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Background: Type 2 Diabetes Mellitus (T2DM) represents a major global health

challenge, marked by chronic hyperglycemia, insulin resistance, and immune

system dysfunction. Immune cells, including T cells andmonocytes, play a pivotal

role in driving systemic inflammation in T2DM; however, the underlying single-

cell mechanisms remain inadequately defined.

Methods: Single-cell RNA sequencing of peripheral blood mononuclear cells

(PBMCs) from 37 patients with T2DM and 11 healthy controls (HC) was

conducted. Immune cell types were identified through clustering analysis,

followed by differential expression and pathway analysis. Metabolic

heterogeneity within T cell subpopulations was evaluated using Gene Set

Variation Analysis (GSVA). Machine learning models were constructed to

classify T2DM subtypes based on metabolic signatures, and T-cell-monocyte

interactions were explored to assess immune crosstalk. Transcription factor (TF)

activity was analyzed, and drug enrichment analysis was performed to identify

potential therapeutic targets.

Results: In patients with T2DM, a marked increase in monocytes and a decrease

in CD4+ T cells were observed, indicating immune dysregulation. Significant

metabolic diversity within T cell subpopulations led to the classification of

patients with T2DM into three distinct subtypes (A-C), with HC grouped as D.

Enhanced intercellular communication, particularly through the MHC-I pathway,

was evident in T2DM subtypes. Machine learning models effectively classified

T2DM subtypes based onmetabolic signatures, achieving an AUC > 0.84. Analysis

of TF activity identified pivotal regulators, including NF-kB, STAT3, and FOXO1,

associated with immune and metabolic disturbances in T2DM. Drug enrichment

analysis highlighted potential therapeutic agents targeting these TFs and related

pathways, including Suloctidil, Chlorpropamide, and other compounds

modulating inflammatory and metabolic pathways.
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Conclusion: This study underscores significant immunometabolic dysfunction in

T2DM, characterized by alterations in immune cell composition, metabolic

pathways, and intercellular communication. The identification of critical TFs

and the development of drug enrichment profiles highlight the potential for

personalized therapeutic strategies, emphasizing the need for integrated

immunological and metabolic approaches in T2DM management.
KEYWORDS
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Introduction

Type 2 Diabetes Mellitus (T2DM) represents a growing global

health crisis, with prevalence rates increasing rapidly. The

International Diabetes Federation estimates that 537 million adults

were living with diabetes in 2021, a number projected to rise to 643

million by 2030 and 783 million by 2045 (1). T2DM accounts for 90-

95% of all diabetes cases and is a leading contributor tomorbidity and

mortality, with associated complications such as cardiovascular

disease, neuropathy, nephropathy, and retinopathy (2) The rising

incidence of T2DM is driven by a combination of genetic

predisposition and lifestyle factors, including obesity, sedentary

behavior, and poor dietary habits (3).

Beyond its metabolic consequences, T2DM is increasingly

recognized for its significant immunological components,

characterized by chronic low-grade inflammation and immune

dysregulation (4). Peripheral blood mononuclear cells (PBMCs),

including T cells and monocytes, play pivotal roles in the

inflammatory processes of T2DM (5). Alterations in immune cell

populations have been documented in patients with T2DM, with

changes observed in the proportions and functions of various

immune cell subsets (6).

T cells and monocytes are particularly implicated in T2DM

pathogenesis through their contribution to systemic inflammation

and insulin resistance (7). Chronic activation of these immune cells

results in the secretion of pro-inflammatory cytokines, which

disrupt insulin signaling pathways (8). However, the precise

mechanisms by which these immune cells contribute to T2DM,

particularly at the single-cell level, remain poorly understood.

Recent advancements in single-cell RNA sequencing (scRNA-seq)

have enabled high-resolution analysis of cellular heterogeneity,

facilitating the characterization of individual cell types and states

within complex tissues (9). This technology offers a unique

opportunity to explore the immunological landscapes of PBMCs in

T2DM at an unprecedented level of detail. By analyzing gene

expression profiles at the single-cell level, it is possible to identify

specific cellular subpopulations and uncover new insights into the

disease mechanisms.
02
Metabolic reprogramming of immune cells is a critical aspect of

their activation and function (10). In the context of T2DM, metabolic

disturbances can influence immune cell behavior, contributing to

disease progression (10). Metabolic reprogramming in T cells and

monocytes plays a pivotal role in the pathogenesis of T2DM (11).

Immune cells, like T cells and monocytes, undergo metabolic shifts in

T2DM, which affect their activation and function, thereby

exacerbating chronic inflammation and insulin resistance (11).

These metabolic alterations can promote the secretion of pro-

inflammatory cytokines, further driving disease progression (12).

Understanding how metabolic reprogramming influences immune

cell behavior could identify novel therapeutic targets for T2DM.

Furthermore, cell-cell communication, mediated by signaling

pathways and cytokines, is essential for orchestrating immune

responses (13). Dysregulation of these communication networks

can intensify inflammation and insulin resistance in T2DM (14).

Investigating intercellular signaling dynamics may reveal potential

therapeutic targets for modulating immune responses.

In this study, publicly available scRNA-seq data were used

to analyze PBMCs from patients with T2DM and healthy

controls (HC). This study aimed to characterize the immune cell

composition, metabolic heterogeneity, and cell-cell communication

networks at the single-cell level. Additionally, advanced machine

learning models were employed to classify T2DM subtypes

based on metabolic signatures. The findings offer comprehensive

insights into the immunometabolic alterations in T2DM,

providing a foundation for the development of personalized

therapeutic strategies.
Methods

Data collection

The sequencing data used in this study are publicly available

from the Gene Expression Omnibus (GEO) database. scRNA-seq

data for PBMCs from 11 HC individuals (GSE244515) (15) and 37

patients diagnosed with T2DM (GSE268210) (16) were utilized.
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Single-cell RNA sequencing alignment and
quality control

All single-cell read counts were analyzed using the Seurat package

(v5.0.1) in R (v4.3.1), converting each dataset into individual Seurat

objects. Data filtering was performed based on unique molecular

identifiers (UMIs) and the number of detected genes (17).

Specifically, cells with between 500 and 3,500 detected genes, and

those expressed in at least five cells, were retained. Cells exhibiting

mitochondrial gene expression greater than 5% were excluded to

ensure data quality. Following filtering, data normalization was

carried out using Seurat’s NormalizeData function, and highly

variable genes were identified using the FindVariableFeatures function.
Integration of scRNA-seq data from
multiple datasets

To integrate scRNA-seq data from multiple datasets, the

Harmony package was employed, focusing on highly variable

genes. This integration enabled subsequent dimensionality

reduction and clustering analyses, correcting for batch effects and

other technical variations across datasets.
Dimensionality reduction and major cell
type annotation

For the PBMC dataset, clustering resolution was set to 0.5. Principal

component analysis (PCA) was used for dimensionality reduction,

followed by Uniform Manifold Approximation and Projection

(UMAP) for visualization. Clusters were identified and annotated

based on known cell type markers, as shown in Figures 1B, 1E, and 1H
Differential gene expression and
pathway analysis

Differential gene expression analysis was conducted using the

FindMarkers function of the Seurat package, employing the

Wilcoxon rank-sum test. Genes were considered differentially

expressed if detected in at least 25% of cells (min.pct = 0.25) and

had an adjusted p-value below 0.05 after Bonferroni correction.

Significant differentially expressed genes (DEGs) were subjected to

Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses using the

clusterProfiler package (v3.12.0) (18). Drug enrichment analysis

was performed using the Drug-Gene Interaction Database (DGIdb)

as the reference, selecting enriched drugs with an adjusted p-value

threshold of P < 0.05 after multiple testing correction.
Gene set variation analysis

Gene Set Variation Analysis (GSVA) was employed to assess

pathway activity across single cells using 42 KEGG pathways as
Frontiers in Immunology 03
predefined gene sets. The GSVA method was implemented with the

GSVA package in R, specifying appropriate gene set indices and

kernel-based distribution functions (kcdf). To optimize

computational efficiency, parallel processing was utilized, with

parameter adjustments based on available processor cores. This

approach allowed for scalable analysis, reduced processing time,

and preserved result integrity. GSVA provided pathway activity

scores for each cell, enabling the exploration of pathway

heterogeneity and functional states within the single-cell populations.
Calculation of transcription factor activity

To assess transcription factor (TF) activity, the DoRothEA

package was used to retrieve human regulon data, selecting

regulons with confidence levels A, B, and C (19). TF activity scores

were calculated using the VIPER method, with normalization

performed via the “scale” method and a minimum regulon size of

4. These scores were stored in the “dorothea” assay of the Seurat

object. Dimensionality reduction was conducted using PCA, followed

by clustering with the top 10 principal components, and UMAP was

applied for cluster visualization. Differential TF activity between

clusters was evaluated using Seurat’s FindAllMarkers function, with

significant TFs identified based on log fold change and expression

percentage. The VIPER activity scores were summarized by cell type,

and the three most variable TFs across cell types were identified.

These TFs were visualized in a heatmap, with color intensities

reflecting TF activity.
Unsupervised clustering
(consensus clustering)

To classify patients with T2DM based on T cell metabolic

patterns, consensus clustering was applied, a robust and

reproducible method that aggregates multiple clustering results to

enhance stability and reliability using the ConsensusClusterPlus

package. Initially, the mean GSVA scores for the 42 pathways were

calculated for each sample. Consensus clustering mitigates inherent

variability in individual clustering runs by repeatedly subsampling

the data and aggregating clustering results, ensuring the

identification of consistent and biologically meaningful clusters.

The optimal number of clusters (k) was determined by

calculating the incremental area, which measures changes in the

cumulative distribution function (CDF) curve area between

consecutive k values. The incremental area quantifies

improvements in cluster stability as the number of clusters

increases. A significant drop in the incremental area suggests that

additional clusters contribute minimally to cluster stability, aiding

in the selection of the optimal k. Consensus clustering was

performed across a range of k values (from k = 2 to k = 9), and

incremental area plots were generated to visualize changes in the

CDF curve areas. Using the “elbow method,” where the k value at

which the incremental area plateaus is selected (indicating

diminishing returns from adding more clusters), we identified k =

4 as the optimal number. From k = 4 onward, the reduction in
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incremental area was significantly less, indicating that k = 4 struck

a balance between minimizing the metric and maintaining

manageable cluster numbers. Clustering at k = 4 was

subsequently visualized using heatmaps and PCA plots.
Cell communication and
signaling pathways

Cell communication analysis was performed using the CellChat

package in R with default parameters (20). The pathwaysmediating cell

communication between three T cell subtypes and monocytes were

analyzed independently, utilizing the human CellChatDB as a
Frontiers in Immunology 04
reference. The rankNet function was modified to output scaled

contribution values for each pathway within each subtype.

Differences in the strength of cell communication pathways between

the T cell subtypes and monocytes were compared and visualized with

bar charts generated by ggplot2. Additionally, specific signaling

patterns for each pathway within each subtype were illustrated using

the netVisual_bubble function.
Machine learning algorithms

An integrated machine learning model incorporating multiple

algorithms was developed to enhance predictive accuracy.
FIGURE 1

Overview of Immune Cell Profiling in T2DM and Healthy Control (HC) Groups: (A) Single-cell RNA sequencing and clustering analysis identified
seven major immune cell types in PBMCs from both T2DM and HC groups. (B) The top three marker genes for each of the seven major immune cell
types in PBMCs. (C) Violin plots comparing the proportions of these seven immune cell types in PBMCs across T2DM and HC groups. (D)
Dimensional reduction analysis of T cell clusters, revealing eight distinct T cell subtypes. (E) The top three marker genes for each of the eight T cell
subtypes. (F) Violin plots comparing the proportions of the eight T cell subtypes in PBMCs. (G) Monocyte subpopulation analysis identified three
distinct subtypes: classical, intermediate, and non-classical monocytes. (H) Expression of marker genes (CD14 and FCG3RA) used for classifying
monocyte subpopulations. (I) Violin plots comparing the proportions of the three monocyte subtypes. p-values are indicated as follows: *p ≤ 0.05,
**p ≤ 0.01, and ***p ≤ 0.001.
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A comprehensive dataset of 196,623 T cells was divided into a training

set (70%) and a test set (30%). A total of 75 different combinations of

machine learning models were evaluated. Independent predictive

models included Support Vector Machines (SVM) and Ridge

regression. Boosting methods such as glmBoost, Elastic Net (Enet)

with varying alpha values, and Gradient Boosting Machines (GBM)

were sequentially applied to correct errors from previous models.

Stepwise regression (Stepglm), utilizing forward, backward, or both

selection criteria, was combined with models like Ridge, Enet, and

Lasso to optimize predictive performance. Additional models,

including XGBoost, Linear Discriminant Analysis (LDA), Random

Forest (RF), and Naive Bayes, were integrated to leverage the unique

strengths of each algorithm in different scenarios.

For multiclass classification adjustments, both one-vs-rest

(OvR) and multinomial classification approaches were employed.

The OvR strategy decomposes the multiclass problem into multiple

binary classifiers, each distinguishing one class from all others. This

method was applied to SVM and Logistic Regression algorithms to

establish binary decision boundaries within a multiclass framework.

Multinomial classification methods, such as GBM and RF, handle

all classes simultaneously within a single model, allowing for direct

modeling of class probabilities. These algorithms natively support

multinomial classification, enabling the simultaneous prediction of

multiple classes without decomposing them into separate binary

tasks. The choice of methods was guided by the algorithm’s native

support for multiclass classification and empirical performance

during model tuning.

At the patient level, individuals were classified based on the

distribution of cell subtypes within their samples. If the majority

of a patient’s cells were assigned to a specific subtype, the patient

was classified into that subtype. This strategy enabled the

extension of single-cell classification to predict subtypes at the

patient level.

Models were configured to identify the one with the highest

average concordance index (C-index) across all validation

datasets. The accuracy of the resulting risk scores was validated

by calculating the area under the curve (AUC) using the

“timeROC” package.
Statistical analysis

All statistical analyses were performed using R software (v4.3.1),

and visualizations were generated through R Studio. The selection

of statistical tests was determined by the data distribution and

characteristics. For normally distributed data, Student’s t-test was

used to compare means between two groups. For non-normally

distributed data, the Wilcoxon rank-sum test was applied for two-

group comparisons, and the Kruskal-Wallis test was utilized for

comparisons across multiple groups. P-values > 0.05 were

considered not statistically significant and were marked as “ns.”

P-values ≤ 0.05 were considered statistically significant, with the

following indications: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and ****

p ≤ 0.0001.
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Results

Significant increase in monocytes and
decrease in CD4+ T cells in patients
with T2DM

Single-cell sequencing data of PBMCs from 11 HC (GSE244515)

and 37 patients with T2DM (GSE268210) were obtained from the

GEO database. Cluster analysis revealed seven major immune cell

types, annotated by specific marker genes: CD4+ T cells (CD3D, IL7R),

CD8+ T cells (CD3D, CD8B), NK cells (KLRF1), B cells (MS4A1),

monocytes (CD14, FCG3RA), dendritic cells (ITGAX, CD1C), and

plasma cells (SDC1, MZB1) (Figure 1A). Cell types were annotated

using established marker genes, a method validated in prior studies

(Figure 1B). Rigorous marker selection and clustering methods were

applied to ensure accurate and consistent categorization of cell types

within the datasets. Proportions of immune cell types between T2DM

and HC groups were compared using the Wilcoxon test. The analysis

revealed a significant increase inmonocyte proportions (p < 0.01) and a

decrease in CD4+ T cells (p < 0.01) in the T2DM group compared to

the HC group, while no significant differences were observed in CD8+

T cells, B cells, dendritic cells, or plasma cells (Figure 1C).
Altered proportions of T cell subtypes in
patients with T2DM

Dimensional reduction and cluster analysis of T cells based on

gene expression profiles identified eight distinct subtypes: Central

Memory CD8+ T cells (IL7R, CD27, SELL), Cytotoxic CD8+ T cells

(CD8A, GZMH, NKG7), Gamma Delta T cells (TRDC, TRDV2),

Memory CD4+ T cells (IL7R, CD27), Memory CD8+ T cells (IL7R,

CD27), Naive CD4+ T cells (LEF1, SELL, CCR7), Naive CD8+ T

cells (CD8A, LEF1, CCR7), and Regulatory CD4+ T cells (FOXP3)

(Figure 1D, E). SELL expression was utilized to distinguish between

Central Memory and Memory CD8+ T cells. Differences in T cell

subtype proportions between T2DM and HC groups were assessed

using the Wilcoxon test. Significant increases in the proportions of

Cytotoxic CD8+ T cells (p < 0.01) and Naive CD8+ T cells (p <

0.05) were observed in the T2DM group, alongside a significant

reduction in Regulatory CD4+ T cells (p < 0.05). No significant

differences were found in Central Memory CD8+ T cells, Gamma

Delta T cells, Memory CD4+ T cells, Memory CD8+ T cells, or

Naive CD4+ T cells (Figure 1F).
Changes in monocyte subpopulations in
patients with T2DM

The interaction between monocytes and T cells plays a critical role

in the inflammatory mechanisms driving T2DM progression (21).

Monocytes modulate T cell responses and are central to the immune

dysregulation observed in T2DM (22). Further analysis of monocytes

revealed three subgroups: classical monocytes, non-classical
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monocytes, and intermediate monocytes (Figure 1G). Classical

monocytes were defined by CD14 expression, non-classical by CD16,

and intermediate by both CD14 and CD16 (Figure 1H). TheWilcoxon

test revealed a significant increase in intermediate monocytes (p < 0.01)

and a decrease in classical monocytes (p < 0.05) in the T2DM group

compared to the HC group (Figure 1I).
Metabolic heterogeneity in T cell
subpopulations in T2DM

To investigate the metabolic heterogeneity within T cell

subpopulations in T2DM, each cell within these subpopulations

was scored for 42 metabolic-related pathways from the KEGG

database using GSVA. Unsupervised consensus clustering, based

on the mean pathway values for each sample, was performed. The

optimal number of clusters (k = 4) was determined using the delta

area value and the “elbow method,” partitioning the samples into

four groups (Figure 2A). The clustering heatmap clearly
Frontiers in Immunology 06
distinguished the samples into four groups, with T2DM samples

assigned to groups A-C and HC samples grouped in D (Figure 2B).

This segregation was further validated by the PCA plot, which

highlighted a distinct separation between group D (HC) and groups

A-C (Figure 2D). Specifically, group A included 12 patients, group B

included 14 patients, group C included 12 patients, and group D

contained 11 HC.

Group A exhibited elevated expression across various metabolic

pathways, including sulfur, ether lipid, and sphingolipid

metabolism; nicotinate and nicotinamide metabolism; xenobiotic

and drug metabolism by cytochrome P450; tryptophan, porphyrin,

and chlorophyll metabolism; glycine, serine, and threonine

metabolism; linoleic and alpha-linolenic acid metabolism; taurine

and hypotaurine metabolism; histidine metabolism; ascorbate and

aldarate metabolism; retinol metabolism; arachidonic acid

metabolism; and starch and sucrose metabolism, among others

(Figure 2C). This broad metabolic profile, encompassing lipid,

amino acid, and complex carbohydrate pathways, suggests an

adaptive metabolic response in T cells within Group A.
FIGURE 2

Metabolic Heterogeneity in T Cell Subpopulations and Immunological Differences in T2DM: (A) Delta area plot showing k values from 2 to 9 used for
selecting the optimal k in consensus clustering. (B) Consensus clustering heatmap of metabolic pathway scores, dividing samples into four distinct
groups. Groups A-C consist of T2DM samples, while Group D represents healthy control (HC) samples. (C) Clustering heatmap displaying the expression
levels of 42 metabolic-related pathways in T cell subpopulations across the four groups, emphasizing differences in metabolic activity. (D) PCA plot
demonstrating clear separation between the HC group (D) and T2DM groups (A-C). (E) Violin plots showing the proportions of eight T cell subtypes
across the four groups, with significant differences observed between groups. (F) Violin plots illustrating the proportions of three monocyte subtypes
across the four groups, highlighting further immune profile differences. p-values are indicated as follows: *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001.
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Group B was distinguished by high expression in pathways such

as pyruvate, glutathione, glyoxylate and dicarboxylate, purine,

pyrimidine, cysteine and methionine, nitrogen, inositol

phosphate, galactose, glycerolipid, glycerophospholipid, fructose

and mannose, and amino sugar and nucleotide sugar metabolism

(Figure 2C). This unique metabolic signature suggests a specific

adaptation in Group B, likely reflecting a distinct functional or

activation state compared to other groups.

Group C shared a metabolic profile with Group B, marked by

high expression in nitrogen, inositol phosphate, galactose,

glycerolipid, glycerophospholipid, fructose and mannose, and

amino sugar and nucleotide sugar metabolism (Figure 2C).

However, the metabolic reprogramming in Group C appeared

more targeted or restricted, suggesting a more specific metabolic

shift in the T cells.

Group D, representing the HC group, displayed strong

expression in pyruvate, glutathione, glyoxylate and dicarboxylate,

purine, pyrimidine, cysteine and methionine, propanoate,

butanoate, fatty acid, and beta-alanine metabolism (Figure 2C).

This metabolic profile aligns with basic cellular metabolism and

energy homeostasis, contrasting with the altered metabolic states

observed in the T2DM groups.
Immunological differences between T2DM
subtypes and HC group

The Kruskal-Wallis test was performed to examine immunological

differences in T cell andmonocyte subtypes across the groups, revealing

significant alterations indicative of substantial immune modulation in

T2DM. Notably, Groups A and HC displayed increased proportions of

Central Memory CD8+ T Cells, essential for long-term immune

memory, suggesting potential immune adaptation or ongoing

immune responses. A significant reduction in Cytotoxic CD8+ T

Cells was observed in Groups A and C compared to the HC group,

indicating an impaired cytotoxic response critical for targeting infected

or dysfunctional cells (Figure 2E).

Additionally, a decrease in Memory and Naive CD8+ T Cells in

Group C suggests a compromised adaptive immune response,

essential for effective long-term immunity. The reduction in

Regulatory CD4+ T Cells, especially in Group C, suggests

diminished regulatory function, potentially contributing to

unchecked immune responses and inflammation characteristic of

chronic conditions like T2DM (Figure 2E).

Moreover, a significant reduction in classical monocytes in

Group B (P < 0.05) was observed, while proportions of

intermediate monocytes were significantly increased in Groups A

and B (P < 0.05) compared to the HC group (Figure 2F).

These findings underscore the intricate interplay between

metabolic and immune shifts in T2DM, illustrating how

metabolic disturbances may impact immune function and

potentially exacerbate the disease. The distinct metabolic profiles

observed in T2DM subgroups suggest that targeted metabolic or

immunomodulatory therapies could be tailored to address specific

dysregulations in these patients.
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The communication between T-cells and
monocytes in type 2 diabetes

The communication between T-cells and monocytes in T2DM

plays a critical role, profoundly influencing immune regulation,

inflammation, and autoimmunity, all pivotal in the disease’s

progression and management. Understanding these interactions

offers insights into how immune dysregulation contributes to

chronic inflammation and insulin resistance in T2DM.

CellChat was employed to analyze communication differences

between T-cells and monocytes across three T2DM subtypes and an

HC group (Supplementary Tables 1–4). Regarding the number of

inferred interactions, Subtypes A, B, C, and HC had 1418, 1841,

1537, and 1531 interactions, respectively (Figure 3B). Interaction

strength values were 0.995 for Subtype A, 1.133 for Subtype B, 0.93

for Subtype C, and 0.793 for HC (Figure 3C). These results highlight

variability in communication intensity and complexity across

diabetic subtypes compared to HC (Figure 3A), indicating

stronger cellular interactions in patients with T2DM, suggesting

an enhanced immune response in diabetic conditions.
Intensive pathway mediation in subtype B

In Subtype B of T2DM, multiple pathways actively mediate

communication between immune cells. The CD30 pathway

facilitates interactions from Naive CD4+ T Cells and Regulatory

CD4+ T Cells to Non-Classical Monocytes, which serve as receptors

(Figure 3D). This pathway is pivotal as it involves T cells that are

essential for maintaining immune tolerance and preventing

autoimmune responses while interacting with monocytes that

play a central role in inflammation. Activation of this pathway in

Subtype B suggests a specific immune regulatory mechanism that

could significantly impact the inflammatory environment

characteristic of T2DM.

Similarly, the CD48 pathway orchestrates communication between

three monocyte subtypes and various T-cell subtypes to Central

Memory CD8+ T Cells, also functioning as receptors, and extends

this interaction to include Non-Classical Monocytes (Figure 3F). This

pathway underscores a robust exchange of signals, enhancing immune

memory and responsiveness, which is essential for managing recurrent

or chronic antigen exposure in T2DM.

Additionally, the Transforming Growth Factor Beta (TGF-b)
pathway mediates interactions from multiple T-cell and monocyte

subtypes to Central Memory CD8+ T Cells (Figure 3E). TGF-b, a key
cytokine in regulating immune responses, cell growth, and

inflammation, suggests a dual role in promoting immune

homeostasis and potentially contributing to immune tolerance

in T2DM.

The Interferon Type II (IFN-II) pathway is prominently active in

Subtypes B and C, facilitating signals from Cytotoxic CD8+ T Cells to

Classical and Non-Classical Monocytes, and from Central Memory

CD8+ T Cells to Intermediate Monocytes (Figure 3G). The

engagement of this pathway highlights an active antiviral and

antitumor response, which may be dysregulated in T2DM,
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contributing to altered immune cell activation and cytokine production

and influencing disease progression.

The extensive involvement of these pathways in Subtype B

reveals a complex and distinct immune modulation pattern that

may significantly influence the clinical manifestations and

progression of T2DM. The differential activation of these

pathways underscores the intricate interplay between immune

cells in diabetes, providing a foundation for the development of

targeted therapeutic strategies.
TNF and CCL pathway involvement

The Tumor Necrosis Factor (TNF) pathway was particularly

active in Subtype B, mediating communication from Intermediate

Monocytes to other monocyte and T-cell subtypes (acting as

receptors), and from Non-Classical Monocytes to various

monocyte and T-cell subtypes (acting as receptors) (Figure 3H).

In contrast, in Subtype C, the TNF pathway exclusively mediated

communication from Non-Classical Monocytes to other monocyte
Frontiers in Immunology 08
and T-cell subtypes (as receptors), suggesting its involvement in

promoting inflammatory processes that may exacerbate diabetes

complications (Figure 3I).

The CCL pathway in Subtype B specifically mediated

interactions with Regulatory CD4+ T Cells as receptors and

Gamma Delta T Cells, Cytotoxic CD8+ T Cells, Central Memory

CD8+ T Cells, and Memory CD8+ T Cells as ligands (Figure 3J). In

the HC group, the CCL pathway significantly mediated

communication with Classical Monocytes and Intermediate

Monocytes as receptors (Figure 3K). The differential involvement

of this pathway highlights its potential role in modulating immune

responses differently in diabetic patients versus healthy individuals.
MHC-I pathway dominance

The Major Histocompatibility Complex Class I (MHC-I)

pathway contributed extensively across all three subtypes,

mediating nearly all communication between T-cell and

monocyte subtypes (Figure 3A). Subtype A exhibited the highest
FIGURE 3

Communication Between T Cells and Monocytes in Type 2 Diabetes Mellitus (T2DM): (A) Comparison of pathway activity across T2DM subtypes and
healthy controls (HC). (B) Number of inferred interactions by cluster. (C) Interaction strength by cluster. (D) Network diagram illustrating key
pathway-mediated interactions between T cell and monocyte subtypes for the CD30 pathway. (E) Network diagram illustrating key pathway-
mediated interactions between T cell and monocyte subtypes for the TGF-b pathway. (F) Network diagram illustrating key pathway-mediated
interactions between T cell and monocyte subtypes for the CD48 pathway. (G) Network diagram illustrating key pathway-mediated interactions
between T cell and monocyte subtypes for the IFN-g pathway. (H) Network diagram illustrating TNF pathway interactions in T2DM subtype B. (I)
Network diagram illustrating TNF pathway interactions in T2DM subtype C. (J) Network diagram illustrating CCL pathway interactions in T2DM
subtype B. (K) Network diagram illustrating CCL pathway interactions in HC.
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activity, followed by HC, with Subtype C showing the least. This

underscores the pivotal role of antigen presentation in T2DM,

which could influence autoimmune responses and overall

immune function in these patients.
VISFATIN pathway specificity

The VISFATIN pathway, uniquely present in Subtypes C and

HC, was involved exclusively in mediating communication among

T-cell subtypes, without interactions between T-cells and

monocytes. This selective engagement suggests a distinct

metabolic or inflammatory state inherent to these subtypes and

indicates that VISFATIN may play a role in unique disease

progression pathways or therapeutic resistance mechanisms in

T2DM. The focused activity of VISFATIN offers insights into

subtype-specific immune functions, potentially guiding more

personalized treatment approaches.
Additional pathways mediated T-cell and
monocyte communication

Further analysis revealed additional pathways—GRN,

SELPLG, ANNEXIN, THBS, ADGRE5, PARs, ITGB2, MHC-II,

MIF, CD40, CLEC, CD86, SEMA4, IL16, PECAM1, LCK, BAG,

ICAM, GALECTIN, CD99, APP, and RESISTIN—that mediate

communication across various T-cell and monocyte subtypes

(Figure 3A). These pathways are involved in a range of

regulatory and signaling processes, such as adhesion, immune

response modulation, and inflammation. Their involvement

across multiple subtypes highlights the complexity and dynamic

nature of cellular communication in T2DM, emphasizing the

potential for targeted therapeutic interventions based on these

specific molecular interactions.
Analysis of transcription factor activity
across diabetes subtypes

We also analyzed TF activity across the three T2DM subtypes,

identifying 126 active TFs. Key examples include IRF1, GATA6,

SPI1, EPAS1, NFKB2, and STAT5B, which are involved in immune

response, cell differentiation, and metabolic regulation, all of which

are critical in diabetes pathogenesis. A heatmap was generated to

visualize the top three TFs for each cell type across the subtypes

(Figures 4A–C).
Subtype A: activation of transcription
factors in immune cells

In Subtype A, TFs were notably active in Central Memory CD8+

T Cells, Memory CD8+ T Cells, Cytotoxic CD8+ T Cells, and

Gamma Delta T Cells, indicating an enhanced immune response

(Figure 4A). Of particular interest, HNF4A was uniquely active in
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Naive CD4+ T Cells and Naive CD8+ T Cells, suggesting a role in

early immune cell activation. EPAS1, a key factor involved in oxygen

sensing and cellular stress responses, was active in Memory CD8+ T

Cells, Cytotoxic CD8+ T Cells, and Gamma Delta T Cells,

highlighting its involvement in regulating immune cell function

during inflammatory or stress-induced conditions (Figure 4A).
Subtype B: immune modulation
and inflammation

In Subtype B, similar TF activity was observed in Central

Memory CD8+ T Cells, Memory CD8+ T Cells, Cytotoxic CD8+

T Cells, and Gamma Delta T Cells, with additional unique findings

(Figure 4B). NFKB1, known for its role in immune modulation and

inflammation, was specifically active in Regulatory CD4+ T Cells,

suggesting its contribution to immune tolerance and the prevention

of autoimmunity in this subtype. Additionally, SMAD4, a central

player in the TGF-b signaling pathway, was active across several T

cell types, indicating its role in immune response regulation and

tissue remodeling in Subtype B (Figure 4B).
Subtype C: strong immune activation
and differentiation

In Subtype C, TFs such as SPI1, STAT4, SMAD1, BCL11A,

IKZF1, LYL1, REST, and TBX21 were highly active in Central

Memory CD8+ T Cells, suggesting robust immune activation and

differentiation (Figure 4C). BCL11A, active in Central Memory

CD8+ T Cells, Cytotoxic CD8+ T Cells, and Gamma Delta T Cells,

plays a critical role in these cell types. Moreover, BHLHE22, active

in Naive CD4+ T Cells and Naive CD8+ T Cells, may regulate early-

stage immune responses (Figure 4C). KLF6, active in Central

Memory CD8+ T Cells and Memory CD4+ T Cells, likely

governs immune cell differentiation and survival. Lastly, TBX21,

essential for T cell differentiation and function, was active in Central

Memory CD8+ T Cells, underscoring its role in shaping long-term

immune responses in this subtype (Figure 4C).
Differential gene expression in subtype A

For Subtype A, further analysis revealed 436 DEGs, highlighting

significant involvement in pathways related to microRNA (miRNA)

transcription and immune system regulation (Figure 4D). The

enrichment of miRNA-related pathways, such as positive

regulation of miRNA transcription, regulation of miRNA

transcription, and miRNA transcription itself, suggests that

miRNAs play a critical role in controlling gene expression that

modulates T-cell function and overall immune responses

(Figure 4D). This subtype also exhibited significant enrichment in

immune-related pathways, including the MAPK signaling pathway,

TNF signaling pathway, and Th1/Th2 cell differentiation

(Figure 4D). These pathways are pivotal in mediating immune

responses and likely contribute to the inflammatory state observed
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in diabetes and its associated complications in Subtype A. The

presence of these pathways highlights the intricate interplay

between genetic regulation and immune responses, offering

potential insights for developing targeted therapeutic strategies for

this subtype.
Differential gene expression in subtype B

Subtype B, distinguished by 845 DEGs, is characterized by a broad

range of enriched pathways primarily related to protein metabolism

and modification (Figure 4E). Pathways such as the regulation of

protein catabolic processes, proteasomal protein catabolism, and

histone modification highlight an increased focus on protein

turnover and post-translational modifications, both critical for

cellular function and signaling. Immune-related pathways, including

the MAPK signaling pathway, AGE-RAGE signaling in diabetic
Frontiers in Immunology 10
complications, and Th17 cell differentiation, are also prominently

represented (Figure 4E). The AGE-RAGE pathway is particularly

notable for linking metabolic dysregulation to inflammatory

responses, a hallmark of diabetes-related complications (Figure 4E).

Furthermore, the Th17 differentiation pathway suggests the

involvement of a specific T-cell subset known for its role in

inflammation and autoimmunity, potentially contributing to the

pathophysiological complexity observed in Subtype B (Figure 4E).
Differential gene expression in subtype C

In Subtype C, the 122 DEGs are significantly enriched in pathways

related to metabolic processes, with a particular focus on oxidative

phosphorylation, a key energy production mechanism in cells

(Figure 4F). The inclusion of pathways such as chemical

carcinogenesis—reactive oxygen species and diabetic cardiomyopathy
FIGURE 4

Transcription Factor Activation and Pathway Enrichment Analysis in T2DM Subtypes with Machine Learning Classification: (A) Heatmap showing
logFC of the top three transcription factors in each cell type of Subtype A. (B) Heatmap showing logFC of the top three transcription factors in each
cell type of Subtype B. (C) Heatmap showing logFC of the top three transcription factors in each cell type of Subtype C. (D) Pathway enrichment
analysis of 436 differentially expressed genes in Subtype A. (E) Pathway enrichment analysis of 845 differentially expressed genes in Subtype B. (F)
Pathway enrichment analysis of 122 differentially expressed genes in Subtype C. (G) Performance of various machine learning models for classifying
T2DM subtypes based on T-cell metabolic characteristics.
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points to an increased susceptibility to oxidative stress and its

associated cardiac complications, common challenges in diabetes

management (Figure 4F). The prominence of oxidative

phosphorylation suggests altered metabolic function that may

exacerbate energy deficits in diabetic cells, potentially driving cellular

dysfunction and cardiomyopathy progression (Figure 4F). The

emphasis on metabolic and oxidative stress pathways in this subtype

underscores the importance of metabolic control and highlights

potential therapeutic targets for addressing these specific challenges.
Advanced machine learning models for
subtype classification

This study further developed machine learning models to

differentiate T2DM subtypes based on the metabolic

characteristics of T-cells, derived from the GSVA results of

KEGG metabolic pathways for each individual cell. A total of 75

model combinations were evaluated, with particular emphasis on

high-performing models such as glmBoost+GBM, glmBoost

+Stepglm (both combinations), Stepglm+GBM, and Stepglm

(backward)+Enet [alpha = 0.7] (Figure 4G).

GlmBoost, or Generalized Linear Model Boosting, enhances

prediction accuracy by combining multiple weak models, typically

linear, into a stronger predictive ensemble. Stepglm, or Stepwise

Generalized Linear Model, refines model accuracy by iteratively

adding or removing predictors based on their statistical significance,

optimizing the model for maximum performance (Figure 4G). These

models demonstrated robust predictive power, achieving AUC values

between 0.894 and 0.925 in the training set (Figure 4G). Notably, this

high performance extended to the validation set, where all selected

models achieved AUC values exceeding 0.8, with an average AUC of

over 0.84 across both sets (Figure 4G). The strong accuracy of these

models underscores the utility of advanced computational techniques

in improving our understanding and management of T2DM, enabling

precise subtype classification based on the metabolic profiles of T-cells.
Drug enrichment analyses for
personalized treatment

To facilitate the application of the three subtypes of T2DM for

personalized treatment, a drug enrichment analysis was conducted on

the upregulated DEGs (logFC > 0.5) for each subtype. This approach

identifies potential drugs tailored to the specific needs of each T2DM

subtype, offering a foundation for more targeted therapeutic strategies.
Subtype A: suloctidil and
inflammation pathways

In subtype A, suloctidil emerged as the most promising drug for

diabetes treatment (Figure 5A) (23). This drug was linked to genes

involved in inflammation and immune regulation, including

NR4A2, IFITM1, PPP1R15A, FOSB, TNFAIP3, FOS, ZFP36,

MCL1, DUSP1, NFKBIA, JUN, KLF6, KLF2, and FTH1
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(Figure 5D). These genes are critical in regulating inflammatory

responses, which are central to insulin resistance and diabetes-

related complications. The enrichment of suloctidil with these genes

suggests its potential in managing the inflammation-associated

aspects of T2DM in subtype A.
Subtype B: suloctidil as a key drug

For subtype B, suloctidil was again identified as the key drug

associated with diabetes treatment (Figure 5B) (23). This drug was

linked to genes such as NR4A2, FOSB, GADD45B, IFITM1,

PPP1R15A, TNFAIP3, DDIT4, IER2, ZFP36, FOS, MCL1, NFKBIA,

HSPA5, JUN, CD69, DUSP1, KLF2, and FTH1 (Figure 5E), which are

involved in stress responses, immune regulation, and cell survival.

While suloctidil remained the most relevant drug for this subtype,

other medications, such as Fendiline, Prenylamine, and Perhexiline—

though primarily used for cardiovascular issues—may have indirect

effects on diabetes, but are not specifically designed for its treatment.
Subtype C: chlorpropamide for
insulin regulation

In subtype C, chlorpropamide was identified as the key drug

associated with diabetes treatment (Figure 5C). As a sulfonylurea,

chlorpropamide stimulates insulin secretion, which plays a pivotal

role in improving glucose control in patients with T2DM. This drug

was associated with genes such as GADD45B, PPP1R15A, TNFAIP3,

DDIT4, IER2, ZFP36, FOS, HSPA5, JUN, DUSP1, and KLF2

(Figure 5F), which are involved in stress response and metabolic

regulation. These associations suggest that chlorpropamide may be

particularly effective in managing insulin secretion and glucose

metabolism in subtype C.
Discussion

T2DM is a complex metabolic disorder marked by chronic

hyperglycemia resulting from insulin resistance and impaired

insulin secretion (24). This study sought to investigate the

immunological and metabolic alterations in T2DM by analyzing

single-cell RNA sequencing data from PBMCs of patients with

T2DM and HC. Our findings highlighted significant immune cell

alterations, including an increase in monocytes and a decrease in

CD4+ T cells in patients with T2DM. Furthermore, we observed

metabolic heterogeneity within T cell subpopulations and enhanced

cell-cell communication pathways in T2DM.

The observed increase in monocytes in patients with T2DM

reflects heightened chronic inflammation and immune activation

(4). These monocytes contribute to insulin resistance by secreting

pro-inflammatory cytokines such as TNF-a and IL-6 (8). Previous

studies have shown that monocyte-derived macrophages infiltrate

adipose tissue in T2DM, where they play a pivotal role in promoting

inflammation and exacerbating insulin resistance (25, 26). In

contrast, the decrease in CD4+ T cells, which are critical for
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coordinating adaptive immune responses, may impair immune

regulation (27). This reduction in CD4+ T cells potentially

undermines the body’s ability to control inflammation,

exacerbating insulin resistance and beta-cell dysfunction (28).

Further alterations in T cell subtypes underscore the immune

dysregulation associated with T2DM. An increase in cytotoxic CD8

+ T cells and naive CD8+ T cells likely reflects an overactive

immune surveillance mechanism (29). Elevated cytotoxic CD8+ T

cells can induce beta-cell apoptosis, impairing insulin secretion

(30). The rise in naive CD8+ T cells indicates ongoing recruitment

and activation in response to chronic metabolic stress (31). These

changes suggest an altered immune response, compromising the

body’s ability to regulate inflammation and immune tolerance,

thereby contributing to the pathogenesis of T2DM (32, 33). The

reduction in CD4+ T cells, which are critical for orchestrating

adaptive immune responses, may compromise immune regulation.

Previous studies have linked decreased CD4+ T cell counts in

patients with T2DM to impaired immune tolerance and increased

autoimmunity (34, 35). This decline may result in unregulated

inflammatory responses, thereby exacerbating the chronic low-

grade inflammation characteristic of T2DM (36).

Analysis of metabolic heterogeneity within T cell subpopulations

revealed distinct metabolic profiles in patients with T2DM. Subtype A

T cells exhibited high expression of lipid and amino acid metabolism
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pathways, suggesting an adaptive metabolic response to the diabetic

environment (37). This subtype demonstrated broadmetabolic activity,

particularly in lipid, amino acid, and carbohydrate metabolism,

indicating an adaptive response to chronic stress. However, it may

also reflect a hyperactivated or exhausted T cell state. Such metabolic

reprogramming likely enables T cells to survive in conditions of altered

nutrient availability, but it could also promote a pro-inflammatory

phenotype (38). Subtype B, with its emphasis on oxidative stress-

related pathways, indicates a heightened immune response, while

Subtype C displays more targeted metabolic reprogramming,

suggesting a potentially less generalized immune activation (39).

These metabolic alterations may affect T cell activation and function,

potentially exacerbating immune dysfunction in T2DM (40). In

contrast, the HC group exhibited baseline metabolic activity,

emphasizing the metabolic disturbances present in patients with

T2DM. Metabolic reprogramming significantly impacts T cell

function (41), and understanding these shifts is critical for

developing targeted therapies aimed at restoring normal T cell

function and improving metabolic control.

Enhanced cell-cell communication pathways were also observed

in patients with T2DM, indicating intensified immune responses.

CellChat analysis revealed heightened activity of pathways such as

CD30, CD48, TGF-b, and IFN-g in subtype B (42). These pathways

are pivotal in immune regulation, T cell activation, and cytokine
FIGURE 5

Drug Enrichment Analyses in T2DM Subtypes: (A) Dot plot showing the top 10 lowest P-value enriched drugs in Subtype A. (B) Dot plot showing the
top 10 lowest P-value enriched drugs in Subtype B. (C) Dot plot showing the top 10 lowest P-value enriched drugs in Subtype C. (D) Cnetplot
showing the correlated genes with enriched drugs in Subtype A. (E) Cnetplot showing the correlated genes with enriched drugs in Subtype B.
(F) Cnetplot showing the correlated genes with enriched drugs in Subtype C.
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signaling. CD30 activation, for instance, can drive pro-

inflammatory responses and immune dysregulation, while TGF-b
plays a key role in balancing immune tolerance and inflammation.

In the context of T2DM, the activation of these pathways may

impair immune function, exacerbate insulin resistance, and

contribute to beta-cell dysfunction (43). Furthermore, alterations

in TNF and CCL pathway engagement, critical for inflammation

and immune cell recruitment, suggest significant changes in

chemokine signaling, which could further influence immune cell

interactions and disease progression (44).

The dominance of the MHC-I pathway emphasizes the

importance of antigen presentation in T2DM (45). Increased antigen

presentation may enhance autoimmune responses, potentially

contributing to beta-cell destruction (46). The selective activation of

the visfatin pathway in specific T2DM subtypes may reflect unique

metabolic and inflammatory states, providing potential targets for

subtype-specific interventions (47). Focusing on the MHC-I and

visfatin pathways could offer targeted therapeutic opportunities for

more effective management of T2DM. Collectively, these findings

underscore the complexity of immune cell interactions in T2DM and

highlight potential pathways for therapeutic targeting.

This study also highlighted the critical role of TFs in regulating

immune cell function and metabolic processes in T2DM. We

identified several TFs that are differentially expressed across

T2DM subtypes, including those involved in immune response

regulation and insulin resistance. Notably, TFs such as NF-kB and

STAT3, key players in inflammatory pathways, were upregulated in

patients with T2DM, highlighting the persistent immune activation

and inflammatory environment characteristic of the disease (48). In

contrast, TFs associated with insulin signaling, such as PAX6 and

FOXO1, were downregulated, potentially contributing to impaired

insulin secretion and resistance (49, 50). The dysregulation of TF

activity in T2DM thus opens novel therapeutic avenues, as targeting

specific TFs could help restore immune homeostasis and improve

metabolic control, offering a more tailored approach to treatment.

The drug enrichment analysis further reinforces the potential for

personalized T2DM therapy based on TF activity and metabolic

alterations. For example, suloctidil, identified as associated with

specific immune-related TFs and inflammatory pathways, could

serve as a promising candidate for managing inflammation and

immune dysfunction in T2DM (8). Similarly, targeting pathways

regulated by TFs like NF-kB and STAT3may help reverse the chronic

inflammation that drives T2DM pathogenesis (51, 52). Drugs such as

chlorpropamide, which influence insulin secretion, may be especially

effective for subtypes with dysregulated insulin signaling pathways

(53). These findings emphasize the importance of integrating TF

activity and drug enrichment data into personalized treatment

strategies, potentially improving therapeutic outcomes by

addressing the underlying molecular mechanisms specific to each

patient’s disease profile.

Clinically, the development of advanced machine learning

models enabled accurate classification of T2DM subtypes based on

T cell metabolic profiles. These models achieved high AUC values,

demonstrating their potential application in clinical settings for

patient stratification and personalized treatment planning. By

identifying distinct metabolic and immunological signatures linked
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to different T2DM subtypes, clinicians can better tailor interventions

to address the underlying dysfunctions of each patient.
Limitation

Despite the strengths of this study, several limitations remain.

These include potential biases arising from the use of public datasets,

a limited sample size that may impact generalizability, and the cross-

sectional design, which limits causal inference regarding immune

changes and T2DM progression. Additionally, findings may not be

universally applicable due to demographic variations in T2DM

influences. Inherent limitations of single-cell sequencing, such as

dropout events and batch effects, may also impact data interpretation.

Future research should validate these results using larger, more

diverse cohorts, incorporate longitudinal studies to explore disease

progression, and evaluate targeted therapies through clinical trials,

with predictive models supporting personalized treatment strategies.
Conclusion

In conclusion, this study highlights significant immune and

metabolic dysregulation in T2DM, marked by elevated monocytes,

reduced CD4+ T cells, and distinct metabolic profiles within T cell

subpopulations. Enhanced cell-cell communication pathways,

particularly those involving the MHC-I pathway, further highlight

the complexity of the immune landscape in T2DM. The analysis of

TF activity, in conjunction with drug enrichment findings, identifies

promising therapeutic targets for personalized treatment.

Integrating these immunological and metabolic insights—along

with key TFs and drug candidates—into clinical practice could

optimize T2DM management and improve patient outcomes,

reinforcing the critical role of personalized medicine in

addressing the multifaceted nature of metabolic disorders.
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