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Background:Multidrug-resistant Klebsiella pneumoniae (MDR-KP) infections pose

a significant global healthcare challenge, particularly due to the high mortality risk

associated with septic shock. This study aimed to develop and validate a machine

learning-based model to predict the risk of MDR-KP-associated septic shock,

enabling early risk stratification and targeted interventions.

Methods: A retrospective analysis was conducted on 1,385 patients with MDR-KP

infections admittedbetweenJanuary 2019 andJune2024. The cohortwas randomly

divided into a training set (n=969) anda validation set (n=416). Feature selectionwas

performedusingLASSOregressionand theBorutaalgorithm.Sevenmachine learning

algorithms were evaluated, with logistic regression chosen for its optimal balance

between performance and robustness against overfitting.

Results: The overall incidence of MDR-KP-associated septic shock was 16.32%

(226/1,385). The predictive model identified seven key risk factors: procalcitonin

(PCT), sepsis, acute kidney injury, intra-abdominal infection, use of vasoactive

medications, ventilator weaning failure, and mechanical ventilation. The logistic

regression model demonstrated excellent predictive performance, with an area

under the receiver operating characteristic curve (AUC) of 0.906 in the training

set and 0.865 in the validation set. Calibration was robust, with Hosmer-

Lemeshow test results of P = 0.065 (training) and P = 0.069 (validation).

Decision curve analysis indicated substantial clinical net benefit.

Conclusion: This study presents a validated, high-performing predictive model

for MDR-KP-associated septic shock, offering a valuable tool for early clinical

decision-making. Prospective, multi-center studies are recommended to further

evaluate its clinical applicability and effectiveness in diverse settings.
KEYWORDS

multidrug-resistant Klebsiella pneumoniae, septic shock, machine learning, predictive
model, risk factors
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1 Introduction

Multidrug-resistant Klebsiella pneumoniae (MDR-KP)

infections have become a critical global health threat, escalating in

both incidence and mortality, and imposing substantial burdens on

healthcare systems worldwide (1). In particular, healthcare

infrastructures in resource-limited settings face increasing strain

due to the complexity and severity of MDR-KP infections (2).

Prolonged hospitalizations, the need for advanced diagnostics, and

the administration of high-cost, broad-spectrum antibiotics can

significantly increase direct healthcare expenditures. These

pressures not only intensify the economic burden on healthcare

institutions but also limit the optimal allocation of scarce resources,

ultimately hindering patient care and system resilience (3). The

surge in MDR-KP cases is primarily attributed to widespread

antimicrobial use, which presents significant therapeutic

dilemmas in contemporary clinical practice (4). Notably, MDR-

KP infections are associated with mortality rates ranging from 40%

to 50%, with those involving bloodstream infections experiencing

even higher mortality rates up to 70% (5). Septic shock represents

one of the most severe complications of MDR-KP infection, often

leading to multiple organ dysfunction and increased mortality (6).

The high morbidity and mortality of MDR-KP infections

directly correlates with their complex antimicrobial resistance

mechanisms. MDR-KP demonstrates adaptability primarily

through the production of b-lactamase enzymes, including ESBLs

and carbapenemases, leading to broad-spectrum resistance (7).

Additional resistance mechanisms include altered outer

membrane protein expression and enhanced efflux pump activity

(8). These combined resistance mechanisms often render

conventional antibiotics ineffective, compromising infection

control and increasing the risk of septic shock.

Current MDR-KP research focuses on three main areas:

epidemiology, resistance mechanisms, and treatment optimization.

Key risk factors for MDR-KP infections include prolonged

hospitalization, invasive procedures, and immunocompromised

status (9). Treatment research has explored various strategies,

including antimicrobial combinations, new antibiotic development,

and alternative approaches such as bacteriophage therapy (10).

However, there remains a significant gap in developing predictive

models for MDR-KP-associated septic shock risk. Early identification

and intervention in high-risk cases significantly improve patient

outcomes (11). This highlights the need for accurate predictive

models to guide clinical decisions and improve prognosis. Although

general sepsis prediction tools like qSOFA provide a quick bedside

assessment for sepsis and related complications (12), these generic

tools may not adequately capture the unique pathophysiology of

MDR-KP infections, limiting their accuracy in predicting MDR-KP-

specific septic shock risk.

Machine learning has increasingly been applied in medicine for

disease risk prediction and prognosis (13–16). These methods excel at

analyzing complex clinical data, identifying hidden risk factors and

patterns while improving predictive accuracy (17). In infectious diseases,

machine learning has shown success in sepsis prediction (18) and

antimicrobial resistance forecasting (19). In contrast to traditional

statistical approaches, machine learning methods are particularly
Frontiers in Immunology 02
suitable for this study due to their ability to handle high-dimensional,

complex clinical data and uncover intricate nonlinear relationships

among variables without stringent parametric assumptions. While

traditional statistical models (e.g., logistic regression, Cox proportional

hazardsmodels) typically depend on predefined assumptions about data

distributions and variable interactions, machine learning approaches

autonomously identify and weigh critical predictors, effectively manage

collinearity and nonlinearities, and adapt to evolving data patterns. This

flexibility and robustness can substantially enhance predictive accuracy

and stability, enabling a more comprehensive understanding of

multifactorial conditions such as MDR-KP-associated septic shock.

However, current MDR-KP prediction models primarily rely on

conventional statistics, underutilizing the potential of Big Data

analytics and Artificial Intelligence (AI). Current predictive modeling

research has several important methodological limitations. First, studies

often use limited sample populations, which may affect model stability

and generalizability. Second, many models incorporate an insufficient

range of predictive variables, potentially missing key risk factors.

Additionally, model validation often lacks comprehensive calibration

metrics and robust clinical utility assessment. These limitations may

reduce the models’ practical utility in real clinical settings.

In this study, we aim to develop a machine learning-based

predictive model for MDR-KP-associated septic shock risk,

integrating clinical and laboratory parameters. The model

incorporates two key improvements: large-scale sampling for

model stability and comprehensive risk factors, including

demographics, comorbidities, laboratory data, and treatment

variables. Model validation employs multiple metrics, including

discrimination, calibration, and clinical decision curve analysis, to

assess both predictive accuracy and clinical utility.
2 Materials and methods

2.1 Study data

This investigation received ethical authorization from the Ethics

Committee of the Affiliated Huai’an No. 1 People’s Hospital of

Nanjing Medical University (approval number: KY-2024-355-01).

Informed consent was waived due to the retrospective design. Data

anonymization and confidentiality were maintained according to

the Declaration of Helsinki.

We conducted a retrospective analysis of clinical data from

1,475 patients infected with MDR-KP who were admitted to The

Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical

University from January 2019 to June 2024. A total of 1,385

patients met the stringent inclusion criteria and were

subsequently analyzed statistically. The criteria for patient

inclusion required individuals to be adults aged 18 or older, to

have a confirmedMDR-KP infection, and to possess comprehensive

clinical documentation, including demographic data (such as

gender and age) and laboratory parameters. Exclusion criteria

were defined to omit patients with psychiatric or cognitive

disorders, those hospitalized for less than 24 hours, patients with

concurrent malignancies, cases where MDR-KP was isolated

outside the designated timeframe (prior to admission, within 48
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https://doi.org/10.3389/fimmu.2024.1539465
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pan et al. 10.3389/fimmu.2024.1539465
hours following admission, or more than 72 hours after discharge),

or individuals suffering from non-MDR-KP-induced septic shock.
2.2 Study design

We developed a machine learning-based predictive model to

determine the risk of Septic Shock in patients with Multidrug-

resistant Klebsiella pneumoniae (MDR-KP). This retrospective

study analyzed data from 1,385 confirmed cases of MDR-KP

infections, defining MDR-KP as strains of K. pneumoniae

resistant to at least one agent in three or more antimicrobial

categories (20). Septic shock was characterized following the

Sepsis-3 criteria (21). Clinical data, extracted from electronic

health records, encompassed a wide range of variables, including

demographics, laboratory indices, treatments, comorbidities,

infection sites, metrics of organ dysfunction, and complications.

The dataset was randomly split into training (70%) and test

(30%) sets.
2.3 Machine learning

Feature selection combined Boruta algorithm and LASSO

regression (22–24). Multiple machine learning models were

evaluated: Logistic Regression (LR), Decision Trees (DT), Random

Forests (RF), eXtreme Gradient Boosting (XGBoost), Support Vector

Machines (SVM), K-Nearest Neighbors (KNN), and Light Gradient

Boosting Machine (LightGBM), using 10-fold cross-validation (25–

27). Model performance was assessed through area under the curve

(AUC), accuracy, sensitivity, specificity, predictive values, F1 score,

calibration curves, and clinical impact analysis. A nomogram was

developed to visualize feature importance andpredictionmechanisms.

The workflow is illustrated in Figure 1.
2.4 Research variables

A total of 99 clinical predictors across seven major categories

were analyzed. These included demographic factors (gender, age);

laboratory parameters (SO2, pH, HCO3
-, BE, PO2, PCO2, AG, WBC

count, HGB, RBC count, HCT, RDW-SD, RDW-CV, MCV,

MCHC, MCH, PLT count, PDW, MPV, neutrophils [percentage

and count], monocytes [percentage and count], lymphocytes

[percentage and count], hs-CRP, PCT, Urea, creatinine, UA,

CYSC, Serum CO2, TBIL, DBIL, AST, ALT, ALP, g-GGT, TP,
ALB, AFU, ADA, CHE, PA, HBDH, TG, CHOL, CK, LDH, Na, Ca,

P, K, Mg, TT, PT, Fibrinogen, D-dimer, NT-proBNP); treatment

interventions (surgery, endotracheal intubation, mechanical

ventilation, ventilator weaning failure, vasoactive medications,

CRRT use, ECMO use, anticoagulant use, tracheostomy);

comorbidities (hypertension, diabetes mellitus, diabetes-related

complications, hyperlipidemia, hyperlactatemia, coronary heart

disease, atrial fibrillation, chronic renal insufficiency, heart failure,

anemia); infection sites (liver abscess, biliary tract infection, intra-

abdominal infection, pneumonia, urinary tract infection,
Frontiers in Immunology 03
intracranial infection); acute organ injury (acute liver injury,

acute kidney injury, ARDS, MODS, altered mental status, stroke,

metabolic encephalopathy, hepatic encephalopathy, ventricular

fibrillation, cardiac arrest); and complications (coagulopathy,

DIC, sepsis). Demographic and comorbidity data were collected

before MDR-KP infection onset. Laboratory parameters were based

on initial post-admission results.
2.5 Diagnostic criteria of septic shock

Septic shock diagnosis followed the Third International

Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)

criteria (21). Diagnostic requirements included: 1) suspected or

documented infection; 2) persistent hypotension requiring

vasopressors to maintain mean arterial pressure ≥65 mmHg; and

3) serum lactate level >2 mmol/L despite adequate volume

resuscitation. Alternative causes of hypotension were excluded.

While noted, additional features such as altered mental status,

tachypnea, decreased urine output, and poor peripheral

circulation were not mandatory for diagnosis.
2.6 Feature selection techniques

To refine our predictive model, we utilized the Least Absolute

Shrinkage and Selection Operator (LASSO) regression (28),

leveraging the ‘glmnet’ package in R with settings adjusted for

binomial distribution (a = 1) (29, 30). This method determined

optimal lambda values via cross-validation—lambda.min for the

minimal error and lambda.1se to ensure parsimony—thereby

retaining variables with non-zero coefficients which helped

mitigate multicollinearity and overfitting in our high-dimensional

dataset (31, 32). Additionally, we implemented the Boruta

algorithm, a Random Forest-based feature selection method (33,

34). This algorithm assesses feature importance by creating ‘shadow

attributes’ for each original feature, iteratively comparing their

importance through 500 iterations or until stability is achieved

(35, 36). Important features were identified as those consistently

outperforming their shadow counterparts, with results processed

using the ‘attStats’ and custom ‘adjustdata’ functions to ensure

robust selection and minimize false negatives (37, 38).
2.7 Machine learning algorithms

Several machine learning algorithms were used to predict MDR-

KP-associated septic shock risk. Logistic Regression (LR) was applied

with L2 regularization to model the binary outcomes, optimizing

hyperparameters like regularization factor and iteration limits for

balance and precision (39–41). The Decision Tree model utilized the

CART algorithm, setting parameters to maintain a balance between

complexity and interpretability (37, 42, 43). The Random Forest

algorithm was configured with parameters to capture non-linear

associations and enhance generalizability (44, 45). For robust

pattern recognition, the Extreme Gradient Boosting (XGBoost)
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model was optimized with specific parameters for tree depth, learning

rate, and regularization (46, 47). The Support Vector Machine (SVM)

algorithm employed a Radial Basis Function (RBF) kernel, focusing

on optimizing the decision boundary in high-dimensional space (24,

48, 49). K-Nearest Neighbors (KNN) used a simple majority voting

mechanism with uniform weighting, and the Light Gradient Boosting

Machine (LightGBM) was optimized for computational efficiency

and effective pattern recognition, making extensive use of gradient

boosting technology (50–52). Each model’s configuration aimed to

effectively identify risk factors and predict outcomes accurately within

our dataset.

2.8 Decision curve analysis

In this study, we employed decision curve analysis (DCA) to

evaluate the clinical utility of our predictive model (22, 53). The

fundamental principle of DCA is to compare the net benefit derived

from “intervening based on the model’s predictions” with that of two

extreme strategies “treating all patients” or “treating none” across a

range of clinically relevant threshold probabilities. By doing so, DCA

provides insights into the model’s incremental value in real-world

decision-making scenarios. More specifically, DCA integrates the

predicted probability of a patient developing MDR-KP-associated

septic shock with the clinician’s predetermined threshold probability

for initiating intervention (e.g., 10% or 20%). For instance, if a

physician chooses to escalate care, such as intensifying monitoring,
Frontiers in Immunology 04
adjusting antimicrobial regimens, or providing early hemodynamic

support only when a patient’s risk surpasses a certain threshold, DCA

graphically illustrates whether using themodel at that threshold yields

additional clinical benefit compared to not using it.
2.9 Statistical analysis

Statistical analyses were performed using SPSS 25.0 (IBM Corp.,

NY, USA) and R 4.3.2 (R Foundation, Austria). Normally

distributed continuous variables were expressed as mean ±

standard deviation and compared using independent t-tests, while

non-normal variables were presented as median (interquartile

range) with Mann-Whitney U tests. Categorical variables were

analyzed using chi-square or Fisher’s exact tests as appropriate.

Statistical significance was set at P < 0.05 (54, 55).
3 Results

3.1 Characteristics of patients with MDR-
KP infections in a retrospective study

Among the 1,475 patients with MDR-KP infections admitted to

the First Affiliated Hospital of Nanjing Medical University Huai’an

from January 2019 and June 2024, 1,385 patients were eventually
FIGURE 1

Research flowchart.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1539465
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pan et al. 10.3389/fimmu.2024.1539465
eligible and included in the statistical analysis (Figure 1). A total of

1,385 patients with MDR-KP infections were divided into a training

set consisting of 969 patients and a validation set consisting of 416

patients, following a ratio of 7:3. Statistical analysis revealed no

significant differences between the two groups.
3.2 Incidence of MDR-KP-related
septic shock

The total incidence of MDR-KP-related septic shock was 16.32%

(226/1,385), with comparable rates in the training [16.82% (163/969)]

and validation [15.14% (63/416)] sets. Significant differences (P<0.05)

between groups in the training set were observed across multiple

parameters (Table1). Laboratory indices showeddifferences inHCO3-

, BE, WBC, RDW (SD and CV), blood cell counts (PLT, neutrophils,

monocytes, lymphocytes), monocytes percentage, PCT, renal markers

(urea, creatinine, UA, CYSC), liver function tests (TBIL, DBIL, AST,

TP, ALB, AFU, CHE), metabolic parameters (PA, a-HBDH, CHOL,

LDH), heart failure indicators (NT-proBNP), electrolytes (Ca2+, K+),

andcoagulationmarkers (PT,D-dimer).Clinical parameters including

age, alongwith interventions such as surgery, endotracheal intubation,

mechanical ventilation, ventilator weaning status, vasoactive

medications, CRRT, and anticoagulation also differed significantly.

Additionally, notable differences were found in comorbidities and

complications, encompassing diabetes-related complications,

hyperlipidemia, hyperlactatemia, intra-abdominal infection,

pneumonia, acute liver/kidney injury, ARDS, MODS, stroke, cardiac

arrest, coagulopathy, DIC, and sepsis.
3.3 Predictor selection using Boruta and
LASSO for MDR-KP infection outcomes

Feature selection employed both Boruta algorithm and LASSO

regression analysis. The Boruta algorithm identified 34 significant

predictors, including laboratory parameters (cellular components,

biochemical markers, and coagulation indices) and clinical factors

(organ dysfunction indicators and interventions) (Figure 2A). LASSO

regression yielded eight key predictive variables: mechanical

ventilation, ventilator weaning failure, vasoactive medications, TG,

intra-abdominal infection, acute kidney injury, PCT, and sepsis

(Figure 2B). The intersection of these methodologies produced seven

consistent predictors: mechanical ventilation, ventilator weaning

failure, vasoactive medications, intra-abdominal infection, acute

kidney injury, PCT, and sepsis. These variables were incorporated

into the final predictive model (Figure 2C).
3.4 Comparison of machine learning
algorithms for predicting MDR-KP-related
septic shock

Seven machine learning algorithms [Logistic Regression (LR),

Decision Tree (DT), Random Forest (RF), XGBoost, SVM, KNN,
Frontiers in Immunology 05
and LightGBM] were implemented to predict MDR-KP-related

septic shock using the seven key variables identified through

combined LASSO and Boruta feature selection. Model

optimization employed repeated 5-fold cross-validation with

AUC-based parameter tuning. Performance evaluation

incorporated multiple metrics: AUC, accuracy, sensitivity,

specificity, PPV, NPV, and F1 score (Figure 3, Table 2). In the

training cohort, KNN demonstrated superior performance (AUC:

0.997, accuracy: 0.986, sensitivity: 1.000, specificity: 0.983, PPV:

0.921, NPV: 1.000, F1: 0.959). However, in the test cohort, the

Logistic Regression model was selected as optimal to minimize

overfitting risk (AUC: 0.865, accuracy: 0.724, sensitivity: 0.810,

specificity: 0.708, PPV: 0.331, NPV: 0.954, F1: 0.470).
3.5 Development and validation of a
logistic regression model for predicting
MDR-KP-related septic shock

Multivariate and univariate logistic analyses identified seven

significant predictors of MDR-KP-related septic shock: mechanical

ventilation, ventilator weaning failure, intra-abdominal infection,

acute kidney injury, vasoactive medications, PCT, and sepsis. The

multivariate logistic regression coefficients and odds ratios are

presented in Table 3. The predictive model was expressed as: Logit

(P) = -3.634 + 0.029 (PCT) + 2.422 (Sepsis) + 0.965 (Acute kidney

injury) + 1.512 (Intra-abdominal infection) + 1.297 (Vasoactive

medications) + 1.418 (Ventilator weaning failure) + 0.738

(Mechanical ventilation). These variables were subsequently

incorporated into a nomogram for visual prediction of MDR-KP-

related septic shock probability (Figure 4).

Comprehensive validation of themodel’s predictive performance

revealed robust capabilities across multiple assessment metrics. The

model demonstrated exceptional discrimination in the training set

with an AUC of 0.906 (Figure 3A), supported by strong calibration

(Hosmer-Lemeshow test P = 0.065; Figure 5A). This performance

was consistentlymaintained in the test set, achieving anAUCof 0.865

(Figure 3B) with adequate calibration (Hosmer-Lemeshow test

P=0.069; Figure 5B). The model’s practical utility was confirmed

through decision curve analysis, demonstrating superior net benefits

across threshold probabilities of 0.01-0.92 in the training set

(Figure 5C) and 0.01-0.75 in the test set (Figure 5D). Detailed

confusion matrix analysis further validated the model’s

performance, with the training set achieving 86.5% sensitivity and

77.9% specificity (628 true negatives, 141 true positives, 178 false

positives, 22 false negatives; Figure 5E). Similar robust performance

was observed in the test set, with 81.0% sensitivity and 70.8%

specificity (250 true negatives, 51 true positives, 103 false positives,

12 false negatives; Figure 5F). Clinical impact curves (CIC)

(Figures 5G, H) provided additional validation of the model’s

clinical utility across varying cost-benefit ratios. Particularly

noteworthy was the strong alignment between predicted high-risk

cases and actual MDR-KP-related septic shock occurrences at

threshold probabilities exceeding 40%, substantiating the model’s

practical clinical value.
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TABLE 1 Baseline characterization and comparison.

Variables Total (N = 969)
MDR-KP-related Septic Shock

P value
No (N = 806) Yes (N = 163)

Demography

Age (year) 65.00 (54.00, 75.00) 64.00 (54.00, 74.00) 68 (56.00, 76.50) 0.036

Gender, n (%) 0.645

Female 285 (29.41) 240 (29.78) 45 (27.61)

Male 684 (70.59) 566 (70.22) 118 (72.39)

Laboratory results

HCO3
-(mmol/L) 24.80 (21.00, 28.90) 25.15 (21.33, 29.17) 22.80 (20.40, 26.50) 0.004

BE (mmol/L) 0.60 (-3.90, 4.40) 1.05 (-3.77, 5.07) ‘-2.10 (-4.50, 1.90) 0.003

WBC count (109/L) 10.38 (7.12, 14.68) 10.59 (7.34, 14.76) 9.07 (6.30, 13.31) 0.010

RDW-SD (fL) 44.60 (41.90, 48.90) 44.50 (41.70, 48.60) 45.40 (43.05, 49.60) 0.016

RDW-CV (%) 13.50 (12.80, 14.60) 13.50 (12.80, 14.60) 13.80 (13.10, 15.05) 0.003

PLT count(109/L) 191.00 (132.00, 249.00) 197.50 (141.25, 255.75) 140.00 (93.50, 218.00) < 0.001

Neutrophils count (109/L) 8.51 (5.37, 12.67) 8.74 (5.48, 12.85) 7.78 (4.48, 11.84) 0.027

Monocytes percentage (%) 5.30 (3.60, 7.30) 5.50 (3.80, 7.50) 4.30 (2.60, 6.55) < 0.001

Monocytes count (109/L) 0.53 (0.35, 0.78) 0.55 (0.38, 0.80) 0.41 (0.22, 0.66) < 0.001

Lymphocytes count (109/L) 0.91 (0.59, 1.36) 0.93 (0.62, 1.39) 0.79 (0.41, 1.16) < 0.001

PCT 0.40 (0.09, 1.66) 0.39 (0.08, 1.06) 1.67 (0.36, 14.59) < 0.001

Urea (mmol/L) 6.78 (5.01, 10.07) 6.62 (4.85, 9.29) 9.22 (6.26, 13.98) < 0.001

Creatinine (mmol/L) 70.40 (52.60, 94.00) 70.40 (51.00, 90.45) 79.80 (63.10, 136.05) < 0.001

UA (mmol/L) 241.00 (165.00, 341.00) 241.00 (162.00, 332.75) 272.00 (182.50, 379.00) < 0.001

CYSC (mg/L) 0.95 (0.75, 1.26) 0.95 (0.73, 1.21) 1.14 (0.88, 1.61) < 0.001

TBIL (mmol/L) 11.90 (8.00, 18.20) 11.90 (7.62, 17.40) 15.70 (9.65, 22.75) < 0.001

DBIL(mmol/L) 5.60 (3.90, 8.40) 5.50 (3.80, 7.80) 7.70 (5.20, 13.05) < 0.001

AST (U/L) 27.85 (18.80, 49.40) 27.85 (18.40, 46.92) 32.20 (20.85, 76.00) 0.006

TP (g/L) 59.32 ± 9.04 60.01 ± 8.70 55.87 ± 9.87 < 0.001

ALB (g/L) 34.57 ± 6.66 34.92 ± 6.46 32.86 ± 7.34 0.001

AFU (U/L) 18.70 (15.10, 23.70) 18.70 (15.00, 22.98) 20.10 (16.50, 27.25) < 0.001

CHE (U/L) 4997.00 (3581.00, 6651.00) 4998.50 (3802.25, 6737.25) 4210.00 (2841.00, 5754.00) < 0.001

PA (mg/dL) 157.85 (107.20, 201.20) 158.80 (114.80, 204.07) 120.50 (82.75, 190.65) < 0.001

a-HBDH (U/L) 188.00 (149.00, 257.00) 188.00 (147.00, 242.00) 207.00 (163.00, 297.50) < 0.001

CHOL (mmol/L) 3.28 (2.58, 4.09) 3.28 (2.74, 4.13) 2.81 (2.04, 3.74) < 0.001

LDH (U/L) 241.00 (195.00, 326.00) 241.00 (193.00, 318.75) 262.00 (210.00, 383.00) < 0.001

Ca (mmol/L) 2.13 (2.02, 2.24) 2.13 (2.03, 2.26) 2.09 (1.94, 2.20) < 0.001

K (mmol/L) 4.01 (3.7, 4.31) 4.00 (3.67, 4.26) 4.14 (3.78, 4.56) < 0.001

PT (s) 14.00 (12.90, 15.30) 14.00 (12.70, 15.00) 15.10 (13.50, 17.60) < 0.001

D-dimer (mg/L) 2.79 (1.46, 6.63) 2.79 (1.38, 5.82) 3.31 (1.77, 8.52) 0.006

NT-proBNP (pg/mL) 863.55 (471.00, 1528.00) 863.55 (435.47, 1185.00) 1264.00 (742.55, 4236.00) < 0.001

(Continued)
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TABLE 1 Continued

Variables Total (N = 969)
MDR-KP-related Septic Shock

P value
No (N = 806) Yes (N = 163)

Treatment, n (%)

Surgery, n (%) 0.041

No 594 (61.30) 482 (59.80) 112 (68.71)

Yes 375 (38.70) 324 (40.20) 51 (31.29)

Endotracheal intubation, n (%) < 0.001

No 640 (66.05) 576 (71.46) 64 (39.26)

Yes 329 (33.95) 230 (28.54) 99 (60.74)

Mechanical ventilation, n (%) < 0.001

No 515 (53.15) 481 (59.68) 34 (20.86)

Yes 454 (46.85) 325 (40.32) 129 (79.14)

Ventilator weaning failure, n (%) < 0.001

No 924 (95.36) 794 (98.51) 130 (79.75)

Yes 45 (4.64) 12 (1.49) 33 (20.25)

Vasoactive medications, n (%) < 0.001

No 830 (85.66) 739 (91.69) 91 (55.83)

Yes 139 (14.34) 67 (8.31) 72 (44.17)

CRRT use, n (%) < 0.001

No 891 (91.95) 766 (95.04) 125 (76.69)

Yes 78 (8.05) 40 (4.96) 38 (23.31)

ECMO use, n (%) 0.071

No 959 (98.97) 800 (99.26) 159 (97.55)

Yes 10 (1.03) 6 (0.74) 4 (2.45)

Anticoagulant use, n (%) 0.031

No 776 (80.08) 656 (81.39) 120 (73.62)

Yes 193 (19.92) 150 (18.61) 43 (26.38)

Diabetes-related complications, n (%) < 0.001

No 931 (96.08) 784 (97.27) 147 (90.18)

Yes 38 (3.92) 22 (2.73) 16 (9.82)

Hyperlipidemia, n (%) 0.005

No 958 (98.86) 801 (99.38) 157 (96.32)

Yes 11 (1.14) 5 (0.62) 6 (3.68)

Hyperlactatemia, n (%) 0.010

No 953 (98.35) 797 (98.88) 156 (95.71)

Yes 16 (1.65) 9 (1.12) 7 (4.29)

Intra-abdominal infection, n (%) < 0.001

No 939 (96.90) 796 (98.76) 143 (87.73)

Yes 30 (3.10) 10 (1.24) 20 (12.27)

Pneumonia, n (%) 0.049

(Continued)
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3.6 Nomogram with individual predictors
for septic shock in MDR-KP infections

In the training set, the nomogram demonstrated superior

discriminative ability (AUC = 0.906), and DeLong tests showed

significant differences when compared with each individual

predictor (all P < 0.001): intra-abdominal infection (AUC =
Frontiers in Immunology 08
0.555), sepsis (AUC = 0.757), PCT (AUC = 0.690), vasoactive

medications (AUC = 0.679), mechanical ventilation (AUC =

0.694), ventilator weaning failure (AUC = 0.594), and acute

kidney injury (AUC = 0.686) (Figure 6A). Similarly, in the

validation set, the nomogram achieved better predictive

performance (AUC = 0.865), and DeLong tests confirmed

significant differences compared to all individual predictors (all P
TABLE 1 Continued

Variables Total (N = 969)
MDR-KP-related Septic Shock

P value
No (N = 806) Yes (N = 163)

Treatment, n (%)

No 253 (26.11) 221 (27.42) 32 (19.63)

Yes 716 (73.89) 585 (72.58) 131 (80.37)

Acute organ injury, n (%)

Acute liver injury, n (%) < 0.001

No 823 (84.93) 709 (87.97) 114 (69.94)

Yes 146 (15.07) 97 (12.03) 49 (30.06)

Acute kidney injury, n (%) < 0.001

No 775 (79.98) 695 (86.23) 80 (49.08)

Yes 194 (20.02) 111 (13.77) 83 (50.92)

ARDS, n (%) < 0.001

No 576 (59.44) 520 (64.52) 56 (34.36)

Yes 393 (40.56) 286 (35.48) 107 (65.64)

MODS, n (%) < 0.001

No 955 (98.56) 802 (99.50) 153 (93.87)

Yes 14 (1.44) 4 (0.50) 10 (6.13)

Stroke, n (%) < 0.001

No 499 (51.50) 391 (48.51) 108 (66.26)

Yes 470 (48.50) 415 (51.49) 55 (33.74)

Cardiac arrest, n (%) < 0.001

No 918 (94.74) 773 (95.91) 145 (88.96)

Yes 51 (5.26) 33 (4.09) 18 (11.04)

Complication, n (%)

Coagulopathy, n (%) < 0.001

No 922 (95.15) 784 (97.27) 138 (84.66)

Yes 47 (4.85) 22 (2.73) 25 (15.34)

DIC, n (%) < 0.001

No 956 (98.66) 803 (99.63) 153 (93.87)

Yes 13 (1.34) 3 (0.37) 10 (6.13)

Sepsis, n (%) < 0.001

No 830 (85.66) 760 (94.29) 70 (42.94)

Yes 139 (14.34) 46 (5.71) 93 (57.06)
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< 0.001): intra-abdominal infection (AUC = 0.761), sepsis (AUC =

0.722), PCT (AUC = 0.676), vasoactive medications (AUC = 0.671),

mechanical ventilation (AUC = 0.643), ventilator weaning failure

(AUC = 0.625), and acute kidney injury (AUC = 0.611) (Figure 6B).

Decision curve analyses confirmed the nomogram's enhanced

clinical utility in both training (Figure 6C) and validation sets

(Figure 6D), demonstrating consistently superior net benefit

across varying threshold probabilities compared to single-

factor models..
4 Discussion

This study successfully developed a robust machine learning

model to predict the risk of septic shock in patients with multidrug-

resistant Klebsiella pneumoniae (MDR-KP) infections. Employing a

combined approach of LASSO regression and Boruta algorithm, we

identified seven key predictors: PCT levels, sepsis, acute kidney

injury, intra-abdominal infection, use of vasoactive medications,

ventilator weaning failure, and mechanical ventilation. Logistic

regression was the optimal method for model development,

showing excel lent performance in both training and

validation phases.

Our predictive model aligns with and expands upon the

findings of Cano et al. (56), who identified similar risk factors for

MDR-KP infections but did not specifically explore outcomes
Frontiers in Immunology 09
related to septic shock. Conversely, our results provide a nuanced

understanding of septic shock progression in these infections,

diverging from Giannella et al. (57), who reported limited

predictive utility of certain clinical parameters in similar contexts.

This disparity may reflect differences in patient demographics,

healthcare settings, and regional MDR-KP strains (58).

The clinical utility of our model is evidenced by its ability to

facilitate early identification of high-risk patients, supporting timely

and targeted interventions. This predictive capability allows for the

stratification of patients into high-risk and low-risk categories based

on their individual characteristics. Furthermore, incorporating

patient stratification into clinical practice facilitates more precise

and personalized care pathways. For example, high-risk patients

identified by the model can receive personalized antimicrobial

treatment plans tailored to their specific risk profiles, whereas

low-risk patients can follow standardized treatment protocols,

thereby minimizing unnecessary exposure to broad-spectrum

antibiotics and reducing potential side effects. This approach

aligns with the principles of precision medicine, which involves

customizing treatment strategies according to each patient’s unique

characteristics, thereby improving overall clinical outcomes and

reducing healthcare costs. This approach is corroborated by

Gutiérrez-Gutiérrez et al. (59), who highlighted the benefits of

early intervention in managing MDR bacterial infections.

Moreover, the model enhances antimicrobial stewardship by

enabling precise risk stratification, which could potentially reduce
FIGURE 2

Predictor screening results. (A) Boruta; (B) Factor screening based on the LASSO regression model, with the left dashed line indicating the best
lambda value for the evaluation metrics (lambda. min) and the right dashed line indicating the lambda value for the model where the evaluation
metrics are in the range of the best value by one standard error (lambda.1se); (C) Boruta combined LASSO. LASSO, Least Absolute Shrinkage and
Selection Operator.
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FIGURE 3

The performance and comparison of seven different predictive models. (A) The training set ROC curve; (B) The test set ROC curve; (C) Forest plot of
AUC values in the training set; (D) Forest plot of AUC values in the test set.
TABLE 2 Predictive performance comparison of the seven types of machine learning algorithms.

Variables
Train Cohort

AUC Accuracy Sensitivity Specificity PPV NPV F1 score

Logistic Regression 0.906 0.794 0.865 0.779 0.442 0.966 0.585

Decision Tree 0.846 0.909 0.850 0.916 0.558 0.980 0.674

Random Forest 0.972 0.899 0.969 0.885 0.630 0.993 0.763

XGBoost 0.913 0.858 0.785 0.872 0.554 0.953 0.65

SVM 0.901 0.808 0.828 0.804 0.461 0.959 0.592

KNN 0.997 0.986 1.000 0.983 0.921 1.000 0.959

LightGBM 0.817 0.782 0.693 0.800 0.412 0.928 0.517
F
rontiers in Immunology
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Test Cohort

Logistic Regression 0.865 0.724 0.810 0.708 0.331 0.954 0.470

Decision Tree 0.784 0.873 0.619 0.901 0.413 0.955 0.495

(Continued)
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unnecessary use of broad-spectrum antibiotics, aligning with

recommendations by Gomez-Simmonds et al. (60). Our findings

underscore the importance of specific monitoring parameters such

as PCT and markers of acute kidney injury, which are crucial for

early intervention and surveillance in MDR-KP-infected patients.

These insights contribute significantly to the clinical management
Frontiers in Immunology 11
of these infections and are supported by robust model validation

metrics including AUC, calibration, and decision curve analysis.

While the study underscores the value of the predictive model,

the limitations should be acknowledged. One key limitation is the

single-center and retrospective design, which may restrict the

generalizability of the findings (61). Importantly, variations in
TABLE 2 Continued

Test Cohort

Random Forest 0.858 0.784 0.841 0.773 0.399 0.965 0.541

XGBoost 0.865 0.808 0.762 0.816 0.425 0.951 0.546

SVM 0.860 0.755 0.810 0.745 0.362 0.956 0.500

KNN 0.753 0.839 0.524 0.895 0.471 0.913 0.496

LightGBM 0.628 0.695 0.444 0.739 0.233 0.882 0.306
FIGURE 4

Nomogram used for predicting MDR-KP-induced septic shock. Logistic regression algorithm was used to establish nomogram. The final score is
calculated as the sum of the individual scores of each of the ten variables included in the nomogram.
TABLE 3 Univariate and Multivariate analysis of risk factors for MDR-KP-induced septic shock inpatients.

Characteristics
Univariate analysis Multivariate analysis

Coef OR 95% CI P value Coef OR 95% CI P value

Intercept -3.634 0.026 0.016-0.041 <0.001

PCT 0.039 1.040 1.029-1.052 <0.001 0.029 1.029 1.016-1.042 <0.001

Sepsis 3.089 21.950 14.380-34.010 <0.001 2.422 11.269 6.890-18.630 <0.001

Acute kidney injury 1.871 6.496 4.508-9.392 <0.001 0.965 2.624 1.601-4.275 <0.001

Intra-abdominal infection 2.410 11.133 5.219-25.260 <0.001 1.512 4.534 1.638-13.210 0.004

Vasoactive medications 2.166 8.727 5.874-13.020 <0.001 1.297 3.660 2.135-6.275 <0.001

Ventilator weaning failure 2.821 16.796 8.681-34.650 <0.001 1.418 4.131 1.751-10.110 0.001

Mechanical ventilation 1.725 5.615 3.794-8.518 <0.001 0.738 2.093 1.246-3.552 0.006
CI, confidence interval; OR, odds ratio.
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MDR-KP strains and healthcare environments across different

regions and institutions could influence the model’s applicability.

Hence, we acknowledge that the applicability of the model to

different populations and healthcare settings, especially those with

distinct antimicrobial resistance patterns or patient demographics,

may be limited by our current single-center design. To address this,

we plan to conduct multi-center validation studies involving diverse

cohorts and varying resistance profiles. Such efforts will allow us to

confirm the model ’s performance across heterogeneous
Frontiers in Immunology 12
environments, enhance its robustness, and improve its

adaptability to a broader range of clinical scenarios. Furthermore,

model performance might vary with regional differences in

antimicrobial resistance patterns and treatment protocols, a

limitation acknowledged in similar studies (62). Future research

should focus on multi-center validation as recommended by

Zarkotou et al. (63), to assess the model’s applicability in different

healthcare settings. Prospective studies, following the

methodological approach of Kontopoulou et al. (64), are also
FIGURE 5

Comprehensive evaluation of the logistic regression model. (A) Calibration curve for the training set; (B) Calibration curve for the test set;
(C) Decision curve analysis for the training set; (D) Decision curve analysis for the test set; (E) Confounding matrix for the training set;
(F) Confounding matrix for the test set; (G) Clinical impact curve for the training set; (H) Clinical impact curve for the test set.
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needed to confirm the model’s reliability and overcome

retrospective biases. Integrating genomic data on MDR-KP strains

could further refine the model’s accuracy and uncover strain-

specific risk factors, while evaluating the model across diverse

patient subgroups, as demonstrated in the stratification

methodology by Papadimitriou-Olivgeris et al. (65), will ensure its

effectiveness across varied clinical scenarios. Once high-risk

patients are identified by the model, several key clinical

interventions are recommended. These measures include

strengthening infection control practices and promptly optimizing

antimicrobial therapy. Prior to the finalization of microbiological

results, it may be necessary to consult with infectious disease

specialists to rapidly escalate or adjust empiric antibiotic regimens

to swiftly control the source of infection. Early initiation of

enhanced organ function monitoring, particularly for renal and
Frontiers in Immunology 13
circulatory support, should be guided by known risk factors such as

procalcitonin (PCT) levels and acute kidney injury. Furthermore,

high-risk patients may benefit from early admission to the intensive

care unit (ICU), individualized mechanical ventilation strategies,

careful evaluation of ventilator weaning readiness, and, if necessary,

the early initiation of renal replacement therapy or vasoactive

support to stabilize hemodynamics. Prompt imaging, surgical

consultation, or drainage procedures for intra-abdominal

infections can mitigate the progression to septic shock.

In light of the increasingly complex landscape of multidrug

resistance, there is a growing need for predictive models capable of

handling the multifaceted interplay among diverse resistance

mechanisms, host factors, and evolving treatment strategies.

Future models should consider incorporating a broader and more

dynamic set of clinical and laboratory parameters, alongside
FIGURE 6

Comparison of the models in the entire study cohort. (A) Receiver operating characteristic curves of various models for the training set; (B) Receiver
operating characteristic curves of various models the test set; (C) Decision curve analysis of various models for the training set; (D) Decision curve
analysis of various models for the test set.
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advanced machine learning or deep learning frameworks, to capture

non-linear and time-dependent patterns. Such enhanced models are

expected to provide more accurate risk stratification and improve

clinical decision-making, ultimately guiding precision therapy and

patient management in the face of complex and rapidly changing

MDR scenarios. Our predictive model not only deepens the

understanding of MDR-KP-related septic shock but also offers a

vital clinical tool for early risk assessment and management,

potentially reducing mortality as noted by Hauck et al. (66). The

methodologies developed here may also serve as a blueprint for

constructing similar predictive models for other antimicrobial-

resistant infections, advancing the field of precision medicine in

infectious diseases.
5 Conclusion

This study presents a machine learning-based model that

integrates a wide array of clinical and laboratory parameters to

assess septic shock risk in patients infected with MDR-KP. By

leveraging advanced predictive analytics, the model offers a precise

tool for early risk identification, which is expected to improve

clinical outcomes, optimize resource allocation, and support

targeted treatment strategies. Future work will focus on validating

the model across multiple centers with diverse patient populations

and varying antimicrobial resistance patterns to ensure its

generalizability and enhance its clinical impact. These

methodologies not only enhance our current understanding but

also pave the way for future innovations in managing antimicrobial-

resistant infections.
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