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Background

The ability of effector immune cells to target and eliminate tumor cells by focusing on

tumor-associated antigens is crucial for the success of immunotherapy. Chimeric Antigen

Receptor (CAR)-modified immune cells have revolutionized cancer immunotherapy,

primarily with CAR-T cells showing remarkable success in hematological cancers.

Numerous cell-based therapies, such as CAR-T cell, TIL, CAR-NK cell, and T-cell

receptor (TCR)-based therapies, are currently undergoing clinical and pre-clinical

evaluation across various cancer types. However, these cell-based therapies possess

limitations, including their inability to penetrate tumor stoma, change TME, and

exaggerated inflammatory responses. To overcome this, developing advanced and

flexible strategies to target tumor cells precisely while preserving immune homeostasis in

cancer patients is imperative. One promising approach involves using engineered

tumorassociated macrophages (TAMs), which are plastic in nature and constitute

approximately 50% of the tumor microenvironment (TME) and are indispensable for

both tumor progression and regression. The engineered CAR-macrophages aim to

reprogram macrophages toward the M1 TAM phenotype and enable them to overcome

the immune-suppressive TME and facilitate immune-mediated destruction of tumors. The

tumor microenvironment (TME) typically comprises various immune cells, including

tumor-associated macrophages (TAMs), which is one of the major components of TME

and play crucial role in cancer progression or regression (1). Tumor-associated

macrophages are extremely plastic in nature and due to this unique property these cells

both promote as well as control the tumor development which depend on the

predominating phenotype established. TAMs within the TME can be identified as either

M1 TAMs (regulatory) and / or M2 TAMs (trophic). Interestingly in variety of tumor

patients, these phenotypes remain in dynamic equilibrium (2). During neoplasia, tumor

infiltrating TAM acquire M1 phenotype where these cells, by virtue of their Th1 effector

responses, are able to control the tumor development. However, during later phase of

tumor development, tumor infiltrating M1 TAM, under influence of refractory tumor

microenvironment, get polarized toward M2 TAM (3–5). These are potentially trophic in

nature and secrete various pro-tumoral and angiogenic factors, such as IL-10, TGF-b, and
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VEGF, contributing to an immunosuppressive environment that

favors tumor growth (6). M2 TAM confer poor prognosis in large

variety of tumor patients (7) therefore retuning of M2 TAM toward

M1 TAW is pre-requisite of effective immune therapy of variety of

tumors. Various efforts are under progress for engineering

macrophages to express receptors that recognize vide range of

tumor-associated antigens (TAA) are in the pipeline, allowing

them to selectively target and destroy cancer cells. These

engineered macrophages, known as Chimeric Antigen Receptor

Macrophages (CAR-Macrophages) are capable enough of priming

of tumor reactive T-cells while keeping their natural tumor-

targeting ability (8). Thus, it is clear that CAR-Macrophage

(CAR-M) therapy would be potential asset of immunotherapy for

many solid tumors.
Underlying mechanism

CAR-Macrophage (CAR-M) recognizes specific tumor antigens

through its chimeric antigen receptor (CAR), leading to enhanced

phagocytosis of the tumor cells and concomitant presentation of

tumor antigen to T cells for their subsequent activation. CAR-Ms

modulate tumor microenvironment by secreting various cytokines,

metalloproteinases (MMPs), Reactive oxygen species (ROS) and serine

proteases which altogether facilitate immune cell infiltration and

enhanced anti-tumor responses of immune cells. Each of these
Frontiers in Immunology 02
mechanisms (Figure 1) contributes to the overall effectiveness of

CAR-Macrophages in targeting and eliminating cancer cells, making

them a promising therapeutic approach in cancer immunotherapy.

CAR-engineered macrophages were shown to actively migrate to

tumor sites, could locally deliver cytokines and/or cytotoxic

substances to antigen-specific environments when used as a drug

delivery system, significantly alter the immune-suppressive TME and

eliminate tumor cells through phagocytosis (9). These strategies

leverage the tumor-homing tendencies of macrophages to locally

deliver therapeutic cargo and induce cytotoxic activity within the

tumor niche.

With the help of regenerative technologies, induced pluripotent

stem cells (iPSCs) can be engineered to make CD19/mesothelin+

CAR-Ms which are M1programmed and bear strong anti-tumoral

potential (10). Engineered macrophages can be derived from

diverse sources, including primary human monocytes/macrophages,

induced pluripotent stem cells (iPSCs), and hematopoietic stem and

progenitor cells (HSPCs). Abdin et al. (2023) used iPSCs, HSPCs to

generate anti-CD19 CAR-Ms. They generated aCD19 CAR

constructs using lentiviral vectors verified via sequencing. CD34+

cells were isolated from cord blood, transduced, and differentiated

into macrophages. iPSCs were cultured, mesoderm-primed, and

differentiated into macrophages using defined cytokines. Cancer

cell lines and patient-derived samples were transduced and co-

cultured with CAR macrophages to assess phagocytosis. Then they

used flow cytometry, confocal microscopy, and western blotting to
FIGURE 1

Various mechanisms by which CAR-Macrophages (CAR-Ms) eliminate cancer cells: (A) Enhanced Phagocytosis via CAR Recognition (B) Pro-inflammatory
M1 Polarization (C) Modulation of Tumor Microenvironment (D) Recruitment and Activation of Other Immune Cells (E) Direct Cytotoxicity.
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verify the action of CAR-Ms. CAR-Ms displayed antigen-specific

phagocytosis of CD19+ cancer cells, enhanced pro-inflammatory

responses, and adaptive immune cell recruitment, with scRNA

sequencing revealed distinct activation of pro-inflammatory

pathways and cytokine upregulation (11). In another study by

Zhang et al. (2023), they utilized CRISPR-Cas9 gene editing to

integrate an anti-GD2 CAR into the AAVS1 locus of human

pluripotent stem cells (hPSCs). Then they developed a serum- and

feeder-free differentiation protocol to generate CAR macrophages

(CAR-Ms) through arterial endothelial-to-hematopoietic transition

(EHT). The CAR-Ms generated this way demonstrated potent

cytotoxic activity against GD2-expressing neuroblastoma and

melanoma in vitro and neuroblastoma in vivo. It can be a useful

protocol for generating off-the-shelf CAR-Ms, advancing antitumor

immunotherapy applications (12). To improve the efficiency and

functionality of hPSC derived CAR-Ms shen et al. (2024) developed

an optimized monolayer-based system for achieving stable CAR

expression and strong tumoricidal activity in vitro. To address

diminished in vivo activity, they employed interferon-g and

monophosphoryl lipid-A to induce innate immune activation,

repolarizing hPSC-CAR-Ms into tumoricidal macrophages.

Additionally, by activating T cells, they enhanced collaborative

innate-adaptive responses, amplifying anti-tumor effects (13). Using

high-throughput screening, Mukalel et al. (2024) identified oxidized

lipid nanoparticles (oLNPs) with innate monocyte tropism and

effective mRNA delivery. The optimized C14-O2 oLNP successfully

engineered CD19-CARmonocytes in vivo, achieving significant B cell

depletion, highlighting its therapeutic potential (14). Similarly,

numerous novel engineering approaches are being developed, while

the efficacy of existing methods continues to undergo constant

refinement and enhancement. These ongoing advancements aim to

improve the precision, scalability, and effectiveness of current

technologies, ensuring they meet the evolving needs of various

applications, particularly in the fields of immunotherapy and

cellular. Reprogramming of M2 macrophages using a macrophage-

directed strategy of delivering CAR and interferon-g gene (15) is a

promising and innovative strategy for improving immune-mediated

rejection of cancer (16). In the past, we have amply demonstrated that

M1 returned/conditioned macrophages from syngeneic donor mice

dictated T cells and promoted immune-mediated rejection of high-

grade angiogenic and highly invasive neuroendocrine tumors of the

pancreas. Most intriguingly, adoptive transfer of such M1

reprogrammed macrophages (which can be regarded as surrogate

CAR-M) potentially normalized tumor vasculature and aided T cell

responses against PanNETs (17–19). On the basis of this we believe

that HER2/CD47-specific CAR M, while sensing and clearing dead

tumor or tumor containing neighboring (immune) cells, also skewed

Th1 effector response including priming cytotoxic T lymphocytes

(CD8+ T cells), secretion of major Th1 effectors viz TNF-a, and IFN-
g & IL-2, and concomitant neutralizing exhaustion markers like PD-

1, TIGIT, and LAG-3 on tumor cells (20). This could be explained on

the basis of tumor-homing tendencies of macrophages which entitle
Frontiers in Immunology 03
them as therapeutic cargo to the tumor niche (21). This mechanism

might be responsible for the clinical efficacy of HER2-directed CAR-

macrophage therapy (CT-0508) under so far known ongoing phase-1

clinical trial (NCT04660929). Most interestingly this trial was safe

and tolerable in patients with a variety of solid tumors which

indicated efficacy of CAR-M based therapy and raised hope for

large variety of tumors in future.
Challenges and prospective

Although CAR-M-based approaches have several advantages

however few bottlenecks are still associated with them. One of the

primary issues is that macrophages do not proliferate post-

administration, and the amount that patients can tolerate is

limited, which can reduce the overall efficacy of interventions.

Moreover, exogenous macrophages tend to accumulate in the

liver after passing through the lungs, which neutralize their anti-

tumor potentials. The high-grade complexity of the human tumor

microenvironment over the murine model is another factor that

possesses a major challenge for CAR-M therapy to be effective. Such

heterogeneous TME restrict the expression of the wide range of

tumor antigens, which impact their recognition/binding of TSA/

TAA by CAR –M in TME. Thus, whether tumor microenvironment

could support or destroy the local CAR-M in the tumor to a tumor-

supportive phenotype should be carefully addressed, especially at

the clinical research stage. This problem has been observed with

CAR-T therapy also and likely to pose a significant obstacle to CAR

therapy in general.

Both stability and durability of genetic modifications in

macrophages is another hurdle that is associated with off-target

effects which can be stabilized by using a CRISPR-based gene

editing approach. This can prevent excessive inflammation, which

is paramount for maximizing the anti-tumor effects of CAR-M

therapies. This can be achieved by floxing iNOS and/or Arginase

gene under CD47 promoter to affording palliative potential in

iNOsFloxed/ArginaseFloxedCD47+CAR-M to prevent adverse

impact. Such strategies would, not only enhance the stability of

palliative potential of CAR macrophages but also ensure them to be

successful in various clinical trials which would employ these

palliative CAR-M. This would enhance the fidelity of the CAR–M

program and pave new hope for a wide range of cancer patients.
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