strand cDNA was

synthesized, and the fragment ends were repaired to blunt ends

using exonuclease or polymerase. The 3’ ends of the cDNA fragments

were then adenylated and ligated to NEBNext adapters with a hairpin

structure. After purification with the AMPure XP system (Beckman

Coulter, Beverly, USA), 150–200 bp DNA fragments were selected

and sequenced using the HiSeq 2500 platform (Illumina, CA, USA).
2.15 RNA-seq data processing and analysis

The FastQC program (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/) was used to assess the sequencing quality of all the

sample data, which were trimmed using the FASTX-Toolkit. The
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sequencing reads were mapped to the human reference genome

assembly GRCh37 using TopHat (v2.0.9). Differential expression

analysis was conducted on the basis of the gene expression matrix in

count format. The R package edgeR was used to compare

differential gene expression between shHOXC6-expressing cells

and the NC group using a predetermined threshold (q value >

0.05). Volcano plots were generated to visualize the differentially

expressed genes. Intersection analyses were performed separately

for the upregulated and downregulated genes to identify the genes

that were consistently differentially expressed across both replicates.

GO and KEGG enrichment analyses were subsequently performed

on the upregulated and downregulated genes, with a significance

threshold of a q value < 0.05.
3 Results

3.1 Functional and biological pathway
enrichment analyses

After correction, we merged the tissue samples from the

GSE17679 and GSE45544 datasets, and the merging effect was

satisfactory, allowing us to construct a combined cohort

(Supplementary Figures 1A, B). To explore the biological

pathways associated with ES, we performed GSEA using the

cancer GO, KEGG, and hallmark gene sets. The results

demonstrated that ES tissues were enriched in pathways

associated with chromosomal abnormalities, the cell cycle,

ribosomes, and the epithelial–mesenchymal transition (EMT)

(Supplementary Figure 2, Supplementary Tables 1–3).
3.2 Identification of DEGs and diagnostic
biomarker screening using three machine
learning methods

DEGs were identified in the combined cohort. We identified a

total of 1832 DEGs, comprising 1077 upregulated genes and 755

downregulated genes (Supplementary Table 4). DEGs were visualized

using heatmaps (Figure 2A) and volcano plots (Figure 2B).

On the basis of the DEGs, we further employed three machine

learning algorithms—LASSO, SVM-RFE, and RF—to screen for

diagnostic biomarkers of ES in the training group, identifying 25, 8,

and 20 potential diagnostic genes, respectively (Figures 3A–C).

HOXC6 was identified as the only overlapping gene across the

three machine learning analyses (Figure 3D). HOXC6 expression is

significantly higher in tumor tissues than in normal tissues

(Supplementary Figure 3). Interestingly, we also found that

HOXC6 expression levels were higher in tumor cell lines than in

the normal cell line on the basis of the GSE45544 dataset

(Supplementary Figure 4). Furthermore, HOXC6 expression

was elevated in multiple tumor types, including stomach

adenocarcinoma, invasive breast carcinoma, and esophageal

carcinoma (Supplementary Figure 5), highlighting its critical role

in various cancers.
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3.3 Assessment and validation of the
diagnostic value of HOXC6 in ES

To further assess and validate the diagnostic value of HOXC6 in

ES, ROC analysis was conducted for HOXC6 across the training,

internal, and external validation cohorts. The results demonstrated
Frontiers in Immunology 06
that HOXC6 exhibited strong diagnostic performance in the

training cohort, with an AUC of 0.956 (95% CI: 0.909−0.990)

(Figure 4A). Similarly, in the internal validation cohort, HOXC6

showed excellent diagnostic accuracy, with an AUC of 0.995 (95%

CI: 0.977−1.000) (Figure 4B). Furthermore, HOXC6 was highly

expressed in tumor tissues in the external validation cohort
FIGURE 2

The results include the top 50 upregulated and downregulated DEGs identified in the combined cohort. (A) Heatmap of the DEGs. (B) Volcano plot
of the DEGs. ES, Ewing sarcoma; DEGs, differentially expressed genes.
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(Figure 4C) and maintained strong diagnostic efficacy, with an

AUC of 0.966 (95% CI: 0.910−0.999) (Figure 4D). These results

indicate that HOXC6 is a reliable diagnostic biomarker for ES.
3.4 Evaluation of immune cell infiltration
and correlation analysis between HOXC6
and infiltrating immune cells

Initially, we assessed the infiltration of immune cells in the

combined cohort using the CIBERSORT algorithm (Figure 5A).

Compared with that in normal tissues, the degree of M0

macrophage infiltration in ES tissues was significantly greater
Frontiers in Immunology 07
(p=0.016). Conversely, the degree of infiltration of memory B

cells (p=0.009) and CD8+ T cells (p=0.009) was greater in normal

tissues than in ES tissues (Figure 5B). Furthermore, we calculated

the correlations between the 22 types of infiltrating immune

cells (Figure 5C).

HOXC6 expression was significantly positively correlated with

the number of M0 macrophages (p = 0.009) and follicular helper T

cells (p = 0.021) and significantly negatively correlated with the

number of CD4 memory-activated T cells (p = 0.022), activated

dendritic cells (p = 0.018), memory B cells (p = 0.010), CD8+ T cells

(p = 0.004), and monocytes (p < 0.001) (Figure 5D). These

findings suggest that HOXC6 may play a role in the tumor

immune microenvironment.
FIGURE 3

Diagnostic biomarkers screened via three machine learning algorithms. (A) Identification of diagnostic biomarkers by LASSO regression analysis.
(B) Selection of diagnostic biomarkers using the SVM-RFE algorithm. (C) Detection of diagnostic biomarkers through the RF algorithm. (D) Venn
diagram showing the overlapping biomarkers across the LASSO, SVM-RFE and RF analyses. LASSO, least absolute shrinkage and selection operator;
SVM-RFE, support vector machine recursive feature elimination; RF, random forest.
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3.5 Knockdown of HOXC6 inhibited ES cell
proliferation and migration

We established two RD-ES shHOXC6 cell lines through

lentiviral transduction. As shown in Figure 6A, the HOXC6

knockdown efficiency in RD-ES cells was satisfactory.

We further investigated the impact of HOXC6 knockdown on

the proliferation of ES cells through CCK-8 and colony formation

assays. As shown in Figure 6B, the CCK-8 assay revealed that

HOXC6 knockdown suppressed RD-ES cell proliferation. Similarly,

the colony formation assay confirmed a significant reduction in

proliferation (Figure 6C). Together, these results suggest that

HOXC6 positively regulates ES cell proliferation.

We next examined the cell migration ability. Transwell assays

demonstrated that HOXC6 knockdown significantly inhibited the

migration of RD-ES cells (Figure 6D). Similarly, the wound healing

assay results revealed that reduced HOXC6 expression impaired the

wound closure rate of RD-ES cells (Figure 6E). These findings
Frontiers in Immunology 08
suggest that HOXC6 functions as an oncogene in the progression

of ES.
3.6 Transcriptome-based analysis of
HOXC6-related pathways

We performed transcriptome sequencing on two RD-ES

shHOXC6 cell lines and the NC group, analyzing all upregulated

and downregulated genes between the two knockdown cell lines and

the NC group (Figures 7A, B, Supplementary Tables 5, 6). First, we

identified the intersection of commonly downregulated genes

(Figure 7C, Supplementary Table 7) and conducted GO and

KEGG analyses (Figures 7D, E, Supplementary Tables 8, 9). The

results revealed associations with ribosomes, metabolism, and the

cell cycle. Functional enrichment analysis was also performed on

the intersecting upregulated genes (Supplementary Figure 6,

Supplementary Tables 10−12).
FIGURE 4

Assessment and validation of the diagnostic value of HOXC6 in ES. (A) ROC curve for assessing the diagnostic efficacy of HOXC6 in the training
cohort. (B) ROC curve for validating the diagnostic efficacy of HOXC6 in the internal validation cohort. (C) Box plots of the expression of HOXC6 in
ES and normal tissues in the external validation cohort. (D) ROC curve for validating the diagnostic efficacy of HOXC6 in the external validation
cohort. ES, Ewing sarcoma.
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4 Discussion

ES ranks as the second most prevalent malignant bone tumor

among children and adolescents (25). Although significant progress

has been made in the early diagnosis and treatment of ES in recent

years, the absence of specific diagnostic biomarkers still presents

significant challenges for achieving accurate early diagnosis of ES.

Reports in the literature indicate that up to 25% of patients present

with metastasis at the time of diagnosis, contributing to a

persistently poor clinical prognosis (26). Thus, the identification

of diagnostic biomarkers for ES is crucial for improving the

diagnostic accuracy and prognosis of ES. To our knowledge, this

study is among the first to explore diagnostic biomarkers for ES on

the basis of transcriptome data.

The GSEA comparing ES and normal tissues in this study

revealed that chromosomal abnormalities, the cell cycle, ribosomes,

and the EMT may play critical roles in the development and

progression of ES. Chromosomal translocation involving EWSR1/

FLI1 is a key driver in the pathogenesis of ES (27). While the EMT is
Frontiers in Immunology 09
essential for normal embryonic development and tissue

regeneration, its aberrant reactivation is associated with tumor

malignancy, contributing to cancer progression and metastasis (28).

As genomic technology advances, there is a growing trend

toward the use of bioinformatics analysis methods to explore the

molecular mechanisms underlying gene expression profiles (29).

This approach holds great promise for identifying specific

molecular diagnostic markers or therapeutic targets for various

diseases (30). LASSO analysis is a regression method known for its

ability to efficiently process large datasets, effectively perform

parameter shrinkage and variable selection, prevent overfitting,

and more accurately screen variables (31). In omics research, the

screening of differentially expressed biomarkers from tissue data is

pivotal. SVM-RFE has emerged as an efficient technique for feature

selection and has promising application prospects in the analysis of

metabolomics data (20). RF is a flexible and powerful machine

learning algorithm that offers advantages such as high accuracy,

resistance to overfitting, the ability to handle missing data, and

built-in feature selection. It is particularly well suited for complex
FIGURE 5

The infiltration of immune cells in the combined cohort and its correlation with HOXC6. (A) Bar chart of the proportions of 22 types of infiltrating
immune cells. (B) Differential analysis of 22 types of infiltrating immune cells. (C) Heatmap showing the correlations between 22 immune cells.
(D) Correlations between HOXC6 and 22 types of immune cells.
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datasets and high-dimensional problems (21). To identify reliable

diagnostic biomarkers, we first performed differential gene

expression analysis in the combined cohort. On the basis of the

identified DEGs, we applied three machine learning methods in the
Frontiers in Immunology 10
training cohort and identified HOXC6 as the only diagnostic

biomarker through intersect ion analysis . ROC curves

demonstrated the excellent predictive performance of HOXC6 for

ES. Internal validation is crucial for estimating the generalizability
FIGURE 6

Knockdown of HOXC6 inhibited ES cell proliferation and migration. (A) Knockdown efficiency of HOXC6 in the RD-ES shHOXC6 cell line. (B) CCK-8
assay. (C) Colony formation assay. (D) Transwell assay. (E) Wound healing assay. ES, Ewing sarcoma. The data is presented as the mean from at least
three independent experiments. (***p< 0.001; ****p< 0.0001).
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of a model (32). In this study, the strong results from internal

validation provide robust evidence supporting the reliability of the

diagnostic biomarker HOXC6. Furthermore, external validation is

essential for assessing the reproducibility of the model and its

applicability to independent samples (33). The GSE68776 dataset

was used for external validation in this study. The AUCs obtained in

this study were satisfactory, indicating the reproducibility of

HOXC6 use for ES diagnosis in practical applications.

HOXC6 plays a pivotal role in regulating embryonic

development, cell differentiation, and organ formation (34). As

one of the 39 HOX genes in humans (35), HOXC6 is overexpressed

in several cancers, including osteosarcoma (36), lung

adenocarcinoma (37), and prostate cancer (38). It is critically

involved in tumor cell proliferation, growth, and metastasis by

regulating various proteins, such as bone morphogenetic protein 7

(BMP7) (39, 40). Liu et al. (41) reported that HOXC6 is involved in

various processes, including immune cell infiltration, immune-

related genes, chemotherapy sensitivity, signaling pathways, and
Frontiers in Immunology 11
transcriptional regulatory networks. Moreover, it may function as a

radiosensitivity-related gene affecting the prognosis of rectal cancer

patients and could serve as a potential target for radiotherapy.

Huang et al. (42) noted that HOXC6 may play a significant role in

promoting tumor development and glioma progression by

regulating the EMT signaling pathway. Additionally, it may serve

as a novel immunotherapeutic target for glioma treatment. Wang

et al. (43) reported that HOXC6 overexpression enhances BCL2-

mediated antiapoptotic effects, thereby promoting cervical cancer

cell cycle progression and proliferation. These studies indicate that

HOXC6 plays an important role in tumor diseases.

The tumor microenvironment plays a crucial role in all stages of

cancer progression (44). In this study, we observed that CD8+ T-cell

infiltration was significantly lower in ES tissues than in normal

tissues and was negatively correlated with HOXC6 expression. CD8

+ T cells, also known as cytotoxic T cells, can recognize and directly

kill tumor cells. However, in the tumor immune microenvironment,

CD8+ T cells often experience exhaustion (45). Previous studies
FIGURE 7

Differential expression analysis and enrichment analysis between the shHOXC6 and control cell lines. (A-E) Volcano plot displaying the differentially
expressed genes between the shHOXC6_1 (A) and shHOXC6_2 (B) groups and the NC group. (C) Venn diagram showing the overlap in
downregulated genes between the shHOXC6_1 and shHOXC6_2 groups compared with the NC group; GO (D) and KEGG (E) enrichment analysis of
the overlapping downregulated genes. NC, negative control.
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have indicated that HOXC6 can regulate the tumor immune

microenvironment (42). Hence, our results indicate that HOXC6

may promote ES progression by mediating the exhaustion of CD8+

T cells.

To investigate the mechanisms by which HOXC6 promotes

tumor progression, we performed transcriptome sequencing.

Differential expression analysis between the knockdown and NC

groups, with a focus on downregulated genes, revealed significant

enrichment of ribosome-related pathways in both the GO and

KEGG analyses. Interestingly, ribosome-related pathways were

also enriched in the GSEA between ES and normal tissues. The

ribosome, a complex molecular machine responsible for protein

synthesis, has been shown to play critical roles in tumor

proliferation, growth, and metastasis (46, 47). To date, no studies

have reported that HOXC6 mediates tumor progression by

regulating ribosomes. Therefore, this study may reveal a novel

oncogenic mechanism of HOXC6 and highlight its potential as a

therapeutic target.

In the future, the collection of clinical samples will be essential

for validating the diagnostic accuracy of our findings. Additionally,

further investigations utilizing a wider array of in vitro models,

including diverse cell lines and patient-derived primary cells, as well

as in vivo studies, will offer valuable insights into the role of HOXC6

in the pathogenesis of ES. Moreover, transcriptomic data can be

leveraged to elucidate the downstream mechanisms regulated by

HOXC6. Further experiments are needed to elucidate the

downstream mechanisms of HOXC6. Overall, this study provides

a simple and efficient diagnostic strategy for ES based on the

expression of a single gene, HOXC6, which holds great potential

for clinical application. Additionally, our findings establish HOXC6

as an oncogene, highlighting its promise as a therapeutic target

pending further comprehensive research.
5 Conclusion

In this study, a simple and efficient diagnostic strategy for ES

was developed on the basis of the expression of a single gene,

HOXC6, which holds great potential for clinical application.

Additionally, in vitro experiments revealed HOXC6 as an

oncogene in ES tumorigenesis, highlighting its promise as a

therapeutic target pending further comprehensive research.
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