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Introduction

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a public health

emergency with phenotypes ranging from asymptomatic to severe sequelae that can lead to

multiple organ failure and death (1, 2). SARS-CoV-2 efficiently infects airway epithelial

cells and alveolar pneumocytes, causing in high viral loads and inflammatory responses,

including the interferon response (3). In hospitalized patients, COVID-19 increases the risk

of venous and arterial thromboembolic events due to vascular barrier failure, edema,

endotheliitis, thrombosis, and inflammatory cell infiltration (4, 5). Hypercoagulation and

micro- and macro-circulatory thrombosis are major causes of multiple organ failure in

COVID-19 (6). Although many people have survived COVID-19 without long-term

symptoms, a considerable portion of COVID-19 survivors reportedly have continuing

cardiovascular issues such as coagulopathy or bleeding disorders (7). This suggests that, in

addition to the respiratory epithelium, the endothelium lining of blood vessels may also be

impacted by SARS-CoV-2 infection. The pathophysiology of COVID-19 has been explored

in recent reviews [reviewed in (8, 9)]. Due to the conflicting data, there is ongoing

controversy about the endothelial tropism (refers to the ability of SARS-CoV-2 to interact

with endothelial cells) and productive endothelial infection (viral replication within

the ECs) of SARS-CoV-2. Here, we share our perspective on challenging the notion of

endothelial tropism and productive endothelial infection, drawing insights from the current

scientific evidence.
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Endothelial dysfunction and
hypercoagulation in COVID-19

The endothelium, which lines the inside of arteries, is crucial for

controlling vascular tone and preserving vascular homeostasis (10).

Disseminated intravascular coagulation (DIC), vasculitis, and

thrombosis can all be attributable to endothelial damage (11, 12).

Numerous prevalent viruses and bacteria have been found to directly

infect ECs, causing necrosis, apoptosis and/or damage to the vessel

wall (13–15). Upon infection by viruses such as Dengue, Hantaan,

Marburg, Lassa, and Ebola, both immune and non-immune cells

(including endothelial cells, monocytes, and macrophages) express

tissue factor (TF), leading to hypercoagulation and often culminating

in disseminated intravascular coagulation (DIC) (16–20). Studies

have demonstrated that Dengue, Ebola, and Marburg viruses can

directly infect endothelial cells (ECs) and replicate within them, as

reviewed in detail elsewhere (13, 21, 22). However, it remains unclear

whether SARS-CoV-2 exhibits a similar phenomenon due to

conflicting observations.

SARS-CoV-2 infection of endothelium is less studied than airway

epithelium and alveolar pneumocytes (10, 23–25). Despite

thromboprophylaxis, 31-49% of COVID-19 emergency care

patients had arterial and venous thromboembolism (26–30). This

shows that endothelial impairment must be addressed aggressively to

prevent thrombosis. However, it is unclear whether the

hypercoagulation is driven by lung-induced systemic inflammation

upon infection, or by endothelial injury or dysfunction due to direct

SARS-CoV-2 infection. Several pro-inflammatory cytokines

including TNF-a, IL-1a, IL-1b, IL-6, IL-8, MCP-1, IFN-g that are

responsible for the cytokine storm in COVID-19 (31, 32) may induce

COVID-19-associated coagulopathy (CAC) via expression of TF on

ECs, monocytes, macrophages and T cells (33–40). The IL-6 signaling

complex damages liver sinusoidal ECs and produces liver injury,

suggesting that endothelial dysfunction and hypercoagulation may

cause severe COVID-19 (41). SARS-CoV-2 infection in the Syrian

hamster model showed inflammation and type I interferon

dysregulation in respiratory and non-respiratory tissues like the

heart and kidney, shedding light on COVID-19 as a multiorgan

disease and possible post-acute sequelae (42). SARS-CoV-2 Spike and

Nucleocapsid protein directly activate ECs, inducing mitochondrial

dysfunction, vasculopathy, and coagulopathy (43, 44) (Figure 1).

Furthermore, our recent study showed that the early host response of

the endothelium to SARS-CoV-2 infection declines with aging,

potentially contributing to increased disease severity (45).
Proposed novel endothelial (co)-
receptors for SARS-CoV-2 entry

SARS-CoV-2 and SARS-CoV utilize human ACE2 as an entry

receptor and TMPRSS2, primarily expressed by ECs in the

respiratory and digestive tracts, as a co-factor to degrade

extracellular matrix proteins for viral entry (46). ACE2 is variably

expressed on arterial and venous ECs, smooth muscle cells, and

pericytes across organs, facilitating systemic viral dissemination
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upon entry into the circulatory system. However, studies, including

in-house immunohistochemistry, showed that humanized ACE2

mice express hACE2 in brain blood vessels but not in lung,

gastrointestinal, or renal vessels, suggesting SARS-CoV-2 may

employ both hACE2-dependent and independent entry

mechanisms (47) (Figure 1B). Low expression of ACE2 and

TMPRSS2 in human ECs limits the ability of SARS-CoV-2 to

infect ECs (48). Thus, the variations in ACE2 expression across

different microvascular beds, or alternative receptors on ECs may

facilitate the entry of infectious particles. Supporting this concept,

numerous additional receptors have been identified over the past

three years as potentially relevant to viral particle entry in ECs.

Endosomal cysteine peptidases like cathepsins B and L activate the

spike (S) protein, enhancing viral entry (49–51). SARS-CoV-2 also

binds heparan sulfate, sialic acid-containing glycoproteins, and

gangliosides on ECs (52, 53). Proteolytic cleavage at furin-type

cleavage sites in the S protein exposes a conserved motif that

interacts with Neuropilin-1/2 receptors, significantly increasing

infectivity (54, 55). Vimentin, CD147, and TMEM106B have been

identified as co-receptors or alternative receptors, though role of

TMEM106B in COVID-19 pathology lacks experimental validation

(56–59). Further research is needed to confirm these mechanisms

and in vivo relevance.
Controversies in COVID-19 and direct
infection of ECs

Endotheliitis is regarded as a host immune-inflammatory response

of the endothelium forming the inner surface of blood vessels in

association with a direct consequence of infectious pathogen invasion.

Systemic endotheliitis causes organ damage (60). Human autopsies,

non-human primates (NHPs) and mice models showed sporadic

endothelial infection and consistently observed in Syrian hamsters

(61, 62). Compared to healthy individuals, circulating markers of

endothelial and platelet activation are elevated in severe COVID-19

(63). Evidence of myeloid polarization, such as elevated levels of shed

CD16 and CD163, have been linked to the expression of TF by

proinflammatory macrophages and are related with poor clinical

outcomes (64).

Elevated D-dimer and thrombocytopenia in severe COVID-19

could be explained by dysregulated inflammation and

microthrombus formation that are complicated by endothelial

dysfunction (65). Consecutively, in patients with severe COVID-

19, hypoxia due to pulmonary microvascular dysfunction might

cause the classic acute respiratory distress syndrome (ARDS) (66).

Furthermore, compared to controls, human pulmonary

microvascular ECs isolated from human lungs challenged with

lipopolysaccharide and tumor necrosis factor alpha showed

increased pro-coagulant activity and PAI-1, and decreased

fibrinolytic potential, emphasizing the pro-coagulant features of

the pulmonary endothelium in ARDS (67).

Earlier studies support that SARS-CoV-2 viral particles were

detected in highly vascularized organs in which endothelial

dysfunction plays a fundamental role (24, 68–76). Initial

transmission electron microscopy (TEM) studies revealed the
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presence of viral particles in kidney ECs, venous ECs, and liver

sinusoidal ECs in autopsy samples from COVID-19 patients (76–78).

However, owing to the challenges of interpreting TEM and the high

variability in experience of those interpreting images, the presence of

viral particle in the endothelium remains debatable (76, 79, 80).

Irrespective of these controversies, there has been increasing evidence
Frontiers in Immunology 03
to indicate that coated vesicles and multivesicular bodies closely

mimic viral particles even in the lung epithelium by TEM and are not

uncommonly misinterpreted (81). Despite the thrombo-

inflammatory phenotype, no definitive animal models or human

biopsies have yet shown direct SARS-CoV-2 infection of ECs or the

presence of viral particles (82–85). Humanmicro- and macrovascular
FIGURE 1

Endothelial infectivity and downstream signaling. (A) SARS-COV-2 Spike and Nucleocapsid proteins mediated endotheliitis and endothelial
dysfunction: There are two mechanisms reported for the direct interaction of SARS-CoV-2 viral proteins with ECs and subsequent endothelial
activation and dysfunction. (i) S protein of SARS-CoV-2 directly interacts with ACE2 and impairs mitochondrial function and increases redox stress
which may lead to AMPK activation, MDM2 upregulation, and ultimately ACE2 destabilization. (ii) Nucleocapsid Protein (NP) of SARS-CoV-2
significantly activates human ECs through Toll-like receptor 2 (TLR2)/NF-kB and mitogen-activated protein kinase (MAPK) signaling pathways, which
lead to expression of inflammatory markers (TNF-a, IL-1b) and adhesive molecules (ICAM-1, VCAM-1, and E-SELE). HSPGs, Heparan sulfate
proteoglycans; ACE2, Angiotensin-Converting Enzyme 2; TMPRSS2, Transmembrane serine protease 2. (B) Proposed alternative (co)-receptors
causing endothelial infectivity by in vitro assays. SARS-CoV-2 binds to Heparan sulfate and sialic acid-containing glycoproteins and gangliosides on
ECs. Proteolytic cleavage of polybasic furin-type cleavage sites in the SARS-CoV-2 Spike protein was shown to expose a conserved C-terminal motif
that binds cell surface Neuropilin-1 and Neuropilin-2 receptors, thus significantly potentiating SARS-CoV-2 entry, and infectivity in vitro. Vimentin on
the endothelial surface acts as a co-receptor for SARS-CoV-2 entrance, according to two independent studies. CD147, a transmembrane
glycoprotein of the immunoglobulin superfamily, has been identified as a potential receptor to bind spike protein and mediate virus entry.
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ECs are resistant to SARS-CoV-2 infection, and ACE2

overexpression is necessary for endothelial infection (86–89).

Montezano et al. demonstrated that recombinant Spike protein-1

induced endothelial inflammation via ACE2 independent of ACE2

enzymatic activity and viral replication in vitro (90). On ex vivo lung

cultures from a patient who had SARS-CoV-2 infection found no

signs of the virus in the vascular endothelium following

immunohistochemical labeling of SARS-CoV-2 Spike protein (91).

ECs primed with (IL-1) produced more pro-inflammatory cytokines,

such as IL-6 and IL-8, and were resistant to direct SARS-CoV-2

infection (92). Furthermore, two separate investigations found that

human pulmonary microvascular ECs were resistant to SARS-CoV-2

infection (MOI=0.5-3 after 2 hours of adsorption) (93, 94).

Based on these findings, it is possible to hypothesize that prior

reports of endothelial viral presence in patients are not a universal

hallmark of illness and may be restricted to certain patient groups or

isolated episodes. In light of this, we carefully evaluated the

immunoreactivity of the SARS-CoV-2 Nucleocapsid (N) Protein in

lung slices from translational preclinical animal models (transgenic

K18-hACE2 mice (expression of hACE2 in lung epithelial cells),

hACE2-KI (global hACE2 knock-in by replacing mouse ACE2),

Syrian hamsters, and African green monkeys (AGM) and human

postmortem lung samples. A board-certified veterinary pathologist

(N.A.C.) immunohistochemically analyzed hundreds of organ slices

from previous studies in each species (45, 61, 62, 69, 95–99). A

PCR-positive human autopsy samples with clear hyaline membrane

formation and AGMs at 7 days post-infection (dpi) showed no N

Protein, suggesting viral antigen is only present during the acute

phase of disease (Figures 2A, B). The lung epithelium of K18-hACE2,

Syrian hamsters, NHPs, and ACE2-KI mice showed varying and

decreasing levels of SARS-CoV-2 N protein, with airway tropism only

present in ACE2-KI mice and Syrian hamsters. No tissues had viral

antigens in ECs (Figures 2C–E). To further support the absence of

direct endothelial infection, we performed duplex fluorescent IHC

targeting the pulmonary endothelium (CD34 or CD31) and SARS-

CoV-2 N protein. In both the AGM and K18-hACE2 mouse, luminal

alveolar pneumocytes exclusively displayed SARS-CoV-2 N protein

as evidenced by absence of colocalization with vascular endothelium

at 4DPI (Figures 2F, G).
EC and inflammatory mediators in
COVID-19

Findings from our group and others collectively question the

universality of direct endothelial infection by SARS-CoV-2. Because

active viral infection of lung epithelial cells is associated with a

systemic pro-inflammation, it is possible that inflammatory

mediators can facilitate endothelial injury by activating

immunothrombosis mechanisms such as complement activation,

antiphospholipid antibodies, and so on. ECs treated with human

sera from COVID-19 hospitalized patients (n=118) demonstrated

anti-cardiolipin IgG/IgM and anti-phosphatidlyserine/
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prothrombin (anti-PS/PT) IgG/IgM-driven elevation of surface

adhesion markers E-selectin, VCAM-1, and ICAM-1 (100–102).

Infection-induced proinflammatory cytokines, such as IL1b,
TNFa, can stimulate coagulation, which may influence thrombin

generation, fibrin formation, and TF-dependent thrombo-

inflammatory responses via protease-activated receptors (PARs)

(6, 22, 103–106) (Figure 2H). SARS-CoV-2 infection induces

increased production of superoxide anion and release of

mitochondrial DNA (mtDNA), activating Toll-like receptor 9

(TLR9) and NFk-B. Consequently, this activation orchestrates the

expression of inflammatory genes, contributing to the pathological

processes associated with COVID-19 (107).

Numerous studies have highlighted changes in lipid profiles

linked with COVID-19. Among the most commonly observed

changes are reductions in serum cholesterol and ApoA1 levels,

coupled with elevated triglycerides (108). Lipidomic analysis in

COVID-19 patients showed high levels of eicosanoids in the lungs

which might be a potential contributor for endothelial dysfunction.

A systemic inflammatory response and aberrant expression of

the extracellular matrix (ECM) during COVID-19 controls the

balance and repair of ECs (109). A study on human lung autopsy

confirmed that Hyaluronan is an important compound ECM of all

vital organ systems (110). COVID-19 is characterized by

significantly increased levels of MMP-1 and vascular endothelial

growth factor (VEGF)-A, which are directly correlated with the

severity of the disease (111). More than 50% of patients who had

experienced moderate or severe cases of COVID-19 had reduced

pulmonary diffusion and early fibrotic changes, which were

correlated with elevated levels of MMP-1 (112). A detailed

dysregulation of the ECM in COVID-19 reviewed elsewhere (113).

The endothelial glycocalyx is crucial for maintaining vascular

homeostasis, and it is linked to vascular endothelial dysfunction

(114). Numerous studies indicate that severe COVID-19 patients

experience endothelial glycocalyx damage on the endothelial cell

surface, evidenced by elevated plasma levels of glycocalyx

components like syndecan-1, heparan sulfate, and hyaluronan.

These biomarkers, along with high levels of IL-1b, IL-6, TNF-a,
hsCRP, and procalcitonin, are associated with increased severity

and mortality in COVID-19 cases (115–117). Furthermore, several

drugs, including heparin and tocilizumab, are already being used in

COVID-19 treatment to protect the endothelial glycocalyx damage

(118–121). However, despite numerous reports of glycocalyx injury

in COVID-19, the underlying mechanisms are still not fully

understood (117, 122–125). Vascular endothelial glycocalyx

damage and potential targeted therapy in COVID-19 has been

explored in recent reviews (reviewed in (84, 126, 127).

Most extracellularvesicles (EVs) found in the blood originate

from platelets and erythrocytes (128). Under physiological

conditions, the proportion of circulating EVs secreted by ECs is

relatively low, but notably increases in pathological conditions

marked by endothelial dysfunction. EVs released by ECs contain

numerous endothelial markers, including endoglin/CD105, E-

selectinCD62E, S-endo/CD146, vascular endothelial cadherin/
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FIGURE 2

Immunohistochemistry staining of SARS-CoV-2 N protein in lung slices from different species exposed to SARS-CoV-2. (Aa,b) Examination of a
human autopsy illustrated absence of SARS-CoV-2 N protein in the ECs from a PCR positive patient with histologic features of diffuse alveolar
damage including hyaline membranes evident by fibrinogen gamma IHC. Scale bar=200µm. (Ba,b) NHPs with infected alveolar pneumocytes after
4dpi and 7dpi with no endothelial infectivity. Scale bar=200µm. (Ca,b) K18-hACE2 mice infected with SARS-CoV-2 (USA/WA1/2020) illustrating N
protein within alveolar pneumocytes and no endothelial infectivity. (Da,b) Global ACE2-KI mice infected with SARS-CoV-2 and N protein detectable
in airways but not in ECs. Scale bar=200µm. (Ea,b) Syrian hamster infected with SARS-CoV-2 with lung sections immunostained for N protein at 2dpi
and 4dpi. Presence of N protein in airways was more prominent at 2dpi and alveolar pneumocytes at 4 dpi. Scale bar=200µm. (F, G) Absence of
SARS-CoV-2 N protein localization within pulmonary endothelium of two translationally relevant preclinical models of COVID-19. (E) African Green
Monkey, 4DPI; SARS-CoV-2 N protein localizes to alveolar pneumocytes with absence of immunoreactivity in neighboring endothelium. Red-CD34
vascular endothelial marker, Grey-DAPI, Teal-SARS-CoV-2 N protein. (F) K18-hACE2 mouse, 4DPI; SARS-CoV-2 N protein localizes to alveolar
pneumocytes with absence of immunoreactivity of neighboring endothelium. Red-CD31 vascular endothelial marker, Grey-DAPI, Teal-SARS-CoV-2
N protein. All SARS-CoV-2 infections were from parental viruses originating from the beginning of the pandemic. All infections were from parental
viruses originating from the beginning of the pandemic. Images are representative of hundreds of samples examined by a board-certified veterinary
pathologist (N.A.C). (H) Endothelial dysfunction and endotheliitis in COVID-19- associated coagulopathy: SARS-CoV-2 infects lung epithelium and
propagates within the cells for further infection. During infection, lung epithelium releases cytokines that act on endothelium and promote vascular
permeability. Increased vascular permeability leads to infiltration of leukocytes into the alveolar space as well as leaking inflammatory cytokines (e.g.,
TNF-a, IL-6, and IL-1b) into the systemic circulation. These cytokines further stimulate luminal ECs to release more inflammatory cytokines and
expression of adhesive receptors (e.g., VCAM-1, ICAM-1, E-SELE) and procoagulant receptors (e.g., Tissue factor). Elevated thrombin levels during
viral infection activate the PAR1/2-dependent positive feedback mechanism, which further aggravates the expression of inflammatory cytokines,
adhesive receptors, and tissue factor. These factors propagate EC-leukocyte interaction, hyperinflammation, and hypercoagulation. Other mediators
like EVs, ECM, and lipoproteins trigger endothelial dysfunction which leads to expression of adhesive molecules and release of cytokines and
chemokines. Direct infection of ECs by SARS-CoV-2 is an unlikely event. N, Neutrophil; M, Monocyte/macrophage; E, Eosinophil; TF, Tissue factor;
PAR1, Protease-activated receptor-1; PAR2, Protease activated receptor-2; E-SELE, E-selectin; VCAM-1, Vascular cell adhesion protein 1.
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CD144, platelet endothelial cell adhesion molecule 1/CD31, and

intercellular adhesion molecule 1/CD54 (129). SARS-CoV-2

infection associated with the release of EVs carrying TF into the

bloodstream which activate platelets and ECs, thereby contributing

to COVID-19-related thrombosis in patients (130, 131).

Given the critical role of ECs in vascular homeostasis and the

prospective association of COVID-19 with endothelial injury or

dysfunction, it appears that patients with preexisting endothelial

dysfunction in various disease states (e.g., diabetes, atherosclerosis,

and hypertension) are vulnerable to a more severe disease course

(132). For instance, among the comorbidities, diabetes mellitus

(DM) was the most frequently reported (10.9% of cases) condition

(133). Studies from China, Europe, UK and the US have also found

that when people with DM acquire COVID-19, they are more likely

to develop COVID-19-related complications, require ICU

hospitalization, or die from the disease (134–136). The possible

root cause might be chronic endothelial dysfunction due to DM

together with the direct damage of ECs by SARS-CoV-2-mediated

inflammatory responses result in further impairment of the

microcirculation contributing to pathophysiology of acute

respiratory syndrome and multi-organ failure.
Conclusion

Experimental and clinical evidence from our group and others

suggests that SARS-CoV-2 is unlikely to productively infect

endothelial cells. Instead, elevated circulatory mediators, such as

cytokines, extracellular matrix components, extracellular vesicles,

lipids/lipoproteins, and thrombin, are likely the primary drivers of

endothelial dysfunction during SARS-CoV-2 infection. Additionally,

accumulating evidence indicates that SARS-CoV-2-mediated

endothelial glycocalyx damage disrupts vascular homeostasis by

altering vascular permeability, cell adhesion, mechanosensing, and

antithrombotic and anti-inflammatory functions.

Given the mixed findings on endothelial infectivity and the

involvement of multiple (co)-receptors, further research is needed.

First, developing better animal models that demonstrate endothelial

infectivity of SARS-CoV-2 could help identify potential co-receptors

and validate direct infection. Second, there is a possibility that SARS-

CoV-2 enters endothelial cells without effective replication. Initial

entry may trigger significant interferon and inflammatory signaling,

but rapid RNA degradation could render the infection undetectable.

These hypotheses warrant further investigation.

Besides, the variation in detection of SARS-CoV-2 or viral

particles might be due to the methodological differences, such as

tissue sampling techniques, sensitivity of detection methods, and

variations in experimental models. In addition, biological

variability, including differences in patient population and disease

severity, could lay a role in the observed variability across studies.

Thus, further systematic review is required to identify the

methodological approaches contributes to discrepancies.

Alternatively, infected ECs can be cleared from the system by

various immune mechanisms, such as phagocytosis by immune

cells like macrophages, or through apoptosis induced by immune

responses. This can make it challenging to detect infections or
Frontiers in Immunology 06
inflammation in the endothelial layer, as the infected cells may be

removed before they can be adequately studied or identified.

However, considering that studies typically sample at different

time points, the likelihood of this occurring is low. Nonetheless, it

is important to carefully investigate this possibility to draw a well-

informed conclusion, ensuring that immune clearance mechanisms

are accounted for in the analysis.Nonetheless, current clinical and

experimental evidence confirms that endothelial dysfunction is a

hallmark of COVID-19, making it a critical therapeutic target.

Addressing this dysfunction may help protect vulnerable

individuals from severe hyperinflammation and hypercoagulation.

To mitigate pro-thrombotic complications, the International

Society on Thrombosis and Haemostasis (ISTH) recommends

universal standard thromboprophylaxis with low molecular

weight heparin or unfractionated heparin (LMWH/UFH) for all

hospitalized patients, unless contraindicated (137).
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