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high-throughput pathways
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Rehabilitation Medicine Department, The Affiliated Changsha Hospital of Xiangya School of Medicine,
Central South University (The First Hospital of Changsha, Changsha, China
Tuberculous meningitis (TBM), a severe form of non-purulent meningitis caused

by Mycobacterium tuberculosis (Mtb), is the most critical extrapulmonary

tuberculosis (TB) manifestation, with a 30–40% mortality rate despite available

treatment. The absence of distinctive clinical symptoms and effective diagnostic

tools complicates early detection. Recent advancements in nucleic acid

detection, genomics, metabolomics, and proteomics have led to novel

diagnostic approaches, improving sensitivity and specificity. This review

focuses on nucleic acid-based methods, including Xpert Ultra, metagenomic

next-generation sequencing (mNGS), and single-cell sequencing of whole brain

Tissue, alongside the diagnostic potential of metabolomic and proteomic

biomarkers. By evaluating the technical features, diagnostic accuracy, and

clinical applicability, this review aims to inform the optimization of TBM

diagnostic strategies and explores the integration and clinical translation of

multi-omics technologies.
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1 Introduction

Tuberculous meningitis (TBM), caused byMycobacterium tuberculosis (Mtb), is a fatal

form of non-purulent meningitis and one of the deadliest types of extrapulmonary

tuberculosis (TB). Despite the availability of anti-TB treatment, the mortality rate for

TBM exceeds 30% (1), with even higher rates in HIV co-infected individuals (2). Early

diagnosis and treatment are essential, but challenges persist due to TBM’s nonspecific

clinical signs and the low Mtb load in cerebrospinal fluid (CSF). Traditional diagnostic

methods, such as acid-fast staining, have low sensitivity, while Mtb culture is time-

consuming (3–7). Recent advancements in diagnostics, such as Xpert Ultra and mNGS,

have improved sensitivity and shortened diagnostic delays (8–10). Additionally,

metabolomic and proteomic biomarkers, such as elevated citrulline, lactate, apoB, and

NELL2, hold promise for diagnosis and differential diagnosis (11, 12).
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Furthermore, single-cell sequencing and omics technologies

offer new insights into TBM pathogenesis and potential

therapeutic targets (13, 14). This review provides an overview of

recent advances in TBM diagnostics and therapeutics, covering

nucleic acid detection, omics-based biomarker discovery,

pharmacological therapies, and adjunctive strategies, offering a

comprehensive reference for clinical practice (Figure 1).
2 Diagnosis of TBM

2.1 Imaging diagnosis of TBM

Radiologically, TBM presents with basal cistern and meningeal

enhancement, brain infarction, hydrocephalus, and tuberculomas,

with basal meningeal enhancement being a key feature (15).

Contrast-enhanced MRI or CT should be performed before and

after treatment to monitor progression. Thoracic CT and other

imaging techniques help identify active TB lesions (16, 17).

Pathologically, TBM includes inflammatory exudates, granulomas,

and vasculitis, with 77% of patients showing cerebral arteritis,

leading to infarction and hydrocephalus (2, 18). Rare cases, such

as brain tuberculomas post-BCG vaccination, emphasize vigilance

in vaccinated infants (19). Some patients exhibit pituitary adenoma-

like lesions with headaches and vision loss. Combining imaging and

histopathology is essential for accurate diagnosis (20).
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2.2 Cerebrospinal fluid diagnostic methods

The gold standard for TBM diagnosis is detecting Mtb in CSF.

However, due to low bacterial load, conventional bacteriological

tests show limited sensitivity (3, 4). Enhancing sensitivity remains a

major research focus.

2.2.1 Acid-fast bacilli smear and Mtb culture
Acid-fast staining is rapid and cost-effective but has low sensitivity

(<20%), occasionally near 0% (2, 21). Modified techniques, such as

centrifuging larger CSF volumes and using fluorescence microscopy,

have improved positivity rates to 60% (21). Mtb culture remains the

“gold standard.” Liquid cultures are about 10% more sensitive than

solid cultures but are prone to cross-contamination, while solid cultures

have low sensitivity (4.3%) and take up to 56 days (22) (Table 1).

Repeated CSF sampling and modified acid-fast staining can improve

results, though challenges persist (23, 24). Fluorescence microscopy,

including LED fluorescence, offers higher sensitivity at lower costs (16),

though resource limitations hinder its widespread use (22).

2.2.2 Immunological diagnostic methods
CSF antigen-antibody detection has long been studied but is

hindered by poor sensitivity and specificity of many tests. A 2015

study reported sensitivities of 75% and 43% for detecting

lipoarabinomannan (LAM) with lateral flow and ELISA methods,

respectively, while Xpert testing showed 100% sensitivity (25).

Although FujiLAM is more sensitive than AlereLAM in urine
FIGURE 1

Tuberculous meningitis diagnosis and treatment.
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(26), its diagnostic value in CSF is unclear. Gamma-interferon

release assays (IGRAs), such as CSF T-SPOT, detect TBM

infection by measuring gamma-interferon levels, with sensitivity

of 76% and specificity of 88%. However, it requires large CSF

volumes (>6 mL) and has a 15% indeterminate rate (27). Adenosine

deaminase (ADA) testing in CSF shows 89% sensitivity and 91%

specificity of TBM, but ADA levels in bacterial and viral meningitis

complicate interpretation due to unclear diagnostic cut-offs (28).

2.2.3 Advances in nucleic acid
amplification technologies

Nucleic acid amplification tests (NAAT) are essential for TBM

diagnosis, enhancing sensitivity (82%) and specificity (99%) versus

culture, and 68% sensitivity with 98% specificity against clinical

diagnosis (29, 30). The World Health Organization (WHO)-

recommended Xpert MTB/RIF detects TB and rifampin resistance

within 2 hours (31), with 63% sensitivity versus culture, increasing to

82% with large-volume CSF (32, 33). Xpert Ultra, with a sevenfold

lower detection threshold (22, 31), achieves 60–90% sensitivity and

>90% specificity (34, 35) but is limited by high cost and equipment

requirements (36, 37). Loop-mediated isothermal amplification

(LAMP) offers 76% sensitivity and 99% specificity (38), reaching

88% sensitivity and 100% specificity when multiple targets are used,

though contamination risks persist (39). The GenoType MTB

DRplus assay detects Mtb and resistance genes with 33% sensitivity

and 98% specificity, constrained by complexity and cost (40).

2.2.4 Omics-based biomarker discovery for
TBM diagnosis

Advances in omics technologies offer promising avenues for

identifying TBM-specific biomarkers, as CSF may harbor distinct

markers due to the unique pathogenic mechanisms of TBM.

(і) Proteomics: Limited studies include Kataria et al. (41), who

identified 19 differential proteins with ALOX-5 as a potential
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marker; Ou et al. (42), who confirmed the association of S100A8

and APOB using ELISA; and Mu et al. (43), who found 111

differential proteins, highlighting NELL2 and APOB. These

studies require larger, more diverse samples for validation.

(іі) Metabolomics: Li et al. (44) identified 25 metabolites

differing between TBM and viral meningitis using 1H-NMR,

while another study (45) reported significant changes in CSF and

blood metabolites, particularly reduced tryptophan correlated with

prognosis. Multicenter validation is needed.

(ііі) Transcriptomics: MicroRNAs such as miR-29a (46) and

miR-126-3p (47) show potential as diagnostic markers for TBM, but

further research is necessary across different diagnoses.

2.2.5 Application of high-throughput
sequencing technologies
2.2.5.1 Metagenomic next-generation sequencing

mNGS sequences genetic material using random primers,

filtering out host DNA to identify microorganisms present (39,

48). It outperforms traditional methods in detecting Mtb, viruses,

anaerobes, and fungi, particularly in cases missed by Xpert Ultra or

culture (48). A 2019 study reported mNGS sensitivity of 66.67% for

TBM, higher than smear (33.33%), PCR (25%), and culture (8.33%)

(3), with meta-analyses showing 61% sensitivity and 98% specificity

(49). However, mNGS may detect contaminants causing false

positives (50–52). Low Mtb sequences in CSF due to DNA

extraction issues can be improved with optimized centrifugation

(50, 53), with optimized centrifugation improving sensitivity (53).

Combining mNGS with other methods may enhance detection rates

(3, 6, 54, 55).

2.2.5.2 Targeted next-generation sequencing

tNGS combines targeted PCR amplification with high-

throughput sequencing, focusing on specific nucleic acid regions

to reduce interference from human genes and background flora,
TABLE 1 Comparison of diagnostic methods for tuberculous meningitis.

Diagnostic Method Sensitivity Specificity Cost Time Requirements

Acid-Fast Bacilli Smear <20%, sometimes near 0% High Low Rapid (minutes to hours)

Modified Acid-Fast Smear Up to 60% High Low Rapid

Mtb Culture 4.3% (solid), ∼14.3% (liquid) High Moderate to High Up to 56 days

LAM Detection 75% (lateral flow) Variable Low Rapid

IGRA 76% 88% Moderate Variable

ADA Testing 89% 91% Low Rapid

Xpert MTB/RIF 63% (culture ref.), 82% (large-volume CSF) >90% High 2 hours

Xpert Ultra 60-90% >90% High 2 hours

LAMP 76% 99% Low Rapid

mNGS 61% 98% High Variable

tNGS 81.8% for CNS infections 76.9% vs. 100% for others High ∼24 hours

Omics-Based Biomarkers Varies Varies Variable Variable
Mycobacterium tuberculosis (Mtb) culture; Lipoarabinomannan (LAM) Detection; Gamma-interferon release assays (IGRAs); Adenosine deaminase (ADA) testing; metagenomic next-
generation sequencing (mNGS); Loop-mediated isothermal amplification (LAMP); Targeted next-generation sequencing (tNGS).
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thus decreasing detection costs and time (around 24 hours) (56, 57).

However, tNGS can only detect predefined targets, limiting its

ability to identify unknown pathogens and relying on clinician

judgment (58). DeeplexMyc-TB, introduced in 2019, uses tNGS to

identify 18 drug resistance genes in the Mtb complex and detect

resistance to multiple anti-tuberculosis drugs (59). tNGS has

demonstrated high efficiency in detecting drug-resistant TB (60).

Although its effectiveness in TBM diagnosis remains untested,

studies show tNGS achieves 81.8% sensitivity for CNS infections,

surpassing culture and smear (13.6%), though with lower specificity

(76.9% vs. 100%) (61). In one case, tNGS successfully detected Mtb

in a patient with negative mNGS results for bronchoalveolar lavage

fluid and lung tissue, confirming secondary tissue-associated

pneumonia. The patient improved significantly after anti-TB

therapy (62).

2.2.5.3 Third-generation sequencing (long-
read sequencing)

Third-generation sequencing enables direct analysis of single

DNA or RNA molecules without the need for fragmentation or

amplification, providing longer reads ideal for studying high-repeat,

GC-rich Mtb sequences (63). The PacBio SMRT platform detects

fluorescence signals during nucleotide incorporation, aiding in the

identification of Mtb genomic methylation sites and revealing

lineage-specific and resistance-associated methylation patterns

(64–68). These profiles correlate with transcription levels,

nitrogen metabolism, and protein interactions (66, 67). Oxford

Nanopore Technologies (ONT) uses nanopore sequencing, which

detects changes in electrical current as nucleic acids pass through

pores. The MinION platform offers rapid detection of Mtb

resistance genes. Despite higher error rates, ONT’s calibration

aligns its results with second-generation sequencing, achieving

94.8% sensitivity and 98.0% specificity with shorter detection

times (69–75).

2.2.5.4 Single-cell sequencing of whole brain tissue

Using 10X Genomics, Zhang et al. identified 15 cell types in whole

brain tissue and observed inflammatory transcriptional changes across

them. Stat1 and IRF1 were found to mediate inflammatory responses

in macrophages and microglia, while decreased oxidative

phosphorylation in neurons correlated with neurodegeneration in

TBM patients. Reduced Frmd4a in ependymal cells was linked to

hydrocephalus and neurodegeneration (13). Through motif

enrichment analysis (miReact), they constructed miRNA-mRNA

networks, including immune-inflammatory networks in

macrophages and microglia, oxidative phosphorylation networks in

neurons, and ion and protein transport networks in ependymal cells.

qRT-PCR and RNA scope revealed significantly elevated miR-21a-3p

levels in TBM brain tissue compared to normal tissue, suggesting its

potential as a diagnostic biomarker (14).

The implementation and application of high-throughput

technologies can significantly enhance diagnostic accuracy and

speed, thereby improving patient outcomes. However, simplified

procedures and user-friendly interfaces can further facilitate the
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adoption of these technologies by non-experts, making their

integration into clinical workflows more effective.

2.2.6 Other molecular biological
detection methods

Emerging molecular detection methods show promise in diagnosing

TBM but require further validation for clinical use. Li et al. (76) found

that free Mtb DNA (IS6110) in CSF exhibited a 56.5% sensitivity in 46

clinically diagnosed TBM patients, surpassing smear (2.2%), culture

(13%), and Xpert (23.9%). Shao et al. (77) reported a 93.3% sensitivity

for freeMtb DNA in 84 suspected TBM cases, matching Xpert Ultra and

outperforming culture (13.3%). Li et al. (78) used digital PCR to detect

IS6110 in CSF from 101 HIV-negative TBM patients, achieving a

sensitivity of 70%, higher than Xpert (30%). Ai et al. (79) applied

CRISPR technology for diagnosing pulmonary and extrapulmonary

TB, requiring smaller samples and shorter detection times. In a study

of 27 TBM patients, CRISPR-MTB sensitivity was 73%, outperforming

Xpert (54%) and culture (25%). Larger studies are necessary to validate

these methods for wider clinical adoption.

2.2.7 Comparative analysis of diagnostic methods
and the potential of combined approaches

Diagnostic methods for TBM each have distinct strengths and

limitations. Traditional techniques like acid-fast smear and culture

are widely accessible but suffer from low sensitivity and long

turnaround times. Nucleic acid amplification methods (e.g., Xpert

MTB/RIF, mNGS) offer higher sensitivity and rapid results but are

costly and require specialized equipment (80). Immunological

assays provide quick diagnostics but often lack specificity. Omics-

based approaches (proteomics, metabolomics, transcriptomics)

show promise for identifying specific biomarkers but need further

validation (81). Integrating multiple diagnostic modalities, such as

combining nucleic acid amplification with omics biomarkers, may

enhance sensitivity and specificity, enabling earlier detection and

better differentiation from other forms of meningitis. Future

research should focus on validating combined strategies in diverse

clinical settings to improve TBM diagnosis.
3 Treatment of TBM

3.1 Standard chemotherapy

Treatment for drug-sensitive TBM typically includes a

combination of rifampin (R), isoniazid (H), ethambutol (E), and

pyrazinamide (Z) (HRZE), supplemented by fluoroquinolones

(FQs), with a treatment duration of over nine months (82).

Increasingly, adjunctive immunotherapy and interventional

therapies are used. Key considerations include selecting drugs

with good blood-brain barrier (BBB) permeability, adjusting

dosages, and combining FQs to optimize outcomes. For

multidrug-resistant (MDR) TBM, regimens must include at least

four effective first- or second-line drugs, with attention to BBB

penetration and prolonged treatment (83).
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3.1.1 Drug-sensitive TBM
WHO recommends an initial 2-month intensive HRZE

regimen, followed by 9–12 months of HR consolidation therapy

(2HRZE/9–12HR) (84). However, this approach, based on

pulmonary TB protocols, does not fully address BBB drug

penetration. Pyrazinamide, with excellent BBB penetration, is

crucial, and higher doses may optimize therapy (85). Isoniazid

also effectively crosses the BBB, though high-dose efficacy remains

unclear, with a recommended dose of 300–600 mg/day (86).

Rifampin is essential, but its CSF concentration often falls below

the minimum inhibitory concentration (MIC). High-dose rifampin

(20–35 mg/kg) may improve efficacy, though its impact on survival

needs further study (84, 85, 87, 88). Recent research suggests that

combining high-dose rifampin with levofloxacin during the

intensive phase does not significantly improve survival, though it

raises rifampin CSF concentrations (89). Additionally, other

treatment strategies can be classified based on drug-sensitive

TBM. For instance, adjunctive therapies such as glucocorticoids

and aspirin are primarily recommended for drug-sensitive cases to

reduce inflammation and prevent neurological complications (90).

These treatments are integrated with standard chemotherapy to

enhance patient outcomes. Furthermore, immunomodulatory

agents like TNF-a inhibitors may also be considered, although

their use is more cautiously approached in drug-sensitive TBM due

to potential side effects (91).
3.1.2 Drug-resistant TBM
WHO guidelines for MDR and rifampin-resistant (RR-TB)

TBM emphasize DST-guided therapy and the use of drugs with

high BBB permeability (92, 93). Key agents include levofloxacin,

moxifloxacin, and linezolid, which have good CNS penetration (85,

94). Linezolid improves clinical parameters such as body

temperature, CSF leukocyte count, and treatment success rates,

although its safety and efficacy in resistant TBM require further

investigation (95, 96). Cycloserine and ethionamide are viable

alternatives to ethambutol but are associated with neurotoxicity

and gastrointestinal side effects (97). Delamanid offers superior

survival outcomes in drug-resistant TBM due to excellent CNS

penetration (85). In contrast, drugs like para-aminosalicylic acid

and ethambutol have poor permeability and limited effectiveness

(94). Moreover, certain treatment strategies are more effective for

drug-resistant TBM. For example, the use of second-line anti-TB

drugs such as bedaquiline and linezolid is crucial in managing

MDR-TBM. These drugs, often combined with fluoroquinolones

and other agents with good BBB penetration, provide a tailored

approach to overcoming resistance (98). Additionally, adjunctive

therapies like aspirin and glucocorticoids may be utilized to mitigate

inflammatory responses, although their roles are more prominently

defined in drug-sensitive TBM (99). The differentiation in

treatment approaches underscores the importance of accurate

TBM classification to optimize therapeutic efficacy.
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3.2 Glucocorticoids

Glucocorticoids, primarily dexamethasone, reduce inflammation,

repair BBB damage, and decrease brain edema, improving survival in

HIV-negative TBM patient (85, 100, 101). Hydrocortisone is used for

hyponatremia due to cerebral salt wasting, however, they do not lower

long-term neurological sequelae risks or clearly prevent strokes (85,

101). Combining glucocorticoids with anti-TB therapy reduces acute-

phase mortality and neurological damage, though CNS damage may

persist after tapering dexamethasone (102, 103). Phosphodiesterase-4

inhibitors (102) and thalidomide has shown some efficacy as adjunct

therapy in selected cases but is limited by significant side effects (103,

104). Although extending dexamethasone treatment may improve

outcomes, CNS damage risk persists after dose tapering or

discontinuation (103). Most guidelines recommend adjunctive

corticosteroids in the acute phase, but long-term efficacy and safety

warrant further study (102, 103).
3.3 Tumor necrosis factor-a inhibitors

TNF-a plays a key role in TBM pathogenesis by activating

macrophages and forming caseous granulomas. Thalidomide, a

TNF-a inhibitor, reduces inflammation and improves survival in

TBM animal models, halving mortality rates. However, its

teratogenicity and potential to activate T-cells limit its use in

pregnant women and broader clinical application (105, 106).
3.4 Aspirin

Aspirin provides antithrombotic and anti-inflammatory effects

by inhibiting cyclooxygenase and reducing prostaglandin release,

lowering stroke risk in TBM (100). Misra et al. (107) found that

while aspirin did not significantly reduce stroke incidence, it

reduced mortality. Higher doses improved therapeutic outcomes

(108, 109). Yadav (110) suggested combining aspirin with

corticosteroids to reduce TBM mortality, forming a basis for

Phase III trials. Rizvi et al. (111) showed that while aspirin

combined with anti-TB regimens did not lower mortality, it

significantly reduced stroke risk without increasing adverse events

compared to placebo. Current evidence supports aspirin’s efficacy in

mitigating stroke risk, but more studies are needed to confirm long-

term benefits when combined with corticosteroids (107).
3.5 Interventional and surgical treatments

TBM patients often develop hydrocephalus and brain edema

(112). Surgical interventions like external ventricular drainage

(EVD), third ventriculostomy (ETV), or ventriculoperitoneal

shunting (VPS) can relieve intracranial pressure when
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conventional treatments fail (113). Other options include lumbar

puncture, lumbar drainage, or lumbar-peritoneal (LP) shunt to

avoid cranial surgery. Endoscopic third ventriculostomy is suitable

for non-communicating hydrocephalus. Loan et al. (113) reported a

1-month mortality rate of 33.3%-61.9% in HIV-positive adults

undergoing VPS for TBM, though further studies are needed.

Kamat et al. found VPS blockage rates of 27.5% in pediatric and

25.5% in adult TBM patients. High CSF protein concentration (2.94

g/L in blocked cases vs. 1.76 g/L in non-blocked cases) was

identified as a risk factor, emphasizing the need to reduce CSF

protein levels before VPS (114).
3.6 Single-cell sequencing reveals potential
therapeutic targets

Single-cell transcriptomics by Mo et al. identified 33 monocyte

populations in CSF and PBMCs of children with TBM, highlighting

distinct myeloid clusters and CD4/CD8 T-cell subsets with unique

effector functions. Complement-activatedmicroglial cells (Macro_C01)

were linked to neuroinflammatory responses associated with persistent

meningitis, amplifying inflammatory signaling through interactions

with CD4_C04 subsets. Targeting Macro_C01 activation has been

suggested as a therapeutic approach for pediatric TBM. Elevated C1Q,

CRP, and cytokines (TNF-a, IL-6) in CSF further indicate their

potential as TBM diagnostic biomarkers (115).
4 Conclusion

TBM remains highly lethal and disabling due to its complex

pathophysiology and the lack of sensitive, specific diagnostics,

which delay early diagnosis and treatment. Recent advancements

in laboratory diagnostics, including nucleic acid-based methods,

proteomics, and metabolomics, have enhanced diagnostic

sensitivity and specificity despite technical challenges.

Therapeutically, combining traditional anti-tuberculous

treatments with adjunctive therapies has improved survival rates

and reduced complications. Surgical innovations l ike

ventriculoperitoneal shunting and third ventriculostomy

effectively manage TBM-related hydrocephalus and intracranial

hypertension. Additionally, single-cell sequencing and
Frontiers in Immunology 06
transcriptomics are identifying therapeutic targets, advancing

precision medicine. Integrating these diagnostic and therapeutic

strategies with public health initiatives is essential to reduce TBM’s

global burden and improve patient outcomes.
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