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Cluster of Differentiation 6 (CD6), an established marker of T cells, has multiple

and complex functions in regulation of T cell activation and proliferation, and in

adhesion of T cells to antigen-presenting cells and epithelial cells in various

organs and tissues. Early studies on CD6 demonstrated its role in mediating cell-

cell interactions through its first ligand to be identified, CD166/ALCAM. The

observation of CD6-dependent functions of T cells that could not be explained

by interactions with CD166/ALCAM led to discovery of a second ligand, CD318/

CDCP1. An additional cell surface molecule (CD44) is being studied as a potential

third ligand of CD6. CD166, CD318, and CD44 are widely expressed by both

differentiated cancer cells and cancer stem-like cells, and the level of their

expression generally correlates with poor prognosis and increased metastatic

potential. Therefore, there has been an increased focus on understanding how

CD6 interacts with its ligands in the context of cancer biology and cancer

immunotherapy. In this review, we assess the roles of these CD6 ligands in

both the pathogenesis and treatment of cancer.
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What is CD6?

CD6, a type I transmembrane glycoprotein belonging to the highly conserved scavenger

receptor cysteine-rich superfamily (SRCR-SF), is expressed by all developing and mature T-

lymphocytes, a small fraction of mature B (CD5+ or B1a) cells, about one-half of human,

but not mouse, NK (CD56dimCD16+) cells, and to a lesser extent, the basal ganglia and

cerebellar cortex regions of the brain (1–3). CD6 is composed of an extracellular region

consisting of three SRCR domains, a transmembrane region, and a long cytoplasmic tail

containing phosphorylatable residues for intracellular signal transduction (4). Galectins,

specifically Galectin-1 and -3, function as binding partners for CD6, primarily by
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interacting with specific carbohydrate moieties on CD6 (5), thereby

modulating its function in immune cell adhesion, migration, and

activation, particularly in the context of T cell signaling and

immune response regulation (5).

Thus far, there are two mammalian CD6 ligands identified:

CD166/activated leukocyte cell adhesion molecule (ALCAM) and

CD318, also known as CUB domain containing protein 1

(CDCP1). Additionally, a new study by Borjini et al. shows

strong biochemical and biophysical evidence that supports

CD44 as a novel CD6 ligand (4, 6, 7) (Figure 1). All three CD6

ligands are widely expressed on the surface of various tissues,

including endothelial and epithelial cells, antigen-presenting cells

(APCs), and cancer cells.
What is the function of CD6?

CD6 is known to play critical roles in T cell activation and

signaling, cell adhesion, regulation of immune responses, and

immune synapse formation (8, 9). Evidence that CD6 is involved

in T cell activation was first suggested by Gangemi et al., who

demonstrated that monoclonal antibodies (mAbs) targeting CD6
Frontiers in Immunology 02
were able to induce T cell activation, T cell proliferation, and

increase in IL-2 receptor expression (10). Since then, multiple

studies have further substantiated a co-stimulatory role of CD6,

enhancing T cell receptor (TCR) signaling when engaged (11–13).

However, more recent studies suggest that CD6 can also act as an

attenuator of early and late T cell responses in a ligand-independent

manner (14, 15).

The involvement of CD6 in the immune synapse was first

described by Gimferrer et al., whose studies showed that a fraction

of CD6 molecules physically associate with the TCR/CD3 complex.

Image analysis of Ag-specific T-APC conjugates further

demonstrated that CD6 and its ligand CD166 colocalized with

TCR/CD3 at the center of the immunological synapse. Moreover,

their studies also found that addition of a soluble form of rCD6

reduces mature Ag-specific T-APC conjugates, indicating CD6

mediates early cell-cell interactions needed for immunological

synapse maturation (16). Further studies conducted by Tudor

et al. on CD6’s role in the immune synapse demonstrated that

when CD166 binds CD6, a supramolecular complex is formed with

the adaptor proteins ezrin and syntenin-1 coupling the cytoplasmic

tail of CD166 to actin, stabilizing the immunological synapse during

dendritic cell-T cell interactions (17).
FIGURE 1

Schematic representation of CD6 interactions with its ligands. CD6 is composed of three extracellular scavenger receptor cysteine-rich domains
(domains 1, 2, and 3) and an intracellular cytoplasmic that contains phosphorylatable residues for intracellular signal transduction. CD6 functions by
interacting with its ligands CD166 (ALCAM), CD318 (CDCP1), and potentially CD44. CD166 is known to bind domain 3 of CD6, whereas CD318 binds
domain 1. A third ligand, CD44, has been recently identified as a potential novel receptor for CD6 by proximity labeling. Both CD6/CD166 and CD6/
CD318 interactions can selectively be targeted by the monoclonal anti-CD6 antibodies itolizumab and UMCD6 respectively.
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CD6 also plays a significant role in cell adhesion. The sustained

attachment of T lymphocytes to endothelial cells and antigen-

presenting cells (APCs) is dependent on CD166 binding CD6,

which also facilitates effective immune responses and cell

migration to inflammatory sites in autoimmune disease.

Importantly, CD166 participates in leukocyte migration across the

blood-brain barrier (BBB), which is upregulated in active multiple

sclerosis and experimental autoimmune encephalomyelitis (18).

Furthermore, blockade of CD166 restricts the transmigration of

CD4+ lymphocytes and monocytes across BBB endothelium,

reducing the severity and delaying the onset of encephalomyelitis.

CD6 also mediates adhesion of T cells to other tissue-specific cell

types such as keratinocytes and synovial fibroblasts (19, 20). Such

interactions involve engagement of both CD166 and CD318, which

bind to distinct epitopes of CD6.

CD6 has also been shown to play a dual role in regulating

immune responses: while it enhances T cell activation, it also has

regulatory functions that help maintain immune homeostasis. Orta

Mascaró et al. showed that CD6 can function as a negative

modulator of TCR-mediated signaling. The molecular

mechanisms by which CD6 restrains TCR signaling are not well

described, as CD6 signaling pathway is still relatively unknown.

However, given the association of CD5 and CD6 at the T cell

surface, and the regulatory role of CD6 on CD5 Tyr

phosphorylation, CD5 could mediate such a negative effect. CD6

signaling can therefore modulate the production of cytokines and

other immune mediators, ensuring a balanced immune response

that prevents excessive inflammation and autoimmunity (21).

Recent studies on the CD6 signalosome, conducted by Mori et al.,

confirmed that the TCR-inducible CD6 signalosome had both

positive (SLP-76, ZAP70, VAV1) and negative (UBASH3A/STS-

2) regulators of T cell activation (22).
Is CD6 linked to autoimmunity?

CD6 has been linked to autoimmunity, and CD6-targeting

antibodies have been proposed as a promising therapy for several

autoimmune diseases. Given that CD6 is required for optimal

immune response, it is not surprising that many studies have

linked CD6 with the pathogenesis of human autoimmune disease,

such as Behcet’s disease (23), multiple sclerosis (MS) (24, 25),

psoriasis (26), Sjögren’s syndrome (27, 28), rheumatoid arthritis

(RA) (29), uveitis (30), inflammatory bowel disease (31), and most

recently, lupus nephritis (32). For instance, CD6 has been identified

and validated as a risk gene for MS (25), single-nucleotide

polymorphisms (rs17824933, rs11230563 and rs12360861) are

associated with severe forms of psoriasis (33), and high

expression of CD6 has been observed in RA joints (20, 34).

Importantly, in mouse models of MS and RA, in both CD6-/-

mice and CD6-humanized mice treated with UMCD6, an anti-

human CD6 monoclonal antibody targeting the CD6/CD318

interaction, striking reductions in clinical signs of disease,

pathogenic Th1/Th17 responses and inflammatory cell infiltration

into the target organs are observed (24, 29). Similarly, CD6-/- mice

with experimental autoimmune uveitis (EAU), have decreased
Frontiers in Immunology 03
retinal inflammation and reduced autoreactive T-cel l

responses (30).
Is there a role for CD6
in alloreactivity?

The role of CD6 in alloreactivity was described by Rasmussen

et al., who discovered a subpopulation of peripheral blood T

lymphocytes with low or no CD6 (CD3+CD5intCD6lo/−) in the

blood of healthy volunteers. CD6lo/− T cells showed decreased

reactivity to allogeneic stimulation, but not to mitogenic lectins

(PHA) or soluble recall antigens (tetanus toxoid) (35). Human

natural regulatory T cells (nTreg) were later found to exhibit low/

negative CD6 expression, suggesting that these cells could be the

same CD6lo/− population that Rasmussen et al. had discovered (36).

Additionally, CD6 is being studied for its role in graft rejection

and tolerance. Rambaldi et al. recently examined expression of CD6

in patients after allogeneic cell transplantation and found that CD6

expression was reduced in Treg and CD8+T cells in acute graft-

versus-host disease (aGvHD) compared to healthy donors.

Itolizumab, an anti-CD6 mAb that targets the CD6/CD166 axis,

inhibited CD4 and CD8 T-cell activation and proliferation in pre-

GvHD samples, but inhibition was less prominent in samples

collected after aGvHD onset. Modulating CD6 activity could

therefore enhance immune tolerance to transplanted organs,

reducing the risk of rejection and improving graft survival (37).
Is CD6 expressed by
lymphoid malignancies?

CD6 is expressed by many lymphoid malignancies. Zhao et al.

found elevated expression of CD6 in aggressive NK-cell leukemia/

lymphoma (ANKLL) and extranodal NK/T-cell lymphoma

(ENKTL), suggesting that CD6 could be a therapeutic target for

these hematological malignances (38). In patients with B-cell

chronic lymphocytic leukemia (CLL), CD6 is also expressed on a

significant proportion of their malignant B cells (39, 40).

Parameswaran et al. recently confirmed that CD6 is indeed highly

expressed on most T cell lymphoma cell lines. Importantly, a CD6-

targeted antibody-drug conjugate (anti-CD6-ADC) selectively kills

T cell lymphoma cells in vitro and reverses the development of

tumors in vivo in mouse models of T cell lymphoma (TCL) (41).
Is CD6 involved in solid malignancies?

The proteolytic cleavage of the CD6 extracellular region

following lymphocyte activation gives rise to soluble CD6 (sCD6)

(42), which is found in serum of cancer patients (43). Transgenic

mice expressing high circulating levels of human sCD6

(shCD6LckEmTg) provided the first indication of the

immunotherapeutic potential of shCD6 against cancer. These

mice demonstrated decreased tumor growth when injected with
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subcutaneous syngeneic cancer cells of various lineages, such as

melanoma, fibrosarcoma, and lymphoma cell lines. Similar lineage-

independent increased anti-tumor responses were also seen in wild-

type mice transduced with hepatotropic adeno-associated virus

(AAV) coding for mouse sCD6 (smCD6) or given infusions of

the recombinant shCD6 protein (43).
Ligands of CD6

What are the functions of CD166/ALCAM?
CD166 or Activated Leukocyte Cell Adhesion Molecule

(ALCAM) was the first ligand described for CD6 (44, 45). CD166

is a cell surface glycoprotein and a member of the immunoglobulin

superfamily molecules, originally identified on leukocytes.

Structurally, CD166 has three domains: a large glycosylated

extracellular domain, a transmembrane domain, and a short

cytoplasmic domain. The extracellular domain has five

immunoglobulin (Ig)-like domains: two amino-terminal

membrane distal variable (V)-type domains, and three membrane

proximal constant (C2)-type domains. These Ig-like domains

mediate homophilic CD166-CD166 interactions and heterophilic

CD166-CD6 interactions (46). Subsequent kinetics analyses of

CD6-CD166 and CD166-CD166 interactions, done by Hassan

et al., revealed that CD6 and CD166 proteins interact with a KD

=0.4–1.0 mM and Koff ≥0.4–0.63 s–1, which is typical of many

leukocyte membrane protein interactions. On the other hand,

CD166-CD166 homophilic interaction has much lower affinity

(KD =29–48 mM and Koff ≥ 5.3 s–1) (47).

Is CD166/ALCAM a therapeutic target in cancer?
CD166 has been found on activated T cells and monocytes,

epithelial cells, fibroblasts, neurons, and a wide range of

malignances. In autoimmunity, CD166 has been implicated in the

pathogenesis of lupus nephritis, rheumatoid arthritis, Sjogren’s

syndrome, and inflammatory bowel disease in which both CD6

and CD166 are overexpressed (28, 31, 32, 48). Specifically in cancer,

CD166 is associated with worse prognosis and increased metastatic

potential chance in several malignancies, including liver (49),

thyroid (50), head and neck (51), and breast cancer (52–54). In

prostate cancer specifically, CD166-positive cells have enhanced

sphere-forming capacity and carcinogenic potential (55), while in

breast cancer, CD166 promotes evasion of apoptosis of the cancer

cells (56). Furthermore, preliminary results from a phase II study of

praluzatamab ravtansine (CX-2009), an activated antibody-drug

conjugate that targets ALCAM, show promising overall response

rate in breast cancer patients with advanced hormone receptor–

positive, HER2 negative cancer (57).

In addition to prostate and breast cancer, CD166 is also up-

regulated in liver tissue and serum from patients with hepatocellular

carcinoma (HCC) (58). Pancreatic cancer patients whose

circulating cancer cells have high levels of CD166, also tend to

have significantly shorter survival than those with low levels of

CD166 (59). Similarly, high levels of CD166 in colorectal tumors are

strictly associated with poorer survival, nodal status, tumor grade

and high risk of metastasis (60). Nonetheless, a poor prognosis for
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cancer is not invariably associated with CD166 expression. High

levels of CD166 in patients with Ewing sarcoma are likely to have

better prognoses and not develop metastases (61). Similarly, CD166

expression is strongly linked with a better prognosis and longer

patient survival in a multivariate survival analysis of patients with

non-small cell lung cancer.

The interaction between CD6/CD166 is being studied for its

clinical applications in both autoimmunity and cancer (9).

Itolizumab, a humanized recombinant IgG1 mAb that blocks the

CD6/CD166 binding, is a novel biological agent that has been

approved in India for the treatment of psoriasis and psoriatic

arthritis (62). Itolizumab downregulates levels of interferon-g
(IFN-g), IL-6, and tumor necrosis factor-a (TNF-a), leading to

reduction in the T-cell infiltration at the sites of inflammation.

Itolizumab is currently being evaluated for safety, pharmacokinetics

and pharmacodynamics for the treatment of Lupus Nephritis in the

U.S. (NCT04128579).

An in vitro study suggests that Itolizumab might increase the

cytotoxic capacity of CD8 and NK-T lymphocytes to enhance breast

cancer cell death. Gonzalez-Munoz et al. demonstrated that such an

effect of Itolizumab was due to reversal of the NKG2A/NKG2D

ratio and negative modulation of inhibitory CD5 receptor

expression on these cell subpopulations, as well as increased

granzyme-b and IFN-g production. Their work also showed the

first evidence of the synergistic antitumor effect of combination

therapy with itolizumab and pembrolizumab (anti-PD-1).

However, the use of CD166 targeted therapeutics for cancer

might raise issues of off target consequences related to widespread

expression of CD166 on other cell types, including many types of

cells of the immune system (63).

Chimeric antigen receptor (CAR) T-cell therapy is emerging as

an efficacious cancer treatment for hematological malignancies.

Recent pre-clinical studies on CAR-T cells that specifically target

CD166 also show substantial promise on various solid tumors. For

instance, Wang et al. showed that CD166.BBz CAR-T cells (a type

of CAR-T cells known to persist longer than CD28-costimulated

CAR (28z) T cells) substantially killed osteosarcoma cell lines in

vitro. Furthermore, their studies revealed that an intravenous

injection of CD166.BBz CAR-T cells into immunocompromised

mice resulted in decreased tumor growth with no apparent

toxicity (64).

Similarly, He et al. recently developed CAR-T cells based on the

extracellular domain of CD6 and found that such cells are cytotoxic

to human colorectal cancer cells (CRC). Interestingly, their studies

demonstrated that CD6-CAR-T cells specifically targeted CD166

rather than CD318. Additionally, CD6-CAR-T cells exhibited

strong cytotoxicity in a dose-dependent manner against CD166-

positive cell lines, and increased production of the cytokine IFN-g.
Perhaps more importantly is the fact that these CD6-CAR-T cells

exhibited strong cytotoxicity against CRC cancer stem cells,

indicating that CD6-CAR-T might be a promising treatment

strategy for CRC (65). Considering that many cancers

simultaneously express CD166 and CD318, which bind to

different epitopes of CD6, the functional consequences of CD6-

mediated interactions between cancer cells and lymphocytes may be

a blend of distinct signals from each ligand.
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CD6 and galectins

Galectins are a class of proteins that bind to b-galactose–
containing glycoconjugates and play crit ical roles in

developmental, homeostatic, and pathological processes. These

proteins, essential in glycobiology, are expressed by fibroblasts,

mesenchymal stromal cells, a wide range of cancer cells, activated

T and B cells, regulatory T cells, dendritic cells, mast cells,

eosinophils, monocytes/macrophages, and neutrophils. In

addition, galectins can promote pro- or anti-inflammatory

responses , depending on the inflammatory st imulus ,

microenvironment, and target cells (66–68). In regard to CD6,

Escoda-Ferran et al. demonstrated that Galectins 1 and 3 bind to

both CD6 and CD166/ALCAM, and interfere with superantigen-

induced T-cell proliferation, adhesion, and migration. Moreover,

their studies showed that CD6 expression protects T cells from

Galectin 1- and 3-induced apoptosis (5). Galectin-1 is considered a

pivotal immunosuppressive molecule, and it is expressed by many

types of cancer. Tumor-secreted Galectin-1 can bind to glycosylated

receptors on immune cells and trigger the suppression of immune

cell function in the tumor microenvironment, contributing to the

immune evasion of tumors (69). Galectin-3 expression is typically

elevated and considered a marker for tumor progression and

metastasis, as it is involved in various processes such as cell

adhesion, migration, invasion, angiogenesis, and immune

suppression, often promoting cancer cell growth and spread

across different tissues; essentially, high galectin-3 expression is

associated with a poorer prognosis in many cancers (68).

The mechanism by which CD6 expression negatively modulates

Galectin 1- and 3-induced T-cell death is not fully understood.

Escoda-Ferran et al. demonstrated reduced protection of CD6-

negative cells transfected with cytoplasmic tail-truncated CD6

isoforms compared to full-length CD6, suggesting that the down-

modulatory effect depends on the integrity of the CD6’s cytoplasmic

domain (5). The interaction between galectins and CD6 is thus

highly relevant as a potential therapeutic target in various diseases,

including cancer.
Is CD318 important in cancer?

CD318 or Cub domain-containing protein 1 (CDCP1) is a cell-

surface glycoprotein expressed by fibroblasts and the epithelium of

normal and cancer cells. CD318 is implicated in inflammatory

responses, autoimmunity, and cancer. In regard to autoimmune/

inflammatory diseases, knockout of CD318 gene has been found to

attenuate disease severity and infiltration of IFN-gamma and IL-17-

producing T cells in experimental mouse models of encephalomyelitis

(6), inflammatory arthritis (29), Kawasaki disease (70), and uveitis (30).

CD318 has been studied almost exclusively in cancer. High

levels of cell surface CD318 are associated with progressive disease

and markedly poorer survival in breast (71), lung (72), colorectal

(73), ovarian (74, 75), renal (76), prostate (77), melanoma (78),

pancreatic (79), and hematopoietic cancers (80). This is attributable

to the fact that CD318 lies at the nexus of key tumorigenic and

metastatic signaling cascades such as the oxidative pentose
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phosphate pathway, fatty acid oxidation, SRC/PKCd, PI3K/AKT,
WNT, and RAS/ERK axes (81). These signaling cascades play a

significant functional role in cancer cell growth and survival, as well

as metastasis and resistance to current treatments.

Specifically, CD318 is also known to contribute to the

proliferation of breast, lung, ovarian and prostate cancer cells via

interacting with HER2 and receptor tyrosine kinases (RTKs), as well

as the downstream proteins Ras, Src, and AKT. Alajati et al.

demonstrated that the interaction between CD318 and HER2

enhances HER2-driven tumorigenesis and promotes trastuzumab

resistance in breast cancer (82). Furthermore, Uekita et al. showed

that CD318 is required for the functional link between Ras and Src

signaling during the multistage development of human malignant

tumors. Further studies demonstrated that, indeed, Ras stimulates

the expression of CD318 and promotes Src-mediated survival in in

vitro lung cancer models of non-small lung carcinoma (83).

Similarly, CD318 mediates spheroid growth and is involved in the

activation of AKT in ovarian cancer (74). These and other findings

have stimulated the development of agents that target CD318 for

detection and treatment of a range of cancers, and results from

preclinical models suggest that these approaches could be

efficacious for the treatment of cancer.

The identification of CD318 as a second CD6 ligand has led to

studies that begin to explore its potential role in anti-tumor

immunity. Co-culture experiments using breast, lung, and

prostate cancer cell lines showed substantial enhancement of

cancer cell death in the presence of human lymphocytes and

UMCD6, an anti-CD6 monoclonal antibody that rapidly caps and

internalizes CD6. Augmentation of lymphocyte cytotoxicity by

targeting CD6 is due to direct effects of UMCD6 on NK cells,

NK-T cells, and CD8+T cells when CD6 is internalized from the cell

surface membrane.

In vivo, a single dose of UMCD6 injected intraperitoneally is

sufficient to erase CD6 expression from the surface of human

lymphocytes adoptively transferred into immunodeficient mice

for at least 7 days and thus, maintain their activated phenotype.

Further studies confirmed that UMCD6 directly activates the

cytotoxic properties of T cells and NK cells by up-regulating the

NK activating receptor NKG2D and down-regulating the inhibitory

receptor NKG2A (84). In vivo, targeting the interaction between

CD6 and its ligand CD318 with UMCD6 increases survival of breast

and prostate cancer xenografted mice that also receive infusions of

human lymphocytes. Analysis of tumor-infiltrating cytotoxic

lymphocytes in these mice revealed higher proportions of

activated tumor-infiltrating NK cells and CD8+T cells in

UMCD6-treated mice compared to IgG and anti-PD-1 control

antibodies. Similarly, NK cells treated with UMCD6 showed up-

regulation of the NKG2D-DAP10 complex and PI3K pathway (85).

These results imply that engagement of CD6 by CD318 weakens the

host response against cancer.

Monoclonal antibodies against CD318 have also been studied as

a potential approach to cancer immunotherapy. Anti-CD318

produces a more modest effect on cancer cell death and survival

compared to UMCD6, which is attributable to a dual effect of

UMCD6: 1) rapid internalization of CD6 prevents or reverses

engagement of CD6 by its ligand CD318 on cancer cells; and 2)
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UMCD6 directly activates the cytotoxic properties of CD8+, NK-T

and NK cells. Because anti-CD318 does not have any effect on

lymphocyte cytotoxic capability, UMCD6 therapy is substantially

more effective than anti-CD318 therapy.

In addition, recent pre-clinical work using CAR-T cells

containing an anti-CD318 single-chain variable fragment (anti-

CD318 scFv), CD3z, CD28, and Toll-like receptor 2 (TLR2)

domains, shows great promise as a novel strategy for the

treatment of colorectal cancer (86). In these studies, Li et al.

found that CAR318 T cells exhibited strong cytotoxicity and

cytokine-secreting abilities against colorectal cancer cells in vitro,

and induced cancer regression in xenograft mouse models in vivo.

Moreover, Schäfer et al. also showed that CAR-T cells specific for

CD318 possess strong antitumor capabilities for pancreatic ductal

adenocarcinoma (PDAC) (87).
Does CD6 interact with cancer
stem cells?

Importantly, there is now substantial evidence that many

cancers are hierarchically organized and driven by a stem-like

population that mediates metastasis and treatment resistance (88,

89). Rather than representing a fixed population, “stemness”

represents a cell state and “stem-like cells” may arise via de-

differentiation of bulk tumor cells. In addition to resistance to

radiation and chemotherapy, these cells are also relatively resistant

to anti-PD-1/PD-L1 checkpoint inhibition (90, 91). This suggests

that increasing the efficacy of immunotherapy as a potential cure of

cancers will require effective elimination of this population of cells.

CD166 has been established as a marker for stem cells, particularly

in the context of the intestinal stem cell niche, where it is highly

expressed on active-cycling stem cells and plays a role in maintaining

their function and niche interactions (92). Recent research also

indicates CD166 is expressed on hematopoietic stem cells,

suggesting its potential as a stem cell marker across different tissue

types (93). CD166 has been studied as a potential cancer stem cell

marker in many cancers, including colorectal (94), ovarian (95), breast

(96), and prostate (97) cancers due to its involvement in cell adhesion.

Similarly, CD318 has been proposed as a stem cell marker as it

is also expressed on cells phenotypically identical to mesenchymal

stem/progenitor cells (MSCs) and neural progenitor cells (NPCs)

(98). Similar to CD166, CD318 expression is also linked to cancer

stem cells, indicating its potential role in identifying aggressive

tumor cells with stem-like properties in breast cancer (99) and

melanoma (78). Further studies are necessary to evaluate the ability

of CD6/CD166 and CD6/CD318 directed therapies to target CSCs.
What is the role of CD44 as a
potential CD6 ligand?

CD44 is a cell surface glycoprotein highly expressed on normal

stromal cells and on stem cells, in the vast majority of cancers.

CD44 binds to several ligands including hyaluronic acid (HA),

osteopontin (OPN), chondroitin, collagen, fibronectin, and
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serglycin/sulfated proteoglycan. Recently, Borjini et al. have

identified CD44 as a novel ligand of CD6 (7). Using enzyme-

catalyzed proximity labeling and biophysical approaches they

demonstrated that CD44 and the other two known CD6 ligands,

CD166 and CD318, are distributed diffusely on resting retinal

pigment epithelium (RPE) cells but clustered together to form a

receptor complex upon CD6 binding. Interestingly, CD6

stimulation dramatically remodeled the actomyosin cytoskeleton

in RPE cells, leading to an increase in myosin II phosphorylation.

Further studies confirmed that actomyosin activation triggers the

disassembly of tight junctions responsible for RPE barrier integrity

in a process that required all three CD6 known ligands, providing

new insights into the mechanisms by which CD6 mediates T cell–

driven disruption of tissue barriers during inflammation.

In addition to RPE, CD44 is highly expressed in many cancers

and has a crucial role in regulating metastasis via recruitment of

CD44 to the cell surface of the cancer cells. In addition, CD44 is a

compelling marker for cancer stem cells of many solid malignancies.

The interaction of HA and CD44 promotes EGFR-mediated

pathways, consequently leading to tumor cell growth, tumor cell

migration, and chemotherapy resistance in breast, prostate, and

gastrointestinal cancers (100). In breast cancer specifically, CD44+

cells have superior spheroid colony formation in serum-free medium

in vitro, as well as enhanced tumor frequency when injected into

severe combined immunodeficient (SCID). Moreover, CD44+ gastric

cancer cells display similar stem cell properties of self-renewal and are

able to give rise to CD44+ cells in vitro and in vivo. Additionally, these

CD44+ gastric cancer cells exhibited increased resistance to radiation

and chemotherapy-induced cell death.

Expression of certain vCD44 isoforms is linked with progression

and metastasis of cancer cells, as well as poor prognosis. The

expression of CD44 isoforms can be correlated with tumor

subtypes and also be a marker of cancer stem cells. CD44 cleavage,

shedding, and elevated levels of soluble CD44 in the serum of patients

is a marker of tumor burden and metastasis in several cancers

including colon and gastric cancer (101). In prostate cancer, CD44-

positive cells are also capable of enhancing metastasis. Di Stefano

et al. demonstrated that CD44v8-10pos cells from PC3 cells are more

invasive in vitro and have a higher clonogenic potential than

CD44high cells (102). Functional consequences of CD44 on

lymphocytes binding to CD6 have not yet been examined.
Are CD6 ligands chemotactic factors?

The first clue that CD6 ligands might be involved in chemotaxis

came from Enyindah-Asonye et al., who demonstrated that CD318 is

shed from fibroblast-like synoviocytes (FLS) and accumulates in a

soluble form in rheumatoid arthritis (RA) synovial fluid at levels

higher than found in normal or RA sera. Enyindah-Asonye et al.

further confirmed that soluble CD318 is indeed chemotactic for CD6

+ lymphocytes at a concentration equal to this in vivo gradient. Like

FLS, CD318 cancer cells shed concentrations of soluble CD318

proportional to the intensity of CD318 expression on the cell

surface. Very high concentrations of chemoattractants, in excess of

the optimal concentrations for initiation of chemotaxis, can halt
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directed migration of cells. Thus, concentrations of CD318+ that are

markedly elevated in the vicinity of a CD318+ cancer could

potentially halt lymphocytes outside of a tumor and exclude

lymphocytes from the tumor microenvironment.

In regard to CD44, Tzircotis et al. demonstrated that

hyaluronan acts as a soluble chemoattractant promoting the

migration of breast cancer cells in vitro. Importantly, they also

found that chemotaxis towards hyaluronan can be abrogated upon

treatment of the cells with siRNA oligonucleotides to downregulate

CD44 expression. Their studies further demonstrated that CD44 is

the principal receptor mediating this response, and that CD44

expression is not a general requirement for cell migration and

gradient sensing, rather it elicits a ligand-specific response.

However, CD44 alone is not sufficient to drive chemotaxis

towards hyaluronan, as fibroblasts transfected with high levels of

human CD44 do not respond to a hyaluronan gradient (103).

A role for CD166 pathway in chemotaxis has also been

reported. Marrocco et al. recently investigated the contribution

of CD6 in mediating chemokine-induced migration of Teff cells

through endothelial barriers using human PBMCs and found that

CD4+ T cells expressing higher levels of CD6 preferentially

migrate in response to CXCL12. Blocking the CD6-CD166

pathway with itolizumab reduces the migration of CD4+ CCR7−

CD45RA− TEM cells by ~60%. Furthermore, itolizumab treatment

reduced the migration of pathogenic TH17 when co-cultured

with monocytes.
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An important issue in understanding possible roles of CD6 or

its ligands in chemotaxis is the paradigm that chemotactic

responses are mediated by G-protein coupled receptors (GPCRs).

Neither CD6 nor its ligands have the structural attributes of GPCRs.

This raises the possibility that an additional CD6-associated protein

(or proteins), within the GPCR family but as yet unidentified, is

required to concurrently engage ligands of CD6 that generate a

chemotactic response.
Conclusion - the potential of anti-
CD6 as a cancer immunotherapy

CD6 ligands have been extensively studied in cancer biology

because of their correlation with higher occurrence of metastases,

higher relapse rate, and poor prognosis in breast, lung, prostate, colon,

melanoma, renal, hepatocellular, acute myeloid leukemia, and

pancreatic cancers. However, their role in anti-tumor immunity

have just begun to be explored. In this review we highlight a

unique dual effect of blocking the CD6/CD318 interaction with

UMCD6, an anti-CD6 mAb known to block T-cell dependent

autoimmunity through effects on differentiation of effector CD4+T

cell subsets, while also activating the anti-cancer cytotoxic properties

of CD8+T and NK cells (Figure 2). Importantly, current checkpoint

inhibitors induce significant autoimmune/inflammatory toxicity in

many organs (104–106), which limits the intensity and duration of
FIGURE 2

Schematic representation of the dual role of anti-CD6 as a cancer immunotherapy and suppressor of T-cell autoimmunity. (A) Internalization of CD6
by UMCD6 leads to increased expression of the activating receptor complex NKG2D-DAP10 and cytotoxic cytokine production on both NK cells and
CD8+T cells. (B) Internalization of CD6 on CD4+T cells impedes the differentiation of effector Th1 and Th17 cells, offering protection against various
mouse models of T-cell autoimmunity.
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immunotherapy. Humans or mice that lack PD-1 or CTLA-4 exhibit

a global autoimmune diathesis that corresponds to the toxicities

observed when these structures are targeted in immunotherapy of

cancer. In contrast, CD6-/- andCD318-/-mice are healthy and resistant

to the induction of autoimmune diseases that are driven by Th1 or

Th17 cells. The potential safety of UMCD6 for clinical use is

enhanced by lack of depletion of CD6+ lymphocytes by UMCD6,

due to its rapid capping and internalization by CD6+ cells, which can

avoid engagement of complement or Fc receptors. Although much

remains unknown about the interactions of CD6 with its ligands, the

data from experimental systems argues for testing anti-CD6 as a

novel, lymphocyte-engaging cancer immunotherapy in human

cancer patients.
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