
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chris Wincup,
King’s College Hospital NHS Foundation
Trust, United Kingdom

REVIEWED BY

Marlena Godlewska,
Centrum Medyczne Kształcenia
Podyplomowego, Poland
Paul David Olivo,
Washington University in St. Louis,
United States
Manuel Rojas,
University of California, Davis, United States

*CORRESPONDENCE

Hui Chen

chenhui@lzu.edu.cn

RECEIVED 20 November 2024
ACCEPTED 19 December 2024

PUBLISHED 13 January 2025

CITATION

Chen X and Chen H (2025) Proteomics and
transcriptomics combined reveal specific
immunological markers in autoimmune
thyroid disease.
Front. Immunol. 15:1531402.
doi: 10.3389/fimmu.2024.1531402

COPYRIGHT

© 2025 Chen and Chen. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 13 January 2025

DOI 10.3389/fimmu.2024.1531402
Proteomics and transcriptomics
combined reveal specific
immunological markers in
autoimmune thyroid disease
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Endocrinology and Metabolism, The Second Hospital & Clinical Medical School, Lanzhou University,
Lanzhou, China
Objective: The pathogenesis of AITD remains unclear to date. This study employs

a combination of proteomics and transcriptomics analysis to identify and validate

specific immune response markers in patients with hyperthyroidism and

hypothyroidism, thereby providing a scientific basis for the clinical diagnosis

and treatment of AITD.

Methods: By collecting serum andwhole blood tissue samples from patients with

hyperthyroidism, hypothyroidism, and healthy controls, this study utilizes a

combination of transcriptomics and proteomics to analyze changes in

immune-related signaling molecules in patients. Specific biomarkers were

identified, and the ELISA method was employed to determine the expression

levels of these clinical markers and their correlation with clinical features of the

patients, ultimately establishing a predictive model.

Results: Transcriptomic and proteomic analyses were conducted to identify

differentially expressed genes and proteins in patients with hyperthyroidism and

hypothyroidism compared to healthy controls. Enrichment analysis revealed that

these differentially expressed genes and proteins are primarily associated with

immune function, antigen-antibody binding, and alterations in immune cells.

Through the combined analysis of transcriptomics and proteomics, key genes

IGHG3, ISG15, and ZNF683 were identified. ELISA results from clinical patient

serum samples indicated that the levels of IGHG3 were significantly higher in both

the hyperthyroid and hypothyroid groups compared to the control group (P<0.05).

Additionally, the serum levels of ISG15 in the hyperthyroid group were greater than

those in both the control and hypothyroid groups (P<0.05), while the serum levels of

ZNF683 in the hypothyroid group exceeded those in the control and hyperthyroid

groups (P<0.05). Furthermore, all three biomarkers correlated with the thyroid

function of the patients. Prediction models for hyperthyroid and hypothyroid

patients were constructed using IGHG3, ISG15, and ZNF683, demonstrating good

performance metrics and decision effect.

Conclusion: In patients with hyperthyroidism and hypothyroidism, significant

changes primarily occur in immune function and immune cells when compared

to healthy individuals. Key signaling molecules were identified: ISG15 for
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hyperthyroidism, ZNF683 for hypothyroidism, and IGHG3 common to both

conditions. These findings provide new biomarkers for the diagnosis and

monitoring of clinical patients, thereby offering a scientific basis for research

on AITD and personalized treatment approaches.
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1 Introduction

Autoimmune thyroid diseases (AITD) account for the majority

of thyroid diseases. Its pathogenesis is the result of interaction of

many factors, including genetic factors, environmental factors and

so on. It is characterized by the loss of self-tolerance to thyroid

antigen. AITD primarily include Graves’ disease (GD) and

Hashimoto’s thyroiditis (HT). There are two types of disease

exhibit two extreme clinical manifestations: hyperthyroidism and

hypothyroidism (1). In Graves’ disease, the loss of immune

tolerance leads to immune-mediated infiltration of T lymphocytes

and activation of TSH receptor (TSHR)-reactive B cells. This

process eventually produces autoantibodies to TSHR, which

stimulate thyroid cel l growth and secret ion, causing

hyperthyroidism, goiter, as well as associated conditions such as

ophthalmopathy and dermopathy (2). Hashimoto’s thyroiditis

shares similar humoral mechanisms with Graves’ disease. In HT,

the patient’s body automatically reacts to produce antibodies to

thyroid peroxidase (TPO) and thyroglobulin (Tg) (3), along with

predominantly blocking TSHR antibodies. This combination

triggers an autoimmune response characterized by a high

inflammatory burden, leading to apoptosis and necrosis of

thyroid cells, ultimately resulting in hypothyroidism. Currently, it

is believed that the pathogenesis of AITD is associated with factors

such as immune regulation, genetics, environmental variables,

gender, and epigenetics. However, the molecular mechanisms

through which alterations in immune function led to changes in

thyroid tissue remain largely unexplained. The states of

hyperthyroidism and hypothyroidism in AITD patients can

cyclically convert or appear interchangeably (4, 5). Some

individuals with typical Graves’ disease, particularly those with

autoimmune ophthalmopathy, may experience episodes of

hypothyroidism that necessitate levothyroxine replacement

therapy. Similarly, Hashimoto’s thyroiditis patients may

persistently exhibit hyperthyroidism along with associated

conditions like ophthalmopathy and dermopathy (6). This implies

that different types of TSHR antibodies in patients with AITD may

undergo transformation, akin to the two sides of a coin, where

hyperthyroidism can convert to hypothyroidism and vice versa.

Consequently, the timely differentiation between hyperthyroid and

hypothyroid patients presents challenges in clinical practice.
02
Currently, the potential molecular mechanisms underlying the

heterogeneous clinical manifestations in these patients

remain unclear.

In clinical practice, monitoring changes in thyroid function

mainly relies on serological tests, through testing thyroid function

index and antibodies in the diagnosis of disease, In particular, the

changes of the disease are judged by the detection of TSH receptor

(TSHR) autoantibodies (TRAb). At present, the detection methods of

TRAb mainly include binding assay and bioassay, and binding assay

can only be used to detect total TRAb. The IMMULITE® 2000/

2000XPi TSI method can diagnose and monitor the progression of

GD through the detection of thyroid-stimulating immunoglobulins

(TSI). However, it is still unable to differentiate between the various

types of TRAb. Bioassays, which can determine the different types of

TRAb, have not been widely used in clinical practice due to their long

and cumbersome operation time. This limitation poses challenges for

timely prediction and differential diagnosis of disease progression.

Currently, antithyroid medications remain the first-line treatment,

while traditional therapeutic approaches such as surgery and

radioactive iodine therapy also come with certain side effects,

complicating the clinical management of AITD (7). Accurate

diagnosis and individualized treatment of patients with

hyperthyroidism and hypothyroidism present significant challenges.

Therefore, elucidating the molecular mechanisms underlying AITD

and identifying key factors related to its onset, progression, and

changes in clinical status is critically important. This study aims to

identify specific immune response biomarkers that differentiate

between healthy person and hyperthyroidism or hypothyroidism

through whole blood transcriptomic analysis combined with serum

Data-independent acquisition (DIA) proteomic analysis. We will

utilize HPLC-QTOF/MS technology to characterize the original

components of the blood. Additionally, we will employ serum

tandem mass tag (TMT) quantitative proteomic techniques to

obtain differentially expressed proteins (DEPs). Using the ELISA

method, we will identify the specific expression of immune response-

related biomarkers in clinical patients, analyze the correlation

between basic characteristics of different clinical patients and

immune markers, and explore potential molecular mechanisms

behind the onset and progression of AITD. This research in order

to provide a scientific basis for the diagnosis and individualized

treatment of AITD.
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2 Materials and methods

2.1 Sample collection

Serum and whole blood tissue samples were collected from

patients diagnosed with AITD-associated hyperthyroidism and

hypothyroidism (new diagnosis and untreated), non-AITD

hyperthyroidism and hypothyroidism patients (new diagnosis and

untreated), as well as healthy controls, between January 2023 and

January 2024 at the Second Hospital of Lanzhou University.

Diagnosis was made according to the guidelines (8), and

individuals with comorbidities, extra-thyroidal manifestations, or

those receiving treatment with medications such as steroids that

may affect immune function or thyroid function were excluded

from the study. All participants were required to fast for 8 hours

before blood collection. The blood samples used for sequencing

were placed in liquid nitrogen for 24 hours and subsequently stored

at -80°C to ensure sample stability. In addition to the biological

samples, relevant clinical data from the patients were gathered,

including gender, age and body mass index (BMI), and laboratory

test results for total triiodothyronine (TT3), total thyroxine (TT4),

free triiodothyronine (fT3), free thyroxine (fT4), thyroid-

stimulating hormone (TSH), thyroglobulin (Tg), anti-

thyroglobulin antibody (TgAb), thyroid peroxidase antibody

(TPOAb), TRAb. The serum levels of TT3, TT4, fT3, fT4, TSH,

TRAb, Tg, TgAb and TPOAb were measured using reagent kits

from Siemens USA, employing a chemiluminescent analysis

method. The reference ranges for these parameters are as follows:

TT3 (1.01-2.95 nmol/L), TT4 (55.4-161.25 nmol/L), fT3 (2.77-6.31

pmol/L), fT4 (10.44-24.38 pmol/L), TSH (0.38-4.34 μIU/ml), TG

(negative value reference range: 0.83-68 ng/ml), TgAb (negative

value reference range: 0-4.5 IU/ml), and TPOAb (negative value

reference range: 0-60 U/ml). Additionally, TRAb was measured

using a reagent kit from Xinchanye Biotechnology Co., Ltd.,

utilizing the same chemiluminescent technique, with a negative

value reference range of 0-1.5 IU/L. The study was conducted in

accordance with the ethical principles of the Declaration of

Helsinki. The study was approved by the hospital Medical Ethics

Committee (approval number:2023A-802). The basic information

of the participants is provided in the Table 1.
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2.2 Transcriptome sequencing

RNA was extracted from whole blood using the TRIzol method,

and the purity, concentration, absorbance peaks, and integrity of

the extracted RNA were evaluated. Quality control of the raw data

was performed using fastp (v0.20.0). Once the samples passed

quality control, library construction was initiated. The StringTie

(stringtie-2.1.3b.Linux_x86_64) software was used to merge the

reconstruction results from all samples, yielding an optimized

transcript structure annotation file. Subsequently, the library was

validated. After successful validation, sequencing was performed

using the Illumina NovaSeq 6000. The results were processed using

Ballgown (R script) to obtain the gene expression readcount matrix.

Differential analysis was conducted using the readcount matrix to

identify differentially expressed genes between sample groups.

Differential genes were annotated using BLASTALL (v2.2.26, with

an e-value set to 1e-5) for functional analysis, including GO and

KEGG pathway annotations.
2.3 Serum proteomics analysis

Proteins were extracted from biological samples for analysis.

Data-independent acquisition (DIA) mass spectrometry was

employed for data collection, obtaining full scan information for

all precursor ions and their corresponding fragment ions. The

output files generated by the Thermo Scientific Q Exactive HF

mass spectrometer were then used to identify differentially

expressed proteins. The raw data files obtained from the Zeno-

TOF 7600 (SCIEX) were imported into DIA-NN software for

database search. The proteins were annotated using BLASTALL

(v2.2.26, with an e-value set to 1e-5) for functional analysis,

including Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway annotations. Enrichment analysis

of the identified differentially expressed proteins was performed,

and interaction networks were constructed to elucidate their

biological significance and potential roles under the experimental

conditions. The clustering heatmap of all proteins was generated

using the pheatmap package in R (V3.6.2). Principal component

analysis (PCA) was performed using the prin_comp_data function
TABLE 1 The basic information of the participants.

Healthy Control
(n=60)

AITD
hyperthyroidism
(n=127)

AITD
hypothyroidism
(n=66)

non-AITD
hyperthyroidism (n=31)

non-AITD
hypothyroidism (n=26)

Gender

female 32 69 35 18 15

male 28 58 31 13 11

Age (year)

35.83 ± 9.56 34.40 ± 10.66 37.34 ± 11.78 36.75 ± 12.91 35.11 ± 12.76

BMI (kg/m²)

22.15 ± 3.24 21.52 ± 4.05 22.88 ± 3.95 21.93 ± 3.03 22.61 ± 2.63
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in R (V3.6.2), and a PCA plot was created. Additionally, subcellular

localization of the differentially expressed proteins was determined

using the web tool available at http://cello.life.nctu.edu.tw/.
2.4 Joint analysis of transcriptome
and proteome

A joint analysis was conducted based on the results from both

transcriptomic and proteomic studies. Based on the results of

transcriptomic and proteomic differential analysis, the top 50

differential genes (the 50 genes with the smallest FDR values) and

the top 50 differential proteins (the 50 proteins with the largest FC

values) were selected. Using the selected differential genes and

proteins, the Spearman correlation between the two was

calculated using the psych package in R (v3.6.2). The correlation

results were further filtered with a correlation coefficient greater

than 0.9 and a p-value smaller than 0.001. Based on the filtered

correlation results, a differential gene-differential protein network

regulatory map was constructed using Cytoscape software (v3.7.2).
2.5 Enzyme-linked immunosorbent assay

ISG15, ZNF683 and IGHG3 ELISA kit (Shfksc, China) were used

to detect ISG15, ZNF683 and IGHG3 in human serum, respectively.

According to the kit instructions, first of all, standard samples and

test samples were incubated to allow binding with antibodies coated

on an enzyme-linked plate. After this initial incubation, the plate was

washed, and a primary antibody was added to enable specific binding

with the standards and samples captured by the coated antibodies.

Following another wash step, horseradish peroxidase (HRP)-labeled

streptavidin was introduced to bind with biotin. Afterward, using

TMB to promote colorimetric reaction. Finally, a stopping solution is

added to end the reaction. The OD450 values of each reaction hole

were determined. By plotting the standard sample data on a standard

curve, the concentration of the target analyte in the test samples could

be accurately calculated.
2.6 Statistical analysis

The statistical software was GraphPad Prism 8.0 and SPSS 22.0

for normally distributed continuous data, results were expressed as

Mean ± SD, and comparisons between groups were performed

using t-tests. Categorical data were represented by absolute

numbers or percentages, with group comparisons assessed using

c² test. Additionally, logistic regression was employed to construct

clinical prediction models, and ROC curves were generated to

evaluate the performance of these models. P<0.05 was considered

as significant difference. This approach ensured a robust assessment

of the data collected during the study, facilitating meaningful

conclusions based on statistical evidence.
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3 Results

3.1 Differential gene screening

Differentially expressed genes (DEGs) selection was execution

using the DESeq2 software with the following criteria: an absolute

Log2<0.58 and P<0.05. This analysis identified differentially

expressed genes (DEGs) between patients hyperthyroid and

healthy person, revealing the sum of all 248 upregulated genes

and 95 downregulated genes (Figure 1A). In addition, differential

expression analysis was conducted between hypothyroid patients

and healthy controls, resulting in the identification of 188

upregulated genes, 199 downregulated genes (Figure 1B). To

further illustrate the relationships among these DEGs, Venn

diagrams were created for each comparison group, showcasing

the unique and shared DEGs among the groups (Figure 1C).
3.2 Differential gene analysis

Following the identification of differential genes, functional

annotation was performed on these genes. Figure 1D presents a

statistical overview of the number of DEGs across three groups:

hyperthyroidism group, hypothyroidism group and healthy controls.

The DEGs between hyperthyroidism group and healthy control

group was analyzed by GO. The results of enrichment analysis show

that the distribution of DEGs across three primary branches of the

GO annotation system: Biological Process (BP), Cellular Component

(CC), and Molecular Function (MF). The outcome revealed that the

DEGs were primarily enriched in BP, including innate immune

response, adjustment of immune response, response to virus, 2’-5’

oligoadenylate synthetase activity and immune response-activating

signaling pathway. In terms of CC, the DEGs showed significant

enrichment in cell surface, immunoglobulin complex, IgG

immunoglobulin complex, NADPH oxidase complex and external

side of plasma membrane. For MF, the key enrichments included

antigen binding, immunoglobulin binding, IgG receptor activity

(Figures 1E–H). In addition to the initial analysis, further

interaction analyses were conducted on the DEGs within the

categories of BP, CC, and MF. The results of these interaction

analyses are presented in Figures 1I–K. For the comparison

between hypothyroidism group and healthy controls, GO

annotation clustering analysis was performed. The enrichment

analysis indicates that the hypothyroid group DEGs were mainly

enriched in several BP, including adjustment of immune response, B

cell receptor signaling pathway, process utilizing autophagic

mechanism and immune response-activating signaling pathway. In

terms of CC, significant enrichments were observed in

immunoglobulin complex and IgG immunoglobulin complex. For

MF, the DEGs showed notable enrichment in proton transmembrane

transporter activity and lipid binding in Figures 2A–D. The

interaction analysis of the DEGs from the hypothyroidism group

compared to healthy controls is depicted in Figures 2E–G.
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FIGURE 1 (Continued)
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FIGURE 1 (Continued)

(A) Volcano plot of differentially expressed genes comparing the hyperthyroid group to the normal group; (B) Volcano plot of differentially
expressed genes comparing the hypothyroid group to the normal group. Each point in the volcano plot represents a gene, with the x-axis indicating
the logarithmic value of the fold change in expression between the two samples, and the y-axis representing the negative logarithmic value of the
p-value; (C) Venn diagram of differentially expressed genes, where each circle represents a set of differential analysis combinations, and the
numbers within the circles denote the count of differentially expressed genes for each combination; (D) Bar chart of annotation statistics for
differentially expressed genes comparing the hyperthyroid group to the normal group. The x-axis represents the grouping information, while the y-
axis indicates the count. Different colors denote the names of the annotation databases; (E) GO annotation classification statistics chart for
differentially expressed genes comparing the hyperthyroid group to the normal group. The x-axis depicts the -log10(p-value), and the y-axis
represents the GO classifications, with the same color indicating the same category; (F) GO annotation BP hierarchical diagram for differentially
expressed genes comparing the hyperthyroid group to the normal group; (G) GO annotation CC hierarchical diagram for differentially expressed
genes comparing the hyperthyroid group to the normal group; (H) GO annotation MF hierarchical diagram for differentially expressed genes
comparing the hyperthyroid group to the normal group. In the GO annotation hierarchical diagrams, the branches of the tree represent specific
terms, with branches of the same color clustered together into the same category. the color of the nodes indicates p.adjust values, representing the
significance level of enrichment. and the size of the nodes reflects the count of differentially expressed genes within that term. The top 20
categories are displayed based on the minimum p.adjust values; (I) Interaction diagram of GO annotation BP for differentially expressed genes
comparing the hyperthyroid group to the normal group. (J) Interaction diagram of GO annotation CC for differentially expressed genes comparing
the hyperthyroid group to the normal group. (K) Interaction diagram of GO annotation MF for differentially expressed genes comparing the
hyperthyroid group to the normal group. In the interaction diagrams of GO annotations, the colors represent p.adjust values, with points denoting
different terms. The term “is a” indicates subclasses of the specified term. “negatively regulates” denotes that the term before the arrow inhibits the
function of the term after the arrow. “part of” signifies that Term A before the arrow is a part of the term following the arrow, indicating a
containment relationship. and “regulates” implies that the current term modulates the function of another term, which may either be promoting or
inhibiting. The default parameters are set such that p-value is less than 0.01 and p.adjust is less than 0.05.
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To further elucidate the functions of the DEGs, KEGG pathway

annotation was performed. The DEGs were categorized according

to the types of pathways in the KEGG database. The enrichment

analysis for the KEGG pathways comparing the hyperthyroidism

group with healthy controls it was found that DEGs was mainly

concentrated in several key points, including signal transduction,

signaling molecules and interaction, immune disease, immune

system, infectious disease: viral and it was found that DEGs was

mainly concentrated in several key points (Figure 2H). The KEGG

pathway enrichment analysis comparing the hypothyroidism group

with healthy controls found that the DEGs were mainly enriched in

several key pathways, including signal transduction, infectious

disease: bacterial, immune disease, energy metabolism, and

immune system (Figure 2I). We further employed KEGG

enrichment scatter plots to analyze the occurrence of DEGs

within specific pathways and to examine the interactions among

these pathways. The analysis comparing the hyperthyroidism group

with healthy controls revealed that the DEGs were mainly enriched

in the following pathways: influenza A, circadian rhythm and B cell

receptor signaling pathway (Figures 2J, K). In contrast, the

comparison between the hypothyroidism group and healthy

controls showed that DEGs were mainly enriched in pathways

related to Th17 Cell differentiation, thermogenesis (associated with

ATP production), oxidative phosphorylation, reactive oxygen

species and Th1 and Th2 Cell Differentiation (Figures 2L, M).
3.3 Reactome enrichment analysis of DEGs

After conducting KEGG enrichment analysis on the selected

DEGs, we performed a Reactome enrichment analysis to clarify cell

BP, metabolic pathways, signaling pathways, and gene regulation

associated with these DEGs. The outcome of the Reactome

enrichment scatter plot for the hyperthyroidism group compared
Frontiers in Immunology 06
to the healthy controls enunciative that the DEGs were

predominantly enriched in several key pathways, including

cytokine signaling in immune system, OAS antiviral response,

ISG15 antiviral mechanism and interferon alpha/beta signaling

(Figure 3A). The Reactome enrichment analysis for the

hypothyroidism group versus the healthy controls showed that

the DEGs were primarily concentrated in the following pathways:

interferon signaling, cytokine signaling in immune system, and

regulation of Toll-like receptors (TLR) by endogenous

ligand (Figure 3B).
3.4 Gene database annotation analysis

Gene Set Enrichment Analysis (GSEA) is a powerful method for

identifying gene sets associated with specific biological processes,

pathways, or phenotypes. To further investigate the significant

impacts of biological functions on gene expression revealed in the

GO analysis, we conducted GO-GSEA, allowing us to uncover

changes and regulatory mechanisms in cellular functions. In the

comparison between the hyperthyroidism group and the healthy

controls, the following biological processes were positively correlated

with differential gene expression: antigen binding, immunoglobulin

receptor binding, activation of innate immune responses, MHC class

II protein complexes, antigen binding, antigen presentation, 2’-5’

oligoadenylate synthetase activity, Rho GDP-dissociation inhibitor

activity and MHC class II antigen processing (Figure 3C).

In the GO-GSEA analysis comparing the hypothyroidism

group with the healthy controls, the results indicated that antigen

binding, co-receptor activity, immunoglobulin receptor binding were

negatively correlated with differential gene expression. Conversely,

GTPase activity, oxygen carrier activity, MHC class II protein

complexes, and TNFSF 11 were positively correlated with

differential gene expression (Figure 3D). The KEGG-GSEA analysis
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https://doi.org/10.3389/fimmu.2024.1531402
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen and Chen 10.3389/fimmu.2024.1531402
revealed that antigen processing and presentation, autoimmune

thyroid disease, cell adhesion molecules, systemic lupus

erythematosus were significantly affected in the hyperthyroidism

group (Figure 3E). In contrast, complement and coagulation
Frontiers in Immunology 07
cascades, cell adhesion molecules (CAMs), inflammatory bowel

disease (IBD), nucleotide excision repair and cGMP-PKG signaling

pathway, were significantly impacted in the hypothyroidism

group (Figure 3F).
FIGURE 2 (Continued)
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FIGURE 2 (Continued)

(A) GO annotation classification statistics chart for differentially expressed genes comparing the hypothyroid group to the normal group. The x-axis
represents the -log10(p-value), while the y-axis indicates the GO classifications, with identical colors representing the same category; (B) GO
annotation BP hierarchical diagram for differentially expressed genes comparing the hypothyroid group to the normal group; (C) GO annotation CC
hierarchical diagram for differentially expressed genes comparing the hypothyroid group to the normal group; (D) GO annotation MF hierarchical
diagram for differentially expressed genes comparing the hypothyroid group to the normal group. In the hierarchical diagrams of GO annotations,
the branches of the tree represent specific terms, with branches of the same color clustered into the same category. The color of the nodes
indicates p.adjust values, which reflect the significance level of enrichment, while the size of the nodes reflects the number of differentially
expressed genes within that term. Each classification displays the top 20 categories based on the minimum p.adjust values; (E) Interaction diagram
of GO annotation BP for differentially expressed genes comparing the hypothyroid group to the normal group; (F) Interaction diagram of GO
annotation CC for differentially expressed genes comparing the hypothyroid group to the normal group; (G) Interaction diagram of GO annotation
MF for differentially expressed genes comparing the hypothyroid group to the normal group. In these interaction diagrams of GO annotations, the
colors represent p.adjust values, while points denote different terms. The term “is a” indicates subclasses of the specified term. “negatively regulates”
denotes that the term before the arrow inhibits the function of the term after the arrow. “part of” signifies that Term A before the arrow is part of
the term following the arrow, indicating a containment relationship. and “regulates” implies that the current term modulates the function of another
term, which may either be promoting or inhibiting. The default parameters are set such that p-value is less than 0.01 and p.adjust is less than 0.05;
(H) KEGG classification chart for differentially expressed genes comparing the hyperthyroid group to the normal group; (I) KEGG classification chart
for differentially expressed genes comparing the hypothyroid group to the normal group. The left vertical axis lists the names of the KEGG
secondary metabolic pathways, while the right vertical axis lists the names of the KEGG primary metabolic pathways. The horizontal axis indicates
the number of genes annotated to each pathway; (J) KEGG pathway enrichment scatter plot for differentially expressed genes comparing the
hyperthyroid group to the normal group; (L) KEGG pathway enrichment scatter plot for differentially expressed genes comparing the hypothyroid
group to the normal group. In the scatter plots, each point represents a specific KEGG pathway, with the x-axis indicating the number of
differentially expressed genes associated with that pathway and the y-axis representing the significance of enrichment, which may be indicated by
p-values or other relevant metrics. Each row in the KEGG pathway enrichment scatter plots represent a specific KEGG pathway. The x-axis indicates
the enrichment factor, which is the ratio of the proportion of differentially expressed genes annotated to that pathway to the proportion of all genes
annotated to the same pathway. A larger enrichment factor indicates a more significant level of enrichment of differentially expressed genes within
that pathway. In the scatter plots, the color of each point represents the p.adjust value, reflecting the significance level of enrichment, while the size
of the points corresponds to the number of differentially expressed genes annotated to that specific pathway; (K) Interaction diagram of KEGG
annotated pathways for differentially expressed genes comparing the hyperthyroid group to the normal group; (M) Interaction diagram of KEGG
annotated pathways for differentially expressed genes comparing the hypothyroid group to the normal group. In these diagrams, pathways are
represented as green nodes, with the size of the pathway nodes corresponding to the number of genes annotated within that pathway. Genes
are represented as nodes colored from blue to red, with the color indicating the log2 fold change values of the genes. The diagrams display the
top 20 pathways with the lowest p.adjust values, highlighting the most significantly enriched pathways related to differential gene expression in
each condition.
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3.5 Gene CIBERSORT and ssGSEA analysis

We utilized the CIBERSORT computational biology tool to

estimate the relative proportions of diverse immune cell types. The

analysis inferred the presence and relative plenty of varieties of

immune cells from changes in differential genes, as well as the

relationship between quick differential genes and the proportions of

immune cells. Comparing the hyperthyroidism group with the

healthy controls revealed significant differences in the following

immune cell types: naive B cells, monocytes, naive CD4+T cells,

and Tregs (Figures 4A, B). The comparison between the

hypothyroidism group and the healthy controls showed valid

differences in the following immune cell types: naive CD4+T cells,

naive B cells, CD8+T cells and memory B cells (Figures 4C, D).

Using ssGSEA to break down gene expression data from

individual samples, we evaluated the activity levels of specific

gene sets within each sample. In the comparison between the

hyperthyroidism group and the healthy controls, the following

immune cell types exhibited significantly increased activity:

immature B cells, activated CD4+T cells, activated CD8+T cells,

CD56dim natural killer cells, gamma delta T cells, effector memory

CD4+T cells and Tregs (Figure 4E). In contrast, the comparison

between the hypothyroid patients and the healthy person revealed

significantly elevated activity levels in CD8+T cells, CD56dim

natural killer cells, effector memory CD4+T cells, gamma delta T

cells and central memory CD8+ T cells (Figure 4F).
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3.6 Differential protein screening

Considering the time and spatial specificity of protein expression,

we conducted differential protein analysis on serum samples from

patients in the hyperthyroid group, hypothyroid group, and normal

group. The results showed that there was a total of 73 differentially

expressed proteins (DEPs) among the hyperthyroid group and the

normal group, with 26 proteins upregulated and 47 proteins

downregulated (Figure 5A). In the hypothyroid group and the

normal group, the sum of all 84 DGPs were confirmed, various 30

proteins that were up-regulation and 54 proteins that were

downregulated (Figure 5B). Furthermore, we created Venn

diagrams to illustrate multitude unique distinguishingly expressed

proteins in several group as well as the shared differentially expressed

proteins across groups (Figure 5C).
3.7 Differential protein Z-score analysis and
subcellular localization

We utilized the Z-score (standard score) to measure the relative

abundance of proteins in the hyperthyroidism group contrapositive

to the healthy people. Figure 5D presents the Z-score values of the

top 30 DEPs, sorted by p-value. Additionally, Figure 5E illustrates

the Z-score values for DEPs in the hypothyroidism group relative to

the healthy controls.
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FIGURE 3 (Continued)
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FIGURE 3 (Continued)

(A) Enrichment scatter plot of Reactome pathways for differentially expressed genes comparing the hyperthyroid group to the normal group; (B)
Enrichment scatter plot of Reactome pathways for differentially expressed genes comparing the hypothyroid group to the normal group. In these
plots, each row represents a specific Reactome pathway (Term). The x-axis indicates the enrichment factor, which is the ratio of the proportion of
differentially expressed genes annotated to that Term compared to the proportion of all genes annotated to the same Term. A larger enrichment
factor signifies a more significant level of enrichment of differentially expressed genes within that Term. The color of each point reflects the p.adjust
value, indicating the significance of enrichment, while the size of the points corresponds to the number of differentially expressed genes annotated
to that specific Term; (C) GO-GSEA for differentially expressed genes comparing the hyperthyroid group to the normal group; (D) GO-GSEA for
differentially expressed genes comparing the hypothyroid group to the normal group; (E) KEGG-GSEA for differentially expressed genes comparing
the hyperthyroid group to the normal group. (F) KEGG-GSEA for differentially expressed genes comparing the hypothyroid group to the normal
group. The enrichment plots are divided into three sections: Upper Section - ES Line Plot: This section presents the enrichment score (ES) as a line
graph, illustrating how the ES value is computed at each position along the ordered gene list during the analysis. The peak of the ES curve
represents the maximum ES score, with the distance from zero indicating the significance of enrichment—the farther the peak from zero, the more
significant the enrichment. Middle Section - Hit Chart (Barcode Plot): This section, commonly referred to as a hit chart or barcode plot, employs
lines or “hits” to mark the positions of genes that are members of the analyzed pathways within the ranked gene list sorted by log2 fold change
values (from high to low). This visual representation highlights where pathway-associated genes appear in relation to the overall ranking, providing
insight into their contribution to the enrichment score. The lower section of the enrichment plot displays the distribution of rank values for all
sorted genes. In this heatmap representation, the red areas correspond to genes that are highly expressed in group A (e.g., hyperthyroid), while the
blue areas indicate genes that are more highly expressed in group B (e.g., hypothyroid). Each gene’s signal-to-noise ratio (Signal2noise), calculated
using the previously selected ranking method (log2 fold change), is illustrated through a red/gray/blue area plot. The Enrichment Score (ES) is
depicted as an accumulated value, representing the cumulative enrichment of genes from the gene set within the ranked list. The size of the ES
indicates the extent of enrichment, with larger ES values reflecting a higher degree of enrichment of the gene set in the sorted list. The Normalized
Enrichment Score (NES) is a value that normalizes the Enrichment Score (ES), representing the degree of enrichment of a gene set in the ranked list
of genes. NES>0: Indicates that the gene set is enriched in the upper part of the ranked gene list (positive direction), suggesting that these genes
tend to be upregulated under the experimental conditions being studied. NES<0: Suggests that the gene set is enriched in the lower part of the
ranked gene list (negative direction), indicating that these genes are likely to be downregulated under the research conditions. NES≈0: Indicates that
there is no significant enrichment of the gene set in the ranked list.
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In order to understand the various cellular functions of proteins,

it is first necessary to clarify their subcellular positioning, as proteins

must be transported to the correct positioning within the cell to

participate in biological activities. Therefore, we analyzed the appeals

screen for subcellular positioning of proteins. In the comparison

among the hyperthyroidism group and the healthy controls, the

results of the subcellular positioning analysis indicated that 24.66% of

the DEPs were classified as extracellular (secreted), 21.92% as

cytoplasmic, 17.81% as plasma membrane, and 16.44% as

membrane-bound extracellular (secreted) (Figure 5F). For the

hypothyroidism group compared to the healthy controls, the

subcellular positioning analysis revealed that 33.33% of the DGPs

were membrane-bound extracellular (secreted), 22.62% were

extracellular (secreted), 15.48% were cytoplasmic, and 8.33% were

plasma membrane (Figure 5G).
3.8 Protein functional annotation results

After determining the subcellular positioning of the proteins,

we performed them with GO enrichment analysis to examine the

distribution of these proteins and clarify how the variations

observed in our experimental samples are reflected in their

functional roles. In the comparison between the hyperthyroidism

group and the healthy controls, DEPs functions were evident

across several BP, including: immune system process, cell surface

receptor signaling pathway, metabolic process, biological adhesion

and cell proliferation. The analysis also revealed significant MF

associated with these proteins, such as: signaling receptor binding,

molecular function regulator, transporter activity, molecular

transducer activity, transcription regulator activity and

transporter activity. Additionally, regarding CC, the enriched
Frontiers in Immunology 10
categories included: synapse part, cell junction, supramolecular

complex, synapse part, organelle part and membrane-enclosed

lumen (Figures 5H–K). The DEPs functions between the

hypothyroidism group and the healthy controls were reflected in

several BP, including immune response, receptor−mediated

endocytosis, complement activation, classical pathway and B cell

receptor signaling pathway. Notably, the following MF were

significantly enriched: molecular function regulator, antigen

binding, immunoglobulin receptor binding, catalytic activity,

antioxidant activity and structural molecule activity. Additionally,

in CC that exhibited differences included immunoglobulin complex,

circulating, membrane part, protein-containing complex and cell

junction (Figures 5L–O).

The KEGG annotation of DEPs revealed significant impacts on

various signaling pathways when comparing the hyperthyroidism

group to the healthy controls. Notable pathways include herpes

simplex virus 1 infection, insulin signaling pathway, complement

and coagulation cascades and cytokine-cytokine receptor

interaction (Figures 6A, B). In contrast, the comparison between

the hypothyroidism group and the normal healthy controls

highlighted significant effects on NF-kappab signaling pathway,

disease-related signaling pathways, including systemic lupus

erythematosus, autoimmune thyroid disease and B cell receptor

signaling pathway (Figures 6C, D).

To elucidate how proteins interact with one another and their

role in various BP such as signal transduction, energy and material

metabolism, cell cycle control and gene expression regulation. we

employed the STRING dbase along with the StringDB protein

reciprocity database to conduct a decomposition of protein

interactions specific to the relevant species. The results of the

differential protein interaction network for the hyperthyroidism

group compared to the healthy controls are displayed in Figure 6E,
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FIGURE 4

(A) Boxplot comparing the immune cell annotations between the hyperthyroid group and the normal group. The x-axis represents different types of
immune cells, while the y-axis indicates the proportion of each immune cell type; (B) Correlation analysis between core differentially expressed
genes and the proportions of immune cells in the hyperthyroid group compared to the normal group; (C) Boxplot comparing the immune cell
annotations between the hypothyroid group and the normal group. Similar to Panel A, the x-axis indicates various immune cell types, and the y-axis
shows their respective proportions; (D) Correlation analysis between core differentially expressed genes and the proportions of immune cells in the
hypothyroid group compared to the normal group. The x-axis represents the differential genes (the top 20 differential genes with the minimum q-
value and the largest absolute log2 fold change), while the y-axis denotes cell types, with different colors indicating the magnitude of correlation;
(E) The boxplot of ssGSEA annotations for genes comparing the hyperthyroid group to the normal group; (F) The boxplot of ssGSEA annotations for
genes comparing the hypothyroid group to the normal group. The x-axis refers to cell types, and the y-axis indicates the relative abundance of
different cell types.
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FIGURE 5 (Continued)

(A) Volcano plot of differentially expressed proteins between the hyperthyroid group and the normal group; (B) Volcano plot of differentially
expressed proteins between the hypothyroid group and the normal group. Each point in the figure represents a protein, with the x-axis indicating
the logarithmic value of the fold change in expression levels between the two samples, and the y-axis representing the negative logarithmic value
of the p-value. A larger absolute value on the x-axis indicates a greater fold change in expression levels between the two samples, while a higher
value on the y-axis signifies more significant differential expression, thereby enhancing the reliability of the identified differentially expressed
proteins. Green points in the plot represent downregulated differentially expressed proteins, red points indicate upregulated differentially expressed
proteins, and black points denote non-differentially expressed proteins; (C) Venn diagram of differentially expressed proteins: The shapes of
different colors represent various comparison groups, and the numbers in the overlapping areas indicate the number of shared differentially
expressed proteins between two comparison groups. The numbers in the overlapping sections among multiple colored shapes represent the count
of differentially expressed proteins common to those multiple comparison groups; (D) Histogram of Z-scores for differentially expressed proteins
between the hyperthyroid group and the normal group; (E) Histogram of Z-scores for differentially expressed proteins between the hypothyroid
group and the normal group. The x-axis represents the Z-score values, while the y-axis indicates the differentially expressed proteins. The Z-score
is calculated using the mean and standard deviation of the experimental group compared to the control group; a value further to the right indicates
a higher relative abundance of the protein in the experimental group; (F) Subcellular localization of differentially expressed proteins comparing the
hyperthyroid group with the normal group; (G) Subcellular localization of differentially expressed proteins comparing the hypothyroid group with
the normal group; (H) Statistical classification chart of GO annotations for differentially expressed proteins between the hyperthyroid group and the
normal group. The x-axis represents the GO categories, while the left y-axis indicates the percentage of proteins, and the right y-axis shows the
absolute number of proteins; (I) Scatter plot of GO annotations for BP comparing hyperthyroid vs. normal differentially expressed proteins; (J)
Scatter plot of GO annotations for CC comparing hyperthyroid vs. normal differentially expressed proteins; (K) Scatter plot of GO annotations for
MF comparing hyperthyroid vs. normal differentially expressed proteins; (L) Statistical classification chart of GO annotations for differentially
expressed proteins between the hypothyroid group and the normal group. The x-axis represents the GO categories, while the left y-axis indicates
the percentage of proteins, and the right y-axis shows the absolute number of proteins; (M) Scatter plot of GO annotations for BP comparing
hypothyroid vs. normal differentially expressed proteins; (N) Scatter plot of GO annotations for CC comparing hypothyroid vs. normal differentially
expressed proteins; (O) Scatter plot of GO annotations for MF comparing hypothyroid vs. normal differentially expressed proteins.
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while the differential protein interaction network for the

hypothyroidism group versus the healthy controls is shown

in Figure 6F.
3.9 Conjoint analysis of transcriptomics
and proteomics

In this research, we implemented a conjoint analysis of

transcriptomics and proteomics. We selected the top 50 DEPs

with the lowest FDR from the transcriptomic analysis and the top

50 proteins with the lowest significance P-values from the

proteomic analysis for correlation analysis. Using the selected

Top 50 DEGs and Top 50 DEPs, we calculated the Spearman

correlation between the two datasets (Figures 7A, B). Furthermore,

we filtered for results with an absolute value>0.9 and P<0.001,

which were used to construct a regulatory network diagram. The

correlation results obtained were visualized using Cytoscape

software, resulting in a regulatory network diagram that allowed

us to identify the most critical differential genes (Figures 7C, D).
3.10 ELISA analysis of serum results in
clinical subjects

Using the ELISA method, we assessed the expression levels of

IGHG3, ISG15, and ZNF683 in the serum of all participants. The

consequences indicated that the serum content of IGHG3 were

meaningfully higher in both AITD hyperthyroidism and

hypothyroidism group patients contrapositive to the healthy

controls and non-AITD patients. Furthermore, compared to

healthy individuals or patients with non-AITD conditions, only

the hyperthyroid group of patients with AITD exhibited elevated

serum levels of ISG15. Additionally, only the hypothyroid group of
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patients with AITD showed increased serum levels of ZNF683

(P<0.05), (Figure 7E).

The expression levels of IGHG3, ISG15, and ZNF683 were

analyzed in relation to clinical examination data from patients with

hyperthyroidism, hypothyroidism, and healthy individuals. The

results indicated that IGHG3 expression was positively correlated

with the levels of TT3, TT4, fT3, fT4, and Tg in patients with AITD.

Additionally, ISG15 expression showed a positive correlation with

TT3, TT4, fT3, and fT4 levels in AITD hyperthyroid patients, while

exhibiting a negative correlation with TSH levels. Conversely,

ZNF683 expression was negatively correlated with the levels of

TT3, TT4, fT3, and fT4 in AITD hypothyroid patients, and

positively correlated with TgAb and TPOAb expression levels

(Figures 7F–H).
3.11 Construction of predictive models for
hyperthyroidism and hypothyroidism

Using clinical baseline data collected from participants and

ELISA results for IGHG3, ISG15, and ZNF683, we randomly

divided the samples into training and testing groups to construct

prediction models for patients with AITD hyperthyroidism and

hypothyroidism. Forest plots were created, ROC curves and

decision curve analysis (DCA) were hatched to evaluate the

performance and decision effect of these models. The results

showed that the prediction model of AITD hyperthyroidism

patients had good performance and decision-making effect

(Figure 7I). The predictive model for AITD hypothyroidism

patients had good performance and decision-making effect

(Figure 7J). These results indicate that both predictive models

have significant utility in predicting hyperthyroidism or

hypothyroidism in patients with AITD.
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FIGURE 6

(A) KEGG classification chart of differentially expressed proteins between the hyperthyroid group and the normal group; (C) KEGG classification chart
of differentially expressed proteins between the hypothyroid group and the normal group. The y-axis represents the names of KEGG secondary
metabolic pathways, while the x-axis denotes the number of proteins annotated to each pathway and the proportion of these proteins relative to
the total number annotated. (B) Scatter plot of KEGG pathway enrichment for differentially expressed proteins comparing the hyperthyroid group
with the normal group; (D) Scatter plot of KEGG pathway enrichment for differentially expressed proteins comparing the hypothyroid group with the
normal group. In the figure, each row represents a KEGG pathway. The x-axis indicates the enrichment factor, which is the ratio of the proportion of
differentially expressed proteins annotated to that pathway to the proportion of all proteins annotated to that pathway. A larger enrichment factor
indicates a more significant level of enrichment of differentially expressed proteins in that pathway. The color of the points represents the q-value,
while the size of the points reflects the number of differentially expressed proteins annotated to that particular pathway; (E) Interaction network
diagram of differentially expressed proteins between the hyperthyroid group and the normal group; (F) Interaction network diagram of differentially
expressed proteins between the hypothyroid group and the normal group. Each node represents a protein, and the thickness of the lines indicates
the confidence level of the associations, with thicker lines representing higher confidence in the interactions.
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FIGURE 7 (Continued)

(A) Spearman correlation heatmap of differentially expressed genes and proteins between the hyperthyroid group and the normal group;
(B) Spearman correlation heatmap of differentially expressed genes and proteins between the hypothyroid group and the normal group. In the
heatmap, the columns represent differentially expressed genes, and the rows represent differentially expressed proteins. The strength of the
correlation is indicated by varying colors. *p<0.05, **p<0.01; (C) Network regulatory diagram comparing the hyperthyroid group with the normal
group; (D) Network regulatory diagram comparing the hypothyroid group with the normal group. In the diagrams, rectangles represent differentially
expressed genes, and triangles represent differentially expressed proteins. Blue lines indicate negative correlations, while red lines indicate positive
correlations; (E) Levels of ISG15, ZNF683, and IGHG3 in the serum of hyperthyroid patients, hypothyroid patients, and healthy individuals.
****P<0.001; (F) Correlation of IGHG3, ISG15, and ZNF683 with clinical examination data in hyperthyroid patients; (G) Correlation of IGHG3, ISG15,
and ZNF683 with clinical examination data in hypothyroid patients; (H) Correlation of IGHG3, ISG15, and ZNF683 with clinical examination data in
healthy individuals; (I) Clinical prediction models for patients with hyperthyroidism and ROC curves (left) and DCA (right) for training and test
groups; (J) Clinical prediction model for patients with hypothyroid and ROC curves (left) and DCA (right) for training and test groups. DCA Baseline:
Represents the decision-making performance without using a predictive model. If the decision curve of the predictive model lies above the
baseline, it indicates that the model makes a positive contribution to the decision, providing better decision outcomes. Decision Curve of the
Predictive Model: By examining the decision curve of the predictive model, one can observe how the model’s performance changes under different
decision thresholds. The closer the decision curve is to the baseline, the poorer the predictive model’s effect on decision-making; conversely, the
further the decision curve is from the baseline, the better the model’s contribution to decision-making.
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4 Discussion

AITD represent a category of organ-specific autoimmune

disorders, characterized by thyroid dysfunction primarily

resulting from the outcome of thyroid-specific antibodies by the

immune system. This dysregulation leads to either stimulation or

destruction of the thyroid gland, as well as an imbalance in self-

tolerance to autoantibodies. The most prevalent forms of AITD

involve Graves’ disease (GD) and Hashimoto’s thyroiditis (HT),

with clinical manifestations corresponding to hyperthyroidism and

hypothyroidism, respectively (9). GD is recognized as the primary

career of hyperthyroidism, with its pathogenesis predominantly

involving the activation of immunoglobulin G subclass antibodies

against the thyroid-stimulating hormone receptor (TRAb) (10).

This condition is often linked with T cell disfunction, disruption of

immune tolerance, aberrant immune regulation, and increased B

cell reactivity, ultimately resulting in damage to the thyroid and

associated tissues (11). A hallmark for the diagnosis of GD is the

presence of elevated TRAb levels in serum, which is observed in

approximately 97-98% of cases. HT is commonly recognized as the

major career of hypothyroidism (12, 13). As major prevalent

autoimmune shambles, HT is described by the production of

thyroid-specific autoantibodies and the infiltration of T cells and

B cells in inflammatory processes. Both cellular immunity and

humoral immunity act pivotal characters its pathogenic

mechanism (4). Presently, the diagnosis of HT primarily relies on

clinical features, positive serum levels of TPOAb and TgAb, along

with cytological examination revealing lymphocytic infiltration. In

clinical practice, patients with AITDs often present with subtle or

non-specific symptoms in the early stages of the disease, making

early detection challenging. Furthermore, these patients frequently

exper ience transi t ions between hyperthyroidism and

hypothyroidism, yet there is currently no reliable method to

predict or assess these two disease states. Previous studies have

suggested using the ratio of TT3/TT4 or fT3/fT4 to differentiate

between GD and HT; however, this approach has demonstrated

insufficient specificity (1). The precise etiology of AITDs has yet to

be fully elucidated; however, their onset and progression are

believed to be associated with the interplay of genetic factors,

environmental influences, and epigenetic modifications. The
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molecular mechanisms underlying immune dysfunction that led

to the breaking of thyroid tissue remain mostly unclear (14).

Therefore, a comprehensive understanding the mechanism of

AITD development is very important for clear and early diagnosis

and clinical individualized treatment. This study employs multi-

omics techniques, including gene transcriptomics and proteomics,

to shift from superficial routine indicators to in-depth

investigations at the gene and protein levels. The aim is to

elucidate the emergence and advancement of AITD and to

identify reliable marker for the early diagnosis and differential

diagnosis of clinical patients. It is anticipated that this research

will afford an element for the diagnosis and individualized therapy

of AITD patients.

Graves’ disease is triggered by the decrease of immune tolerance

to the thyroid-stimulating hormone receptor (TSHR), with its

specificity and core mechanism centered on the activation of

immunoglobulin G subclass antibodies against TSHR (TRAb).

TRAb bind to the leucine-rich repeat region situated in the

extracellular domain of TSHR on the surface of thyroid cells (15).

The immune response induced by the specific binding of antigen

receptors to autoantibodies is fundamental to the pathogenesis of

this disease. Hence, we utilized blood samples from patients with

primary hyperthyroidism in clinical settings to conduct gene

transcriptomic analysis for differential gene functional annotation

and enrichment analysis. The consequences indicated that DEGs

were primarily enriched in BP related to immune response and

immune response-activation signaling pathways. Proteomic

analysis showed that DEPs were mainly enriched in BP such as

cell surface receptor signaling pathways, the immune system, and

cell proliferation. In terms of molecular functions, these proteins

showed enrichment in antigen binding, immunoglobulin binding,

IgG receptor activity, and signaling receptor binding. The cellular

component analysis indicated a primary enrichment in locations

such as the cell surface, membrane side, and extracellular

membrane. Additionally, proteomic analysis identified subcellular

localization of DEPs predominantly in the extracellular (secreted)

compartment (24.66%), cytoplasm (21.92%), and membrane-

associated extracellular (secreted) regions (16.44%). Trough

KEGG-GSEA enrichment analysis, we found that differentially

expressed genes were significantly associated with autoimmune
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thyroid diseases, Systemic lupus erythematosus (SLE), antigen

processing and presentation rheumatoid arthritis (RA). This

suggests that these differential genes have an important effect on

the pathogenesis of autoimmune diseases. Furthermore, studies

have reported an association between systemic autoimmune

diseases (such as Sjogren’s syndrome, RA, SLE) and AITD (12),

indicating a notable effect of these DEGs in the occurrence and

progression of AITDs.

AITD is characterized as an organ-specific autoimmune disease

arbitrated by both B cells and T cells. Our KEGG annotation

analysis revealed an enrichment in the B cell receptor signaling

pathway, highlighting the importance of this pathway in the

underlying mechanisms of AITDs. According to the expression of

DEGs, we inferred the presence and relative enrichment of various

immune cell types. Our study results indicated significant

differences in naive B cells, monocytes, follicular helper T cells,

Tregs and naive CD4+T cells. Furthermore, research has shown that

patients with GD exhibit an abnormal enhancement in CD4+T cells

and CD8+T cells (16, 17), underscoring the central role of B cells

and T cells in the pathogenic mechanism of AITD. Subsequently,

we conducted a joint analysis of transcriptomics and proteomics to

examine the relationship among differential genes and proteins, as

well as to analyze the common pathways and regulatory networks

involving these differential genes and proteins. In the regulatory

network diagram we obtained, we identified that the major

differential genes were ISG15 and IGHG3. These findings suggest

potential key players in the immune response related to AITD and

may provide insights for further investigation into therapeutic

targets and biomarkers for this condition.

ISG15 is a member of the interferon-stimulated genes (ISGs)

family and the first ubiquitin-like protein to be identified. Its

functions involve viral replication, cell proliferation, cell cycle

regulation, DNA damage repair, protein translation, immune

regulation and many other directions (18). As most important

robustly and rapidly persuaded type I ISGs, ISG15 exerts its effects

through covalent binding to target proteins, leading to ISGylation,

which directly inhibits protein replication and modulates host

immune responses. The ISG15 released by immune cells function

in immune regulation (19); it can function as a warning protein that

activates CD8+T cells and triggers NK cell excretion of IFN-g in

conjunction with IL-12 via the LFA-1 receptor (20). ISG15 is

persuaded by type I interferons, and research have given that

ISG15 is extremely expressed in vitiligo. In the existence of IL-15,

ISG15 significantly induces the excretion of IFN-g, contributing to

the pathogenesis and progression of vitiligo, ultimately leading to

melanocyte damage (21). Raised criterion of ISG15 has been observed

in the saliva and serum of sufferers with major Sjogren’s syndrome,

and ISG15 expression is also relatively high in SLE sufferers,

correlating with disease progression prior to treatment. Research

indicates that ISG15 serves as a common central gene in both diseases

(22). Moreover, studies have found that patients with high ISG

expression are more applicable to present rash-related symptoms

contrapositive to those with low expression levels (23). Among SLE

sufferers who are active for antinuclear antibodies (ANA), anti-

chromatin, anti-Smith, or anti-C1q antibodies, overexpression of

ISG15 is more prevalent, and the level of ISG15 expression
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positively correlates with ANA and anti-dsDNA titers (24). In this

research, we employed a combined decomposition of gene

transcriptomics and proteomics to recognize ISG15 as a differential

gene unique to patients with primary hyperthyroidism compared to

healthy individuals. We observed an enhancement expression of

ISG15 in the serum of hyperthyroidism patients, indicating a

significant correlation between ISG15 and GD. Elisa assays showed

that the serum levels of ISG15 were expressively upper in the

hyperthyroid group contrapositive to both the hypothyroid group

and the normal control group, with no valid difference scanning

among the hypothyroid and normal groups. Subsequently, we

regulated a correlation analysis among representative of ISG15 and

clinical blood parameters as well as fundamental characteristics in

sicks with hyperthyroidism. Our findings demonstrated that ISG15

expression was specifically correlated with the quantity of TT3, TT4,

fT3, and fT4, while layout a passive correlation with TSH levels.

These results suggest that elevated ISG15 expression a lot of invites as

a pointer of hyperthyroid status in patients. There are still delays in

detection and treatment of changes in patients with hyperthyroidism

or their potential progression to hypothyroidism due to changes in

TRAb activity that are not detected in a timely manner. Our research

highlights the specific high expression of ISG15 in hyperthyroidism

patients and its correlation with thyroid function, suggesting that

ISG15 could serve as a diagnostic biomarker for hyperthyroidism.

This discovery provides an element for understanding the

pathogenesis of AITD in hyperthyroidism patients and for

facilitating individualized diagnosis and treatment approaches. In

our analysis of gene transcriptomics comparing patients clinically

diagnosed with primary hypothyroidism to healthy individuals, we

conducted functional annotation and enrichment analysis of the

DEGs. The results indicated that these genes were primarily

enriched in pathways participant to immune response regulation,

autophagy, immunoglobulin complexes, particularly IgG

immunoglobulin complexes and B-cell receptor signaling. The

KEGG analysis showed valid enrichment in processes like Th1 and

Th2 cell differentiation, thermogenesis, oxidative phosphorylation,

reactive oxygen species (ROS) production, Th1 and Th2 cell

differentiation. Previous studies have suggested that Th17 cell

infiltration in the thyroid can significantly increase serum IL-17

levels in HT patients. This imbalance in the differentiation of

peripheral blood mononuclear cells towards Th1 and Th17

subtypes could be linked with the pathogenic mechanism of HT

(25, 26). Reactive oxygen species are elementary to the criterion

revolution of thyroid follicular cells. Research conducted in mouse

and human models has shown that ROS can lead to apoptosis of

thyroid cells, linking them to the pathogenesis of HT (27). In our

study of HT patients utilizing gene transcriptomics, we also validated

the presence and relative abundance of different immune cell types,

identifying significantly active populations such as activated CD8+ T

cells, CD56dim natural killer cells, central memory CD8+ T cells,

effector memory CD4+ T cells, and gamma delta T cells. Notably, it

has been observed that there is an abnormal increase in CD4+ T cells,

CD8+ T cells, and macro TPOAb ages within HT (16, 17).

These discoveries highlight the sophisticated interaction effect

among immune cell dynamics and thyroid function in the context

of primary hypothyroidism, suggesting potential therapeutic targets
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for managing autoimmune thyroid conditions. Therefore, the cellular

immune processes mediated by CD4+ T and CD8+ T lymphocyte

subpopulations have an important role in the pathogenesis of HT.

Proteomic analysis revealed that the functional annotation of DEPs

was primarily enriched in pathways related to the NF-kb signaling

pathway, systemic lupus erythematosus, autoimmune thyroid

diseases and the B cell receptor signaling pathway. Through a

combined analysis of gene transcriptomics and proteomics between

the hypothyroidism group and healthy controls, we identified key

differential genes ZNF683 and IGHG3 in the resulting network

regulatory diagram.

ZNF683 is a transcription factor that regulates gene expression.

Its homologous gene, Blimp-1, shares a similar gene structure, both

containing zinc finger domains (28). Consequently, ZNF683 is

referred to as HOBIT, representing the homolog of BLIMP-1 in T

cells. ZNF683 is a key regulatory factor in the early variation of

human NK cells. It is also both inevitable and competent for the

outcome of IFN-g by CD8+T cells, promoting the variation of

lymphocytes into long-lived effectors in non-lymphoid organs

and other non-barrier tissues, thereby supposing instant immune

safeguard in opposition to reinfection. ZNF683 enhances the

proliferative capacity and IFN-g secretion of CD8+T cells. When

ZNF683 is knocked out in human peripheral blood mononuclear

cells, the diffusion of CD8+T cells is modest, and the outcome of

IFN-g is reduced (29). Research have given that high expression of

ZNF683 facilitate the proliferation and excretion of IFN-g by

CD8+T cells following infection. IFN-g plays an important role in

managing viral replication and microbial invasion, which may lead

to sustained inflammatory responses and disease progression. These

consequences suggest that ZNF683 could serve as a biomarker for

CD8+T cell action and may be linked with disease development

(30). Furthermore, it has been reported that TBX21 is one of the

upstream genes of ZNF683. Due to its expression of IFN-g, TBX21
significantly impacts other immune cells, including Th1 cells (31).

ZNF683 is a crucial gene that controls the variation and activation

of T cells, serving as a key regulatory factor in controlling the status

and activation of human T cells. ZNF683 can target various genes

and pathways associated with T cell induction, effector functions,

activation, and cytotoxicity. Research has demonstrated that

ZNF683+CD8+T cell totality is important for anti-tumor

immunity, with high levels of this ZNF683 gene marker detected

in peripheral blood samples from patients with renal cell carcinoma,

melanoma, and lung cancer (32). In our research, we found elevated

quantity of ZNF683 expression in the serum of hypothyroid

patients. Correlation analyses between the expression of ZNF683

and clinical blood test indicators as well as basic clinical

characteristics in patients with hyperthyroidism revealed that

ZNF683 expression negatively correlated with the levels of TT3,

TT4, fT3 and fT4, while positively correlating with the levels of

TgAb and TPOAb. This suggests that high expression of ZNF683

may indicate that patients are in a state of hypothyroidism,

highlighting ZNF683 as an important risk factor for the progress

of this condition. Moreover, it is hypothesized that ZNF683 may

make contribution to the beginning of hypothyroidism through the

modulation of immune responses mediated by CD8+ T cells. These

findings afford an element for further research into the organs
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underlying the progress of hypothyroidism and suggest that

ZNF683 could serve as one of the diagnostic biomarkers for this

condition. This information may offer new insights for personalized

treatment strategies in patients with AITD and hypothyroidism.

Human antibodies, or immunoglobulins, were initially defined

as g-globulins. IgG is classified into four subgenera: IgG1, IgG2,

IgG3, and IgG4. IGHG3 represents the permanent area of the

immunoglobulin heavy chain. It is a glycoprotein produced by B

lymphocytes that can exist in either a membrane-bound or secreted

form. This subclass is characterized by a slender hinge region,

which provides biggish flexibility and features attached

glycosylation sites, allowing the antibody effector capabilities to

be adjusted by the extent of the IgG3 hinge region (33). Research

conducted by Chu et al. on hinge variants in the IGHG3 isotype

backbone revealed that a reduction in hinge length resulted in

decreased phagocytic activity of IgG3 (34). As an effective

immunoglobulin, IGHG3 can activate pro-inflammatory signaling

through the Fc portion of IgG particles on immune cells, leading to

complement activation, antibody-mediated phagocytosis,

antibody- servient cellular cytotoxicity, and the production of

IFN (35). Furthermore, studies indicate that by analyzing changes

in the protein composition of saliva from patients with SLE,

potential salivary biomarkers for SLE can be identified, revealing

elevated levels of several peptides, including the constant region of

IGHG3 in the slabber of SLE patients (36). Notably, enhanced levels

of IGHG3 have also been observed in the saliva, serum, and urine of

SLE patients, and the measurement of IGHG3 levels in urine may

aid in differentiating active nephritis (33). Through our research,

we found that the differentially expressed genes in both

hyperthyroid and hypothyroid patients included IGHG3.

Additionally, ELISA assays revealed that IGHG3 is extremely

expressed in the serum of patients with hyperthyroidism and

hypothyroidism. Correlation analyses indicated a strong

association between IGHG3 levels and the expression levels of

TT3, TT4, fT3, fT4, and Tg in these patients, suggesting that

elevated IGHG3 expression is an important marker for the

occurrence AITD. This finding highlights IGHG3 as a significant

biomarker for the early diagnosis and assessment of disease status

in AITD patients, providing new targets for subsequent research

and clinical management of AITD.
5 Conclusions

In this study, we conducted integrated analysis of gene

transcriptomics and proteomics in the hyperthyroidism group,

hypothyroidism group, and healthy control group. We identified

key differentially expressed genes ISG15, ZNF683, and IGHG3, and

validated the specific expression of these three indicators in serum

with their correlation to thyroid function. Our study indicates that

ISG15 can serve as a diagnostic biomarker for hyperthyroidism,

ZNF683 can be considered as one of the diagnostic biomarkers for

hypothyroidism, and elevated expression of IGHG3 suggests

abnormal thyroid function in patients. This finding provides new

insights into the pathogenesis of autoimmune thyroid diseases and

promotes personalized diagnostic and therapeutic approaches.
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