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Background: Shell and pearl formation in bivalves is a sophisticated

biomineralization process that encompasses immunological and mineralization

aspects, particularly during shell repair and the initial stages of pearl cultivation

when a nucleus is inserted. Here, we describe a novel C-type lectin, HcLec1,

isolated and characterized from the freshwater pearl mussel Hyriopsis

cumingii Lea.

Methods: Immune challenge, RNA interference (RNAi) experiments, ELISA, and

antibacterial assays were employed to investigate the role of HcLec1 in innate

immunity. We also established shell damage repair and pearl nucleus insertion

models to examine the impact of HcLec1 on the biomineralization process in

Hyriopsis cumingii Lea. In vitro calcium carbonate crystallization assays were

conducted to explore the direct role of HcLec1 in calcium carbonate

crystal formation.

Results: The HcLec1 gene sequence is a full-length cDNA of 1552 bp, encoding

240 amino acids. HcLec1 comprises an N-terminal signal peptide and a

carbohydrate-recognition domain (CRD), with QPD (Gln-Pro-Asp) and MND

(Met-Asn-Asp) motifs for polysaccharide binding. Tissue expression analysis

showed that HcLec1 is predominantly expressed in the gill tissue of Hyriopsis

cumingii Lea under normal conditions, and its expression is significantly elevated

in both gill and pearl sac tissues following nucleus insertion for pearl cultivation (P

< 0.05). After immune stimulation with Aeromonas hydrophila and

lipopolysaccharides (LPS), HcLec1 expression levels significantly increased in

both cases (P < 0.01), indicating a role in bivalve innate immunity. RNA

interference (RNAi)-mediated knockdown of HcLec1 led to a significant
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decrease in the expression levels of immune-related genes (WAP, a2m, and Lyso)

and mineralization-related genes (CA, CHS, Nacrein, and Pif) (P < 0.05). In animal

models for shell damage and nucleus insertion in pearl cultivation, HcLec1

showed a consistent expression pattern, with an initial significant decrease

followed by a marked increase, peaking at day 14 (P < 0.05). This suggests a

role for HcLec1 in pearl formation and shell repair. The recombinant HcLec1

protein demonstrated binding affinity to LPS and PGN, a robust ability to

agglutinate Escherichia coli, Staphylococcus aureus, Aeromonas veronii, and

Aeromonas hydrophila, and significantly inhibited bacterial growth (P < 0.05).

Moreover, rHcLec1 promoted calcite crystal formation in saturated calcium

carbonate solutions and altered crystal morphology.

Discussion: The HcLec1 gene plays a pivotal role in both innate immunity and

biomineralization in the triangle sail mussel. This study enhances our

understanding of the functional diversity of C-type lectins and provides a

foundation for future studies on shell repair and pearl growth.
KEYWORDS

C-type lectin, immunity, biomineralization, calcite formation, bacterial agglutination,

shell repair
1 Introduction

Mollusks, inhabiting aquatic environments, are particularly

susceptible to pathogen invasions (1, 2). As invertebrates, unlike

fish, they rely predominantly on their innate immune system, which

is distinguished by its non-specific, broad-spectrum, and swift

response to pathogens (3, 4). This system targets conserved

microbial elements termed pathogen-associated molecular

patterns (PAMPs) rather than recognizing pathogens specifically.

Upon infection, PAMPs are detected by pattern recognition

receptors (PRRs), initiating the immune response (5–7). C-type

lectins (CTLs), one of the most abundant families of PRRs, are

particularly noteworthy in this context.

CTLs, alternatively known as C-type lectin receptors (CLRs), are

calcium-dependent lectin proteins that bind carbohydrates and are

ubiquitous in the animal kingdom (8). CTLs in vertebrates are

notably conserved, whereas those in invertebrates exhibit

considerable variation, indicative of their diverse functional roles

(9–11). The CTL family is characterized by two principal

polysaccharide-binding motifs: EPN (Glu-Pro-Asn)/QPD (Gln-Pro-

Asp) and WND (Trp-Asn-Asp) (12). These motifs show substantial

variation and are not uniformly conserved, owing to mutations.

Studies indicate that Immulectin-2 from Manduca sexta and PcLec2

from Procambarus clarkii can activate the prophenoloxidase cascade,

contributing to immune defense (13, 14). FcLec4, found in

Fenneropenaeus chinensis, enhances the agglutination and

elimination of Vibrio anguillarum, underscoring the role of CTLs

as PRRs for PAMPs (15). Cflc-1, identified in Chlamys farreri,
02
suppresses the proliferation of E. coli and Candida albicans and

displays calcium-dependent agglutination of E. coli (16).

Hyriopsis cumingii Lea is a significant pearl-producing bivalve

species, ranking first globally in total pearl production (17, 18). Both

the shell and pearls are products of biomineralization in pearl oysters.

The repair of shell damage and the nucleus implantation process

during pearl cultivation involve two key biological phenomena: (1)

resistance to waterborne pathogens and the immune response

triggered by nucleus implantation, and (2) guidance of calcium

carbonate crystal structure formation by matrix proteins in the

mantle tissue. These proteins play a critical role in the

biomineralization of newly formed shells and pearls following shell

damage or nucleus implantation (19, 20). This process reflects the

complex interaction and regulation between immune and

biomineralization functions in H. cumingii Lea. Following nucleus

implantation, the mussel undergoes stimulation, activating immune-

related genes and proteins. This response persists until pearl sac

formation (wound healing), at which point the expression of

mineralization-related genes and proteins changes, initiating and

enhancing biomineralization functions (21, 22).

A multitude of studies underscore the potential of CTLs in the

process of biomineralization. CTLs broadly refer to any proteins

containing one or more C-type lectin domains (CTL domain or

CRD) (8). Wilt et al. identified a CRD in the spicule matrix protein

SM50 from the sea urchin Strongylocentrotus purpuratus (23). They

found that this CRD independently influences sea urchin

mineralization and stabilizes amorphous calcium carbonate

(ACC). Numerous cloned spicule matrix proteins in sea urchins
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contain the CRD (24). In earlier studies, a C-type lectin matrix

protein, Perlucin, was isolated from the inner shell of abalone and

shown to induce calcium carbonate crystal nucleation and guide

crystal morphology (25). Purified Perlucin from Haliotis discus was

also found to influence calcium carbonate crystal morphology,

likely due to its high glycine and aspartic acid content, which

affects the surface thermodynamics of crystal growth (26). These

findings suggest that CTLs with CRDs function as matrix proteins

in the biomineralization processes of sea urchins and abalones,

participating in the organization and growth of calcium carbonate

crystal structures. Currently, three types of CTLs have been

identified in H. cumingii Lea. HcLec4, which contains four CRDs,

binds to LPS and PGN, promoting early bacterial clearance through

antimicrobial peptides (AMPs) (27).HcCUB-Lec, with a single CRD

and a complement Uegf Bmp1 (CUB) domain, binds and

agglutinates various bacteria, contributing to innate immunity

(28). Perlucin, containing six conserved cysteine residues and a

CRD, has been identified as a critical gene for nacre formation (29).

However, at present, no studies have supported that CTLs in H.

cumingii Lea possess both immune and biomineralization

functions simultaneously.

This study identified and cloned a novel C-type lectin gene,

HcLec1, from the mantle tissue, a critical biomineralization organ in

the triangle sail mussel. HcLec1 encodes a single typical CRD and

an N-terminal signal peptide. By employing gene expression

profiling, constructing the HcLec1 protein expression vector,

RNA interference (RNAi), Raman spectroscopy, and scanning

electron microscopy, we explored the functional roles of this

lectin in both innate immunity and biomineralization of shells

and pearls. This research expands the molecular understanding of

immunity and biomineralization processes in freshwater bivalves,

providing valuable insights to improve shell repair and

pearl production.
2 Materials and methods

2.1 Experimental animals and sources
of materials

Triangle sail mussels were obtained from the Wuyi Aquaculture

Base in Zhejiang, with an average length of 5–6 cm. They were kept

in freshwater at room temperature (22–24°C) under laboratory

conditions and fed Chlorella twice daily at 11:00 am and 11:00 pm.

Hemolymph was extracted from the hemocoel of the adductor

muscle using a disposable syringe and centrifuged at 4°C and 700 ×

g for 10 minutes to separate the serum (supernatant) from the

hemocytes (pellet). The mussel shells were opened by cutting the

adductor muscle with a sterile scalpel, and tissue samples, including

the mantle, gills, adductor muscle, foot, gonad, and hepatopancreas,

were collected using sterile instruments. Samples were washed with

sterile PBS, preserved in 1 mL of RNA preservation solution, rapidly

frozen in liquid nitrogen, and stored at -80°C.

Aeromonas hydrophila was purchased from Beina Biological

Co., while lipopolysaccharides (LPS) were obtained from Macklin

Biochemical Co. Staphylococcus aureus, Aeromonas veronii, and
Frontiers in Immunology 03
Escherichia coli strains were sourced from our laboratory. Acid

phosphatase assay kit and Alkaline phosphatase assay kit were

purchased from Nanjing Jiancheng Bioengineering Institute.
2.2 Obtaining and bioinformatics analysis
of full-length cDNA of HcLec1

The 3’ and 5’ UTRs of HcLec1 were amplified using the

SMARTER® RACE 5’/3’ Kit (Takara Bio, USA) with primers

listed in Table 1. The amplified product was purified using a gel

extraction kit (Beyotime, China), then ligated into the pMD19-T

vector (Takara, Japan) at 16°C for 4 h, followed by transformation

into DH5a competent cells for positive clone selection. Sequencing

was performed by GENEWIZ (Suzhou, China). The full-length

cDNA sequence was obtained by aligning the 3’ and 5’ UTR

sequences. Domain and signal peptide prediction, amino acid

composition, and secondary structure prediction were carried out

using the SMART platform (http://smart.embl-heidelberg.de/), the

ExPASy website (https://web.expasy.org/protparam/), and the

PRABI webs i t e (h t t p s : / / np s a -p r ab i . i b cp . f r / c g i - b in /

npsa_automat.pl?page=/NPSA/npsa_sopma_f.html), respectively.
2.3 Immune challenge, RNA extraction, and
cDNA synthesis

To examine the tissue expression profile of HcLec1 and its

expression changes before and after nucleus insertion in the triangle

sail mussel, six untreated mussels and six mussels 14 days post-

insertion were randomly selected, and various tissues were

collected. Sampling and preservation methods are described in

Section 2.1. The mussels were divided into three groups: a PBS

control group, an Aeromonas hydrophila injection group, and an

LPS injection group. A. hydrophila was cultured overnight in broth

at 37°C, centrifuged at 4000 rpm for 20 minutes, and resuspended

in PBS. Approximately 1 × 107 cells were injected into the adductor

muscle of each mussel. For the LPS group, 100 mL of LPS diluted in

PBS to a concentration of 1 mg/mL was injected into the adductor

muscle, while the PBS control group was injected with 100 mL of

sterile PBS. At 0, 6, 12, 24, and 48 h post-injection, six mussels from

each group were randomly selected, and hemocytes, mantle, and gill

tissues were collected. Sampling and preservation methods are

detailed in Section 2.1. RNA was extracted using the TRIzol

method. RNA concentration was measured with a NanoDrop

2000c (Thermo Fisher Scientific, USA). The extracted RNA was

reverse-transcribed into cDNA using the Evo M-MLV RT Mix Kit,

followed by real-time quantitative PCR analysis.
2.4 Real-time quantitative PCR

Quantitative analysis was conducted using TB Green® Premix

Ex Taq™ II (Tli RNaseH Plus) (Takara, Japan) on a Bio-Rad CFX96
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system (Bio-Rad, Hercules, CA, USA) with a reaction volume of 20

mL. EF-1a was used as the reference gene, with primers listed in

Table 1. A negative control was included for each primer pair.

Relative expression level analysis was performed with 3–6 biological

replicates and three technical replicates. The group with the lowest

expression or the control group was used for normalization, and

gene expression levels were evaluated using the 2-DDCT method.
Frontiers in Immunology 04
2.5 In vivo RNA interference assay

Three dsRNA-HcLec1 constructs with T7 promoters at the 5’

end and one dsRNA-pEGFP construct with a T7 promoter at the 5’

end were designed. These constructs were transcribed into dsRNA

using the T7 High Efficiency Transcription Kit and diluted to a

concentration of 300 ng/mL. The three interference strands were
TABLE 1 Sequences of the primers used in this study.

Primer Name Sequence (5’-3’) Purpose

3’outer CAGCACCAGCAACAACACAGAGGCA 3’RACE

3’inner GCCTGACCTGCCCACAACTGAAGTG

5’outer TCCTGACCAGAAGGGGAATGTGCT 5’RACE

5’inner CAGTTGTGGGCAGGTCAGGCATTC

IC1-T7-F GGATCCTAATACGACTCACTATAGGTCCAATCAATGTAAATCCTG IC1

IC1-T7-R GGATCCTAATACGACTCACTATAGGGACAACTCTCTCCTCCAAAA

IC1-F TCCAATCAATGTAAATCCTG

ICI-R GACAACTCTCTCCTCCAAAA

IC2-T7-F GGATCCTAATACGACTCACTATAGGATGCCTGACCTGCCCACAAC IC2

IC2-T7-R GGATCCTAATACGACTCACTATAGGCAACTCTCTCCTCCAAAACC

IC2-F ATGCCTGACCTGCCCACAAC

IC2-R CAACTCTCTCCTCCAAAACC

IC3-T7-F GGATCCTAATACGACTCACTATAGGAACACAGAGGCAAGGCAAAC IC3

IC3-T7-R GGATCCTAATACGACTCACTATAGGCATCAGGAATCATGAGGTCG

IC3-F AACACAGAGGCAAGGCAAAC

IC3-R CATCAGGAATCATGAGGTCG

eGFP-T7-F GGATCCTAATACGACTCACTATAGGTGGTCCCAATTCTCGTGGAAC eGFP

eGFP-T7-R GGATCCTAATACGACTCACTATAGGCTTGAAGTTGACCTTGATGCC

eGFP-F TGGTCCCAATTCTCGTGGAAC

eGFP-R CTTGAAGTTGACCTTGATGCC

Clec-F ACCTCGCTAAACCAAATG qRT-PCR

Clec-R ACTCTCTCCTCCAAAACC

EF1a-F GGAACTTCCCAGGCAGACTGTGC

EF1a-R TCAAAACGGGCCGCAGAGAAT

WAP-F TGTAATGTTGACGGGAGTG

WAP-R CTGTTTTGTTTTGATGGCT

Lyso-F CTTCTTTCTTGTTGGTCTGC

Lyso-R CTGGTAGTAGCCACAGGACA

a2M-F GGTGGTGATTCAAAGTCGGC

a2M-R GAAACTCGTGGTGTATTCTTGTGG

P-Clec-F TTGTCGACGGAGCTCGAATTCATGATCCTTGCTTATGGACCCA Plasmid construction

P-Clec-R GCTGATATCGGATCCGAATTCTTATGGGAATATCTGGCAAATAAATC
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designated as Chain 1, Chain 2, and Chain 3. The triangle sail

mussels were divided into a negative control (NC) group and a

dsRNA-HcLec1 injection group. Injections of 100 mL EGFP and 100

mL dsRNA-HcLec1 were administered into the adductor muscle of

the mussels. After 24, 48, and 72 h post-injection, mantle tissue

samples were collected. qRT-PCR and the 2-DDCT method were used

to assess knockdown efficiency, with normalization against the

negative control group.
2.6 Construction of recombinant plasmids
and protein induction in vitro

The CDS region ofHcLec1 was ligated into the pET-32a plasmid

(without the thrombin site) (from our laboratory) using a seamless

cloning kit via the EcoRI restriction site. The recombinant plasmid

was transformed into competent Origami (DE3) cells, which were

cultured at 37°C, 200 rpm until the OD600 reached 0.6–0.8. IPTG

was then added to a final concentration of 0.5 mM, and the cells

were induced overnight at 16°C, 180 rpm. SDS-PAGE gel

electrophoresis was performed to assess the induction of

recombinant protein expression. The induced protein was

subsequently purified using a His-Tag Protein Purification Kit

(Beyotime, China) and analyzed by SDS-PAGE. The recombinant

HcLec1 proteins are referred to as rHcLec1 throughout the study.
2.7 Western blot

After SDS-PAGE, the protein bands were transferred onto a

methanol-activated PVDF membrane using a semi-dry transfer

method. The PVDF membrane was then blocked with 10% non-

fat milk diluted in TBST at room temperature for 1 h, followed by

incubation with a 1:1000 dilution of mouse anti-His tag monoclonal

antibody (Beyotime, China) at 4°C overnight. After three washes

with TBST, the membrane was incubated with a 1:1000 dilution of

HRP-conjugated goat anti-mouse IgG secondary antibody at room

temperature for 1 h. Following three additional washes with TBST,

the membrane was developed, and detection was performed using a

versatile gel imaging system (Bio-Rad, Hercules, CA, USA).
2.8 Detection of binding activity of
rHcLec1 and PAMPs

The binding activity of rHcLec1 with LPS and peptidoglycan

(PGN) was assessed using an ELISA kit. In a 96-well plate, 5 mL of

LPS and PGN at a concentration of 80 mg/mL were added to each

well and incubated at 37°C overnight. Subsequently, 50 mL of 2%

BSA (1 mg/mL) was added to each well and incubated at room

temperature for 2 h, followed by five washes with TBS. In the

negative control group, 50 mL of rTrx (recombinant Thioredoxin)

was added, while 50 mL of rHcLec1 protein was added to the

experimental group, and incubation occurred at 37°C for 2 h. Each

well was then treated with 100 mL of anti-His-tag mouse
Frontiers in Immunology 05
monoclonal antibody (1:1000 dilution) and 100 mL of HRP-

conjugated sheep anti-mouse secondary antibody (1:1000

dilution), incubated at 37°C for 2 h, and washed five times with

TBS. Color development was achieved by adding 100 mL of TMB

substrate solution for 30 minutes, followed by 100 mL of TMB stop

solution. Absorbance was measured at 450 nm. A result was

considered positive if (P [sample] - B [blank])/(N [negative] - B

[blank]) > 2.1. Each experiment was performed in triplicate.
2.9 Bacterial inhibition test

Staphylococcus aureus, Escherichia coli, Aeromonas veronii, and

Aeromonas hydrophila were cultured to the logarithmic growth

phase (15) and diluted to a concentration of 1 × 104 CFU/mL in

TBS solution, followed by inoculation into a 96-well plate. For the

experimental group, 50 mL of rHcLec1 (200 mg/mL) was added to 50

mL of bacterial solution, while the control group received 50 mL of

TBS solution. The mixtures were incubated at 37°C for 2 h.

Subsequently, 20 mL of each mixture was transferred to a nutrient

broth medium for further incubation. OD600 absorbance values

were measured at 12 h using a microplate reader.
2.10 Bacterial agglutination test

Bacteria in the logarithmic growth phase were collected for

Giemsa staining, and the stained microorganisms were suspended

in TBS buffer. A 10 mL aliquot of the microbial suspension was

incubated with 25 mL of rHcLec1 (200 mg/mL) dissolved in TBS

buffer or with 25 mL of TBS buffer (control group) at room

temperature for 1 h. Observations were made using an

optical microscope.
2.11 In Vitro growth of crystals in the
presence of rHcLec1

A saturated calcium carbonate solution was prepared following

the method of Zhenguang Yan et al. (30). With continuous stirring,

30 mL of 100 mM sodium bicarbonate was added dropwise to 120

mL of 40 mM calcium chloride solution until the solution became

cloudy, at which point stirring was immediately stopped. The pH

was adjusted to 8.2 with NaOH, and the solution was filtered

through a 0.22 mm filter. To assess the effect of rHcLec1 on

calcite crystal morphology in vitro, the recombinant protein was

incubated with the prepared saturated calcium carbonate solution at

4°C for 48 h. Crystals were examined using scanning electron

microscopy, and their crystal forms were analyzed by Raman

spectroscopy. The experiment included a blank control group

(300 mL saturated calcium carbonate solution only), a negative

control group (300 mL saturated calcium carbonate solution with

protein elution buffer), and an experimental group (300 mL
saturated calcium carbonate solution with 50 mL of rHcLec1 at

1.0 mg/mL).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1530732
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1530732
2.12 Statistical analysis

The graphs were plotted using GraphPad Prism 9. Data analysis

was performed using ANOVA and the t-test in SPSS 26.0. Tukey’s

test was used for multiple comparisons, with P < 0.05 indicating

significant differences.
3 Results

3.1 Cloning and sequence analysis
of HcLec1

Cloning results revealed that the full-length cDNA of HcLec1 is

1552 bp (Figure 1A), with a 3’ UTR of 770 bp, a 5’ UTR of 59 bp,

and a CDS of 723 bp, encoding 240 amino acids. Among these,

Glycine (Gly) accounts for 8.3%, followed by Glutamic acid (Glu)

and Leucine (Leu) at 7.9% each (Figure 1C). The structure of

HcLec1 is different from that of previous CTLs in H. cumingii

Lea. SMART analysis predicted that the HcLec1 protein contains an

N-terminal signal peptide and a carbohydrate recognition domain

(CRD) with QPD (Gln-Pro-Asp) and MND (Met-Asn-Asp) motifs

for polysaccharide binding (Figure 1B). The predicted molecular

weight of the HcLec1 protein is 27.03 kDa, with a secondary
Frontiers in Immunology 06
structure comprising 37.5% random coils and 35.83% alpha

helices (Figure 1D). The GenBank accession number is PP056159.
3.2 Expression profile of HcLec1 in various
tissues of H. cumingii Lea

The qPCR results demonstrated that HcLec1 is expressed in all

tissues of H. cumingii Lea, with significantly higher relative

expression levels observed in the gill tissues of untreated mussels

compared to other tissues, followed by the mantle (P < 0.05,

Figure 2B). Fourteen days after the nucleus implantation is a

critical period for the formation of the pearl sac. During this

time, the smooth muscle in the mantle undergoes specialization

into columnar epithelial cells, forming a cavity (the pearl sac) that

encloses the foreign object. The specialized pearl sac tissue at this

stage is crucial for the study of biomineralization (Figure 2A). The

quantitative analysis revealed that HcLec1 expression levels were

significantly elevated (P < 0.01) in the gill tissue, mantle tissue, pearl

sac (specialized mantle tissue), adductor muscle, and gonads

(Figure 2B). Specifically, following nucleus implantation, the

relative expression levels of HcLec1 in the mantle, gills, adductor

muscle, and gonads increased approximately 4.6-, 10-, 17-, and 3-

fold, respectively, with no significant changes detected in the
FIGURE 1

Bioinformatic analysis of HcLec1. (A) Full-length HcLec1 gene obtained by cloning. The gray background indicates the signal peptide, the black
dashed line represents the conserved domains, the red box highlights the polysaccharide-binding motifs, and the red “taa” indicates the stop codon.
(B) Structural domain prediction of HcLec1 and comparison of HcLec1 with other CTL sequences from H. cumingii Lea. The “CLECT” denotes the C-
type lectin domain. (C) Amino acid composition of the HcLec1 protein. (D) Proportions of secondary structure elements in the HcLec1 protein.
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hepatopancreas, foot, or hemocytes (P > 0.05). Although hemocyte-

mediated immunity is a crucial component of innate immunity in

mollusks, our results revealed that HcLec1 exhibited the lowest

relative expression in hemocytes. These findings suggest that

HcLec1 may primarily play an immune role in the gills, while

exerting a biomineralization function in the mantle and pearl sac.
3.3 A. hydrophila and LPS stimulated
HcLec1 expression

The relative expression of HcLec1 increased sharply and

significantly following stimulation with A. hydrophila and LPS (P <

0.01), peaking at 6 h and 12 h post-stimulation. Expression levels

significantly decreased at 24 h and 48 h but remained substantially

higher than those of the control group (P < 0.01, Figure 2C). Under A.

hydrophila and LPS stimulation, HcLec1 expression increased

approximately 60-fold and 120-fold compared to the control group

at 6 h and about 140-fold and 90-fold at 12 h. By 24 h, expression

sharply decreased (P < 0.01), and at 48 h, expression levels further

declined but remained 14–15 times higher than the NC group (P <

0.01). These findings suggest that HcLec1 is rapidly upregulated upon

stimulation with A. hydrophila and LPS, with peak expression

occurring earlier following LPS stimulation compared to A. hydrophila.
3.4 HcLec1 regulates immune and
mineralization-related genes and
enzyme activities

The results of HcLec1 relative expression after RNAi

demonstrated that all three dsRNAs achieved significant

knockdown efficiency at 48 h and 72 h (P < 0.001), with Chain 2

showing a 90% knockdown at 72 h (Figure 3A). Consequently,

Chain 2 was selected for subsequent RNAi experiments.

Interference with HcLec1 using Chain 2 significantly reduced the
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expression levels of immune-related genes WAP, a2m, and Lyso (P

< 0.01, Figure 3B). CA, CHS, Nacrein, and Pif are key matrix

proteins in H. cumingii Lea (30–32). After HcLec1 knockdown, the

relative expression levels of mineralization-related genes CA, CHS,

and Pif were significantly reduced by 10–20 fold (P < 0.01,

Figure 3C), while Nacrein expression decreased by 30% (P <

0.05). ACP and ALP activities are crucial for biomineralization

(33). This study revealed that ACP and ALP enzyme activities were

significantly downregulated following HcLec1 interference (P <

0.05). ACP activity decreased by 35% in serum and 22% in

hemocytes (Figure 3D), whereas ALP activity showed a significant

40% reduction in both serum and hemocytes (Figure 3E). These

findings suggest that HcLec1 knockdown adversely impacts both

immune and biomineralization processes in H. cumingii Lea.
3.5 HcLec1 involvement in shell and pearl
mineralization processes in H. cumingii Lea

In the shell damage experiment, cracks in the shell ofH. cumingii

Lea gradually develop into a thin membrane (immature shell (34))

over time, which subsequently mineralizes and heals (Figure 4A).

Upon inserting a small piece of mantle tissue from the donor mussel

(known as “saibo”), the recipient mantle is stimulated to form a pearl

sac, which envelops the tissue and secretes nacre, leading to pearl

formation (Figure 4C). Results show that during both shell repair and

“saibo” insertion, HcLec1 expression follows a similar pattern: it

decreases significantly initially and then rises steadily to reach

control levels (P < 0.05, Figure 4B, D). Compared to the control,

HcLec1 expression was significantly reduced on day 1 and remained

lower than control levels from days 1 to 7 (P < 0.05). By day 14,

HcLec1 expression significantly increased to 1.5–1.6 times the control

level. Days 10 to 15 represent the phase of membrane formation and

subsequent hardening at the shell damage site, as well as the initial

formation of the pearl sac at the insertion site. On days 21 and 24,

HcLec1 expression levels declined and stabilized, showing no
FIGURE 2

HcLec1 tissue expression profile and challenge assay. (A) HE-stained schematic showing pearl sac formation after nucleus implantation, with black
arrows indicating the cavity formed by the pearl sac. (B) Relative expression levels of HcLec1 in various tissues of untreated and nucleus-implanted
mussels. Different lowercase letters indicate significant differences between tissues within the same group (P < 0.05). (C) Relative expression levels of
HcLec1 following bacterial challenge. NC represents the negative control group (injected with sterile PBS), while A and L represent the A. hydrophila and
LPS injection groups, respectively. ** denotes highly significant differences (P < 0.01), and *** denotes extremely significant differences (P < 0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1530732
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1530732
significant difference from the control group (P > 0.05). These

findings suggest that HcLec1 plays a role in both shell repair and

pearl sac formation processes in H. cumingii Lea.
3.6 Recombinant HcLec1 protein inhibits
bacterial growth and agglutinates bacteria
by recognizing PAMPs

To investigate the response of HcLec1 protein to bacteria in

vitro, we successfully induced the recombinant HcLec1 protein

(referred to as rHcLec1, Figure 5A). The results indicated that

rHcLec1 can recognize and bind both LPS and PGN, with a higher

binding affinity for PGN compared to LPS (Figure 5B). This finding

supports the role of rHcLec1 as a PRR that binds to PAMPs. PGN, a

key component of the cell walls in both Gram-positive and Gram-

negative bacteria, suggests that rHcLec1 has broad-spectrum

antibacterial activity, allowing it to recognize both bacterial types.
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Bacterial inhibition assays showed that rHcLec1 significantly

suppressed the growth of E. coli, S. aureus, A. veronii, and A.

hydrophila, reducing their growth rates by 43%, 53%, 18%, and 26%,

respectively, when added to the growth medium (Figure 5C).

Giemsa staining revealed a clear agglutination effect of rHcLec1

on these four bacterial species (Figure 5D). This suggests that, as a

C-type lectin, rHcLec1 may inhibit bacterial growth not only by

activating immune-related genes but also by directly inducing

bacterial agglutination.
3.7 rHcLec1 promotes calcite formation
in vitro

The mineralization capacity of bivalves is primarily reflected in

calcium carbonate deposition and the regulation of the morphology

and properties of calcium carbonate crystals. After co-culturing at

4°C for 48 h, rectangular crystals were observed in the solutions of
FIGURE 3

HcLec1 RNAi Experiment. (A) Effects of three dsRNA-HcLec1 sequences. NC represents the negative control group (injected with eGFP), while
Chain1, Chain2, and Chain3 correspond to the experimental groups (each injected with one of the three dsRNA-HcLec1 sequences). Different
lowercase letters indicate significant differences between the same groups at different times (P < 0.05). (B, C) display relative expression changes in
immune- and mineralization-related genes following HcLec1 knockdown. (D, E) depict alterations in ACP and ALP enzyme activities after HcLec1
knockdown. Black bars represent the control group (injected with eGFP), and red bars represent the experimental group (injected with dsRNA-
HcLec1). * indicates P < 0.05, ** indicates P < 0.01, and *** indicates P < 0.001.
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FIGURE 4

Relative Expression Changes of HcLec1 in H. cumingii Lea During Mineralization. (A) Procedure and observations of the shell damage experiment in
H. cumingii Lea. (B) Relative expression trend of HcLec1 during shell repair following damage. (C) Nucleus insertion procedure in H. cumingii Lea,
with the black arrow indicating the insertion site. (D) Relative expression trend of HcLec1 after nucleus insertion, where "Con." represents the control
group at day 0. Different lowercase letters indicate significant differences between groups (P < 0.05).
FIGURE 5

Prokaryotic Expression and Antibacterial Activity Analysis of rHcLec1. (A) SDS-PAGE and Western blot validation of rHcLec1. Lane M: Marker; Lane 1:
Expression of rHcLec1 in the supernatant; Lane 2: Expression of rHcLec1 in the precipitate; Lane 3: Fourth elution of rHcLec1; Lane 4: Western blot
validation results. (B) Binding activity of rHcLec1 to PGN and LPS. (C) Antibacterial effect of rHcLec1, with red bars representing the experimental
group (200 mg/mL of rHcLec1) and black bars representing the control group (equivalent concentration of TBS). (D) Agglutination effect of rHcLec1
on S. aureus, E. coli, A. veronii, and A. hydrophila. The experimental group (rHcLec1, 200 mg/mL) is labeled as "rHcLec1," and the control group (TBS
at the same concentration) as "Control." Black arrows indicate areas of significant agglutination. * indicates P < 0.05.
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both the blank and negative control groups (Figure 6A). Compared

to the control group, crystal growth was significantly enhanced in

the presence of rHcLec1. At the same magnification, crystals formed

under the influence of rHcLec1 protein were several times larger

than those in the control group and exhibited significant fusion.

Raman spectroscopy analysis of the crystals indicated nearly

identical spectral bands across all three groups (Figure 6B). Two

main bands were identified at 279.34–281.16 and 1083.67–1085.50,

along with two weaker bands at 154.34–159.36 and 708.68–712.31,

which are characteristic of calcite (35–37). These results suggest that

rHcLec1 can promote calcite formation and fusion.
4 Discussion

C-type lectins are among the largest families of pattern

recognition receptors (PRRs), activating the immune system

against invading pathogens through the recognition of pathogen-

associated molecular patterns (PAMPs). They are widely distributed

in both vertebrates and invertebrates; however, in invertebrates,

they are generally not conserved. This structural diversity has

resulted in a wide array of functions within the CTL family in

invertebrates. In mollusks, CTLs have been reported to serve

various functions. Beyond their well-known roles in innate

immunity (38), recognizing and binding to PAMPs (39), and

agglutinating bacteria (40), they had also been shown to perform

many other functions. In the echinoderm Strongylocentrotus

purpuratus, it was found that sea urchin spicule matrix proteins,

such as SpSM29, SpC-lectin, SM30, and PM27, contain CTL

carbohydrate recognition domains (CRDs), which are involved in
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post-spicule formation (23, 24). In mollusks, a CTL named MeML

was found in the labial palps of Crassostrea virginica and Mytilus

edulis, and it may be involved in the selection of food particles in

suspension-feeding bivalves (41, 42). In Ruditapes philippinarum,

CTLs are thought to have potential functions in responding to cold

stress (43). Additionally, Perlucin, a purified CTL from Haliotis

discus andH. cumingii Lea, has been shown to play a role in altering

the morphology of calcium carbonate crystals and in nacre

formation (26, 29).

In this study, a C-type lectin (HcLec1) from the freshwater pearl

musselH. cumingii Lea was isolated, identified, and cloned. Structurally

simple, HcLec1 contained only a signal peptide and a CRD, making it

suitable for functional studies as a representative C-type lectin. The

results of this study demonstrated that HcLec1 was expressed across

various tissues, with the lowest expression in hemocytes. This finding

was similar to those for Perlucin in Haliotis discus discus and FcLec4 in

Fenneropenaeus chinensis (15, 26), suggesting tissue-specific expression

of CTLs (44, 45). Huang et al. found that the mantle of Pinctada fucata

contains a high concentration of CTLs, with more immune genes

expressed in the mantle than in hemocytes, a pattern similar to that of

HcLec1 (46). The gill tissue inH. cumingii Lea is a key site for exchange

with the external water environment and for pathogen defense (16, 47,

48). Thus the high expression ofHcLec1 in the gill implied its potential

role in innate immunity.

The CRD of CTLs contained carbohydrate-binding motifs that

were critical for recognizing and binding to PAMPs (29, 39, 49).

The CRD of HcLec1 contained two carbohydrate-binding motifs

(QPD andMND), and results from injection stimulation and ELISA

indicated that these motifs responded to A. hydrophila and LPS and

could bind to both LPS and PGN. LPS and PGN are representative
FIGURE 6

Role of rHcLec1 in the in vitro crystallization of calcium carbonate. (A) Results from scanning electron microscopy. (B) Corresponding Raman
spectroscopy results. The Blank Control contains only a saturated calcium carbonate solution, the Negative Control includes protein elution buffer,
and the Experimental Group includes 50 mL of rHcLec1 (1.0 mg/mL).
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PAMPs of Gram-negative and Gram-positive bacteria, respectively

(7). Our findings also showed that rHcLec1 could directly

agglutinate Gram-positive bacteria (S. aureus) and Gram-negative

bacteria (E. coli, A. veronii, and A. hydrophila) in vitro, without the

addition of Ca2+, indicating that rHcLec1’s agglutination function is

calcium-independent. This result was consistent with the functional

studies of SPL-1 in Saxidomus purpuratus and CfLec-2 in Chlamys

farreri (50, 51). Additionally, HcLec1 was found to directly inhibit

the growth of these four bacterial species in vitro, suggesting that

HcLec1 not only enhanced bacterial phagocytosis through

complement system activation in vivo but also directly bound to

and agglutinates bacteria, affecting their proliferation.

The pearl formation process in H. cumingii Lea can be divided

into three main stages: an initial immune rejection stage following

the implantation of a small mantle tissue piece from the donor

mussel into the recipient’s mantle, a stage where the connective

tissues of both fuse and specialize into a pearl sac, and finally, a

mineralization stage where nacre is secreted and deposited to form

the pearl (52, 53). Throughout this process, both the mantle and

pearl sac serve as critical mineralizing tissues in H. cumingii Lea,

with the pearl sac being particularly essential for pearl cultivation

(21, 54, 55). The significant expression ofHcLec1 in both the mantle

and pearl sac suggested that HcLec1 may play roles not only in

immunity but also in mineralization. Our results indicated that the

expression pattern of HcLec1 aligned with the mineralization

process during nucleus implantation and shell self-repair. The

10–14 day period is critical for pearl sac and shell repair, as the

pearl sac nearly forms, and new shell material is deposited, marking

a peak in mineralization activity (29, 56, 57).

CTLs have been shown to participate in in vitro mineralization

and guide crystal formation. The protein Perlucin from Haliotis

discus discus and Haliotis laevigata has been demonstrated to

regulate crystal formation by either promoting or inhibiting

calcium carbonate crystal formation and controlling crystal

morphology and orientation (25, 26, 58, 59). Our study

corroborated these findings: rHcLec1 was observed to promote

calcite formation in vitro and facilitate the fusion of multiple

calcite crystals into a larger, more complex structure.

Morphologically, the resulting crystals appeared as a larger

aggregate formed by the fusion of several smaller crystals, with a

connecting and fused region between them. Although we did not

investigate further whether this fusion is due to rHcLec1 producing

a glue-like substance or embedding multiple crystals together,

previous research has shown that P60 in Pinctada fucata can bind

crystals together, suggesting that rHcLec1 may have a similar

function in crystal aggregation (60). The formation of pearls

depends on the combined action of foreign materials, calcium

carbonate, and proteins (61). Many proteins can randomly or

directionally regulate the formation of crystal morphology and

size. Currently, the cultivation and harvesting of pearls cannot be

controlled artificially. Therefore, protein-mediated formation of

high-quality pearls may be a future research direction (62, 63).

rHcLec1, as a protein identified from H. cumingii Lea with dual

functions in immunity and biomineralization, could provide new

molecular materials and a foundation for forming high-quality

pearls by influencing crystal formation.
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In summary, we demonstrated that HcLec1 in Hyriopsis

cumingii Lea participated in innate immunity, could agglutinate

and inhibit bacterial growth in vitro, promoted calcite crystal

formation and fusion, and played a significant role in the

biomineralization process of the mussel. This study may provide

a molecular basis for shell repair and pearl growth, offering new

materials and insights for biomineralization applications.
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