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Public Health, Shantou University, Shantou, China, 3Department of Breast Surgical Oncology, National
Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China, 4Department of General Surgery,
Union Hospital affiliated to Fujian Medical University, Fuzhou, China, 5Department of Neurosurgery,
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Background: Colon adenocarcinoma (COAD) is a malignancy with a high

mortality rate and complex biological characteristics and heterogeneity, which

poses challenges for clinical treatment. Anoikis is a type of programmed cell

death that occurs when cells lose their attachment to the extracellular matrix

(ECM), and it plays a crucial role in tumor metastasis. However, the specific

biological link between anoikis and COAD, as well as its mechanisms in tumor

progression, remains unclear, making it a potential new direction for therapeutic

strategy research.

Methods: We employed transcriptomic data and clinical information from The

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) to pinpoint

differentially expressed anoikis-related genes (ARGs) in COAD. Using Cox

proportional hazards models and Lasso regression analysis, we developed a

prognostic signature derived from these ARGs. We also investigated the roles and

interactions of these genes in the tumor microenvironment by analyzing single-

cell RNA sequencing data. Additionally, we employed molecular docking

techniques to evaluate the potential of inhibin subunit beta B (INHBB) as

therapeutic targets and to assess the binding affinity of candidate drugs. Finally,

we used gene knockout techniques to silence the key gene INHBB and explored

its biological functions in vitro.

Results: In our study, by analyzing the expression differences of ARGs, we

successfully classified patients with COAD. Kaplan-Meier survival analysis

demonstrated that patients with elevated risk scores experienced poorer

prognosis, a finding that was confirmed in both the training and validation

cohorts. Additionally, immune infiltration analysis revealed a notable increase in
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immune cell presence within the tumor microenvironment of high-risk patients.

Molecular docking identified potential drug candidates with high binding affinity

to INHBB, including risperidone. Furthermore, in vitro experiments with INHBB

showed that downregulation of its expression in COAD cell lines significantly

reduced cellular viability and migration capacity.

Conclusion: In summary, our research, based on the expression characteristics

of ARGs, provides new insights into the precise classification, prognosis

assessment, and identification of potential therapeutic targets in COAD. It also

validates the key role of INHBB in the progression of COAD, establishing the

foundation for future personalized treatment strategies.
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1 Introduction

Colorectal cancer (CC) ranks among the most prevalent cancers

globally. According to the 2022 cancer statistics from theWorld Health

Organization, CC ranks third in incidence among all cancer types, with

1,926,425 new cases reported; it also ranks second in mortality, with

904,019 new deaths attributable to CC (1–3). This poses a significant

challenge to healthcare systems globally. Among all histopathological

types, colon adenocarcinoma (COAD) comprises the majority (4).

Currently, surgical resection remains the predominant curative

approach; Nonetheless, progress in chemotherapy, targeted therapies,

and immunotherapy has introduced new treatment alternatives for

patients with COAD (5). Despite these advancements, issues such as

tumor specificity, treatment resistance, and the potential for local

recurrence or metastasis still negatively impact patient outcomes.

Consequently, it is crucial to explore the molecular mechanisms

driving COAD progression, investigate early diagnostic techniques,

and assess the importance of prognostic biomarkers.

Anoikis is a specific form of apoptosis initiated when cells lose

their usual attachment to the extracellular matrix (ECM) (6, 7). This

self-destructive process is activated when cells detach from their

supportive matrix or surrounding tissues, preventing them from

proliferating in inappropriate locations and thereby avoiding the

formation of abnormal tissues or cancer. Cancer cells often evade

anoikis through various mechanisms, allowing them to survive after

detaching from their primary site and metastasize to other tissues or

organs, contributing to tumor spread. Recent studies have indicated

that anoikis serves as a mechanism by which tumor cells evade

apoptosis, closely correlating with tumor aggressiveness, metastatic

potential, and prognosis (8, 9). Breast cancer cells exhibit a

heightened ability to evade anoikis, particularly pronounced in

triple-negative breast cancer (TNBC). These cells promote their

survival upon detachment from the ECM by increasing the

expression of anti-apoptotic factors (such as Bcl-2) and activating

the PI3K/Akt signaling pathway, which enhances their invasive and
02
metastatic potential (10–12). In non-small cell lung cancer

(NSCLC) cells, anoikis is also linked to metastatic potential. Some

studies suggest that by modulating the expression of integrins and

E-cadherin, tumor cells can adjust their dependency on the ECM,

allowing them to escape immune detection and apoptosis, thus

facilitating their colonization and growth in distant tissues (13).

However, comprehensive analyses of the impact of anoikis in

COAD remain scarce. Therefore, identifying anoikis-related genes

(ARGs) with prognostic significance in COAD is crucial.

Single-cell sequencing is a technique that enables the analysis of

genetic information, including genomics, transcriptomics, and

epigenomics, at the level of individual cells (14). Unlike

traditional bulk sequencing, single-cell sequencing reveals critical

details of heterogeneity within cellular populations, such as gene

expression differences among various cell types, functional states of

specific cell subpopulations, and dynamic changes in cells during

developmental processes. Molecular docking is a computational

simulation method used to predict the binding modes of small

molecules, such as drug compounds, with target proteins. This

technique estimates the interactions and energy between molecules

to predict the optimal binding conformations and sites of small

molecules with receptor proteins, thereby inferring potential drug

targets or aiding in the design of novel therapeutics (15).

In this research, we seek to reveal the molecular features and

clinical significance of ARGs in COAD by integrating extensive

transcriptomic data from The Cancer Genome Atlas (TCGA) and

Gene Expression Omnibus (GEO) alongside clinical information, with

the goal of developing a prognostic gene model for COAD (16).

Utilizing single-cell analysis techniques, we further investigate the

roles of these genes within the tumor microenvironment and their

interactions with the tumor immune microenvironment (17).

Additionally, through molecular docking studies, we will explore the

potential of these genes as therapeutic targets and assess the binding

affinities of candidate drugs to these targets. In vitro experiments will

further confirm the expression levels and functions of critical genes
frontiersin.org
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identified in the model (18). This research offers fresh perspectives and

a foundational framework for the early diagnosis, targeted therapy, and

prognostic evaluation of COAD.
2 Materials and methods

2.1 Data acquisition and preprocessing

RNA-seq data and clinical details for COAD patients were sourced

from TCGA database (https://portal.gdc.cancer.gov/). A total of 585

transcriptomic datasets, clinical data (GSE40967), and single-cell

datasets from 13 COAD samples (GSE110009) were acquired from

the GEO database (https://www.ncbi.nlm.nih.gov/geo/). A total of

576 ARGs were sourced from the GeneCards database (https://

www.genecards.org/) and the Harmonizome database (https://

maayanlab.cloud/Harmonizome/) (19). To maintain the accuracy

and reliability of the analyses, only ARGs with a correlation

coefficient exceeding 0.4 were chosen for further examination.
2.2 Exploration of Anoikis-related
prognostic genes

In this research, we obtained transcriptomic and clinical data

from COAD samples within TCGA database. Differential expression

analysis was performed using the R package “DESeq2” to identify

differentially expressed genes (DEGs) with a fold change of at least 2

and a p-value of less than 0.01. By intersecting these DEGs with

ARGs, we identified 134 significantly different genes in COAD.

Standardized merging with GEO data led to further prognostic

analysis, revealing 37 genes associated with overall survival (OS).

Gene copy number variations were assessed using data obtained from

the UCSC Xena website (https://xena.ucsc.edu/), while a protein-

protein interaction (PPI) network was generated using the online

tool STRING to investigate co-expression relationships and

potential molecular interactions among the genes (20, 21).
2.3 Consistency cluster analysis

We performed an in-depth clustering analysis of samples using the

K-means clustering algorithm from the “ConsensusClusterPlus”

package, setting the maximum number of clusters to 9 (maxK = 9).

Through detailed analysis of the consistency matrix of clustering

results, we successfully determined the optimal number of clusters to

be 2, which was validated using principal component analysis (PCA)

(22). Heatmap analysis demonstrated relationships between alterations

in gene expression and clinical characteristics, while survival curve

analysis showed that Cluster A had a better prognosis than Cluster B,

revealing notable differences in immune cell expression between the

two clusters. Gene Set Variation Analysis (GSVA) and Gene Set

Enrichment Analysis (GSEA) were utilized to further investigate

biological functions and pathway activity differences across the

various subtypes.
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2.4 Construction of prognostic model

We utilized the “createDataPartition” function in R to randomly

partition the dataset into training and testing subsets. Univariate Cox

regression analysis was performed to identify significant genes,

followed by Lasso regression and cross-validation to optimize a

multivariate Cox model (23). The “glmnet” package facilitated the

calculation of risk scores for COAD patients based on the refined

model. Patients were categorized into high-risk and low-risk groups

based on the median risk score. The risk score was calculated using the

formula: Risk score = ∑(expi * bi), where expi represents the expression
level of each gene and bi denotes the corresponding regression

coefficient. Kaplan-Meier survival curves were plotted using the

“survival” package, and time-dependent receiver operating

characteristic (tROC) curves were generated with the “timeROC”

package to evaluate the model’s predictive accuracy regarding

patient survival.
2.5 Construction of nomograms

Nomograms were developed using the “rms” and “regplot”

packages in R to forecast survival in COAD patients, taking into

account factors such as age, sex, and stage. Calibration curves

validated the precision of the nomogram’s predictions for survival

rates at 1 year, 3 years, and 5 years (24). Decision curve analysis

revealed that the nomogram’s predictive ability was superior to that

of individual clinical factors. Performance assessment of the risk

score showed that its accuracy in prediction surpassed that of

conventional clinical indicators.
2.6 Risk score correlation with
clinical variables

Both univariate and multivariate Cox regression analyses

indicated a significant association between age, stage, and risk

scores with the survival duration of patients with COAD. The

risk score model constructed using these variables demonstrated

significant differences in survival times across patients of varying

gender, age, and stage.
2.7 Enrichment analysis

Using R packages “clusterProfiler” and “org.Hs.eg.db,” we

conducted Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis on

differentially expressed genes across different risk groups. GO

enrichment analysis revealed distinct patterns in the distribution

of differentially expressed genes between high-risk and low-risk

groups, spanning biological processes (BP), molecular functions

(MF), and cellular components (CC) (25). Additionally, KEGG

pathway analysis highlighted the key pathways enriched by these

differentially expressed genes.
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2.8 Immune cell infiltration

We employed the CIBERSORT algorithm for precise calculation of

immune cell infiltration proportions (26). A heatmap was utilized to

visually represent the strength and directionality of correlations among

different immune cell types. Specific immune cell subpopulations

exhibited significant expression differences across risk groups.

Furthermore, we employed the “estimate” package to calculate tumor

microenvironment scores (TMEscores) to evaluate the infiltration levels

of immune and stromal cells within the tumor microenvironment (27).
2.9 Single-cell analysis

We performed thorough quality control and filtering of scRNA-seq

data utilizing the “Seurat” and “SingleR” R packages. Each gene was

required to be expressed in a minimum of three cells and to have an

expression level of at least 50 genes. The “subset” functionwas applied to

filter cells based on the criteria of having more than 50 genes and less

than 5%mitochondrial gene expression. Data normalization was carried

out using the “NormalizeData” function with a scaling factor of 10,000.

The “FindVariableFeatures” function was then employed to identify

genes exhibiting high variability, selecting the 1,500 genes with the most

significant expression fluctuations for further analysis. Through PCA

dimensionality reduction and t-SNE clustering analysis, we successfully

identified multiple distinct cell clusters and recognized several marker

genes (28). We used the SingleR algorithm in R to annotate cell types in

our single-cell dataset by comparing it to a reference dataset. The results

were visualized using t-SNE, which provided a clear representation of

the cellular landscape. Additionally, we applied the Monocle algorithm

to infer the developmental trajectories of the cells and construct

dynamic models of cellular differentiation.
2.10 Candidate drug prediction and
molecular docking

We conducted an extensive drug screening utilizing the gene

prediction drug online resource (https://maayanlab.cloud/Enrichr/

), selecting drugs based on an adjusted p-value of less than 0.05. The

2D structures of these drugs were retrieved from the PubChem

database (https://pubchem.ncbi.nlm.nih.gov/) and converted into

3D models using “Chem3D.” Protein structure data for the relevant

genes were sourced from the PDB database (http://www.rcsb.org/).

The receptor was prepared using “PyMol,” removing water molecules

and small ligand compounds. Molecular docking was conducted to

identify active pockets using “Autodock Vina v.1.5.7” (29).
2.11 Cell transfection

The cell lines present in this study were obtained from The Cell

Resource Center of Shanghai Life Sciences Institute. Firstly, lipo3000
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transfection reagent was mixed with siRNA to form transfection

complex. These complexes are then added to cells in a petri dish to

bind to the cell membrane and enter the cell. After transfection, the

cells were cultured for 24 hours under suitable culture conditions so

that the foreign nucleic acid could be expressed or function. Finally,

PCR was used to detect the transfection effect and the knockdown of

exogenous genes. Primer information and siRNA sequence are

Supplementary Table 1.
2.12 Western blotting

Total protein from the cells was extracted using RIPA Lysis

Buffer (Beyotime, P0013B), and its concentration was determined

using the Enhanced BCA Protein Assay Kit (Beyotime, P0010). The

results were measured by ImageJ software.
2.13 Colony

After diluting the cells to an appropriate concentration, they are

evenly seeded into sterile 6-well plates and then cultured in an

incubator for 10-14 days until visible cell colonies form. Next, the

cells are fixed with formaldehyde and stained with crystal violet.
2.14 Wound healing

Cultivate the cells to near confluence and then gently create a

straight line scratch in the cell layer at the bottom of the culture dish

using a sterile pipette. Subsequently, remove any cell debris from

the scratch area and rinse once with fresh medium to eliminate

floating cells. After that, place the cells back in the incubator and

observe and capture images of the scratch healing at 0 and 48 hours

to assess the rate and capacity of cell migration.
2.15 Statistical analysis

In this study, we performed logarithmic transformation and

batch correction to standardize the data. All data analyses and

graphical visualizations were performed using R software (version

4.3.3). To explore the co-expression relationships among genes, we

employed Pearson correlation analysis. Furthermore, Spearman

correlation analysis was performed to assess the association

between risk scores and levels of immune cell infiltration. A

comprehensive predictive model was established by combining

univariate, Lasso, and multivariate Cox regression analyses. For

comparative evaluations, t-tests were utilized to determine

differences between two groups, while one-way ANOVA was

applied to examine statistical variations across multiple groups.

A p-value of less than 0.05 was deemed significant, with * denoting

P < 0.05, ** indicating P < 0.01, and *** representing P < 0.001.
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3 Results

3.1 Prognostic genes and subtype
classification based on anoikis-related
genes in COAD

Our research workflow is clearly illustrated (Figure 1).We collected

transcriptomic data and clinical details from 483 COAD samples and

41 adjacent normal samples via TCGA database. After data

organization, we merged the samples and converted probe IDs into

gene IDs. We then compared gene expression levels between tumor
Frontiers in Immunology 05
and normal tissues, performing differential analysis using the “DESeq2”

package (fold change = 2, p-value = 0.01). The intersection with ARGs

yielded 134 significantly different genes in COAD (Figure 2A).We then

standardized and merged the transcriptomic dataset of 585 samples

and corresponding clinical data from the GEO database with TCGA

dataset, extracting the expression levels of DEGs. Employing survival

status and OS as outcome measures, univariate Cox regression analysis

identified 37 prognostic genes, which are depicted in a forest plot

(Figure 2B). The prognostic network diagram depicted in

Supplementary Figure 1A illustrates the co-expression relationships

among 29 high-risk and 8 low-risk genes. We subsequently displayed
FIGURE 1

Experimental Design Flowchart.
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the frequency of copy number increases or decreases for specific genes

within the samples, indicating the prevalence of gene variations across

the samples, as shown in Supplementary Figure 1B. A copy number

circle plot depicted in Supplementary Figure 1C shows the frequency of

gene copy numbers at corresponding chromosomal positions. We

constructed a PPI network for the anoikis-related DEGs, as shown in

Supplementary Figure 1D, identifying genes with protein interaction

relationships through connecting lines. The correlation network
Frontiers in Immunology 06
diagram in Supplementary Figure 1E illustrated the strength of

correlations among different genes.

Based on the expression levels of ARGs, the samples were classified

into two subtypes, A and B (Figure 2C). PCA demonstrated that the

subtyping effectively separated the samples into distinct groups

(Figure 2D). To further investigate the differences between subtypes

A and B, survival curves confirmed a significant disparity in patient

survival (p < 0.001), with subtype A exhibiting superior prognosis
FIGURE 2

Consensus clustering analysis of ARGs. (A) Differential expression between COAD and ARGs. (B) Univariate Cox regression forest plot. (C) Divide
COAD patients into two subgroups through consensus clustering analysis. (D) PCA for classification. (E) Survival analysis based on classification.
(F) Thermogram combining typing with clinical characteristics of samples. (G–H) Differences in ARGs and immune cells across different clusters.
These symbols (* for P < 0.05, ** for P < 0.01, *** for P < 0.001) are used to denote the significance levels of statistical results.
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compared to subtype B (Figure 2E). The subtype heatmap integrated

subtype classifications with clinical characteristics, providing a detailed

analysis of the distribution of upregulated and downregulated genes

(Figure 2F). We also examined the differential expression of ARGs and

immune cells between subtypes A and B (Figures 2G, H). Subsequently,

GSVA and GSEA analyses were performed to investigate the biological

functions and pathways associated with the different subtypes,

emphasizing the discrepancies in biological pathway activities

(Figure 3A). The findings indicated that cell adhesion molecules

(CAMs), cytokine-cytokine receptor interactions, ECM receptor

interactions, focal adhesion, and neuroactive ligand-receptor

interactions were significantly reduced in subtype A (Figure 3B).

Conversely, subtype B exhibited increased expression of CAMs,

cytokine-cytokine receptor interactions, ECM receptor interactions,

neuroactive ligand-receptor interactions, and systemic lupus

erythematosus (Figure 3C).
Frontiers in Immunology 07
3.2 Construction of a nine-gene
prognostic model

We integrated a transcriptome dataset of 1,034 samples with

survival data from TCGA and GEO databases, randomly partitioning

it into a training cohort (n=517) and a test cohort (n=517). We

employed the Least Absolute Shrinkage and Selection Operator

(LASSO) to construct a regression model, identifying the point of

minimal error through cross-validation (Figures 4A, B).

Subsequently, we performed multivariate Cox regression analysis to

enhance the model, selecting nine genes as risk features: NAT1,

INHBB, FGF2, CD36, CCDC80, SPP1, MMP3, S100A11, and GZMB

(Figure 4C). The risk score for COAD patients was computed using

the following formula: Risk Score (RS)=(−0.25374×NAT1

expression)+(0.19775×INHBB expression)+(0.14497×FGF2

expression)+(0.23801×CD36 expression)+(−0.34139×CCDC80
FIGURE 3

GSVA and GSEA analysis. (A) Differential expression of multiple biological pathways in different clusters and projects. (B, C) The GSEA pathways
significantly enriched in clusters A and B.
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expression)+(0.09980×SPP1 expression)+(−0.10291×MMP3

expression)+(0.35502×S100A11 expression)+(−0.16830×GZMB

expression) Using the median risk score, we stratified the samples

into high-risk and low-risk groups within both the training and test

cohorts. We evaluated our model’s predictive efficacy for OS in

COAD patients across all cohorts. Kaplan-Meier survival analysis

revealed that high-risk COAD patients experienced significantly

poorer OS in all three cohorts (Figures 4D–F). The ROC curves for

the three cohorts showed AUC values exceeding 0.6, specifically

0.687, 0.709, and 0.705 for 1-year, 3-year, and 5-year survival,

respectively (Figures 4G–I). These results indicate that our model is

highly accurate in predicting survival outcomes for COAD patients at

1, 3, and 5 years.
Frontiers in Immunology 08
3.3 Construction and validation of a
prognostic nomogram for COAD survival
(clinical and molecular features)

We constructed a nomogram (Figure 5A) that aggregates scores

from each clinical characteristic (age, sex, stage) to predict patient

survival. To assess the predictive performance of the nomogram, we

generated calibration curves and decision curves. The calibration

curves showed high accuracy in forecasting 1-year, 3-year, and 5-year

survival using the nomogram (Figure 5B). The decision curves for 1

year, 3 years, and 5 years indicated that the nomogram’s predictive

power significantly exceeded that of other clinical factors

(Figures 5C–E). In analyzing the survival rates of COAD patients,
FIGURE 4

Constructing a prognostic model. (A–C) Constructing prognostic related model genes using Lasso regression. (D–F) The K-M curves of the training
group, validation group, and all groups show the prognosis of COAD patients in high-risk and low-risk groups. (G–I) ROC curves of three groups of
queues for one year, three years, and five years.
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we compared the effectiveness of ARG features. Our findings revealed

that the risk score exhibited the highest C-index, affirming its

predictive accuracy and surpassing traditional clinical indicators,

including pathological stage, age, and sex (Figure 5F).

Univariate Cox regression analysis was conducted to generate a

forest plot (Figure 6A), showing significant associations between

survival time and age, stage, and risk score. Multivariate Cox

regression analysis further demonstrated statistical relationships
Frontiers in Immunology 09
between survival time and age, T, M, N stages, and risk score, as

illustrated in a forest plot (Figure 6B). Consequently, the risk score

calculated based on the nine ARGs can predict the survival rate of

COAD patients. Stratification by age, sex, and stage demonstrated

significant differences in survival times between high-risk and low-

risk groups across all categories (p < 0.01). High-risk patients showed

reduced survival durations compared to those classified as low-risk

(Figures 6C–H).
FIGURE 5

Establish and validate prognostic Nomogram. (A) Nomogram validation of OS in COAD patients. (B) Verify the predictive ability of Nomogram
through calibration curves. (C–E) DCA curves for risk scores and clinical characteristics (1 year, 3 years, and 5 years). (F) C-index used to evaluate the
performance of predictive models.
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3.4 Enrichment analysis and immune
microenvironment analysis reveal
biological mechanisms and
clinical relevance

To examine the distribution patterns of gene sets across BP, MF,

and CC, we conducted GO enrichment analysis using differentially

expressed genes from the high and low-risk groups. GO analysis

indicated significant enrichment in cellular response to chemokine,
Frontiers in Immunology 10
endopeptidase activity, and immunoglobulin complex (Figures 7A).

KEGG pathway analysis revealed that the differentially expressed

genes were mainly enriched in pathways including cytokine-

cytokine receptor interaction, IL-17 signaling pathway, viral

protein interactions with cytokines and receptors, chemokine

signaling pathway, and rheumatoid arthritis (Figures 7B). Notable

differences in expression levels were found for plasma cells,

activated CD4 memory T cells, resting NK cells, monocytes, M1

macrophages, and M2 macrophages across the different risk
FIGURE 6

Risk score is highly correlated with clinical variables. (A, B) Univariate and multivariate Cox regression forest plots of risk score and clinical features.
(C–H) K–M survival curves of patients stratified by different clinical pathological factors.
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categories (Figure 7C). We conducted a differential analysis of

immune cells between high-risk and low-risk groups, illustrated

by a heatmap that shows the correlation strength and direction

among various immune cell types, such as monocytes, eosinophils,

and activated dendritic cells (Figure 7D). A heatmap illustrating the

correlations between immune cells, model genes, and risk scores

was also presented (Figure 7E). Notably, risk scores exhibited

significant expression differences with M0 macrophages, M1
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macrophages, M2 macrophages, resting NK cells, plasma cells,

activated CD4 memory T cells, and CD8 T cells, with the

strongest correlation identified with activated CD4 memory T

cells (R = -0.4, p < 2.2e−16) (Figures 7F–L). Patients in the low-

risk group generally exhibit higher TME scores, which may be

associated with stronger immune responses and lower tumor purity,

thereby potentially having a positive impact on patient treatment

responses and survival outcomes. The violin plot demonstrated
FIGURE 7

Different risk groups have different immune characteristics. (A) The GO signaling pathway involves biological processes in BP, MF, and CC. (B) Pathways
significantly enriched in KEGG. (C) Differential analysis of immune cells in different risk groups. (D) Correlation heatmap of immune cells. (E) The correlation
strength between model genes and immune cell types. (F–L) Immune cells significantly correlated with risk scores. (M) Differential assessment of TME
scores. These symbols (* for P < 0.05, ** for P < 0.01, *** for P < 0.001) are used to denote the significance levels of statistical results.
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statistically significant differences in tumor TME scores, including

immunescore and estimatescore, between high and low-risk

groups (Figure 7M).
3.5 Single-cell analysis identifies key gene
expression and cell types

We retrieved single-cell datasets for COAD from the GEO

database, utilizing gene expression profiles from 13 COAD samples

for further analysis. Initial quality control and filtering were

performed, isolating the 1,500 most variably expressed genes, with

the top ten most variable genes highlighted (Figure 8A). PCA was

employed to reduce dimensionality on these 1,500 genes (Figure 8B),

and expression levels of PC1-PC4 feature genes were visualized in a

heatmap (Figure 8C). TSNE clustering analysis of 15 principal

components identified 17 distinct clusters (Figure 8D). The

differential analysis for each cluster has identified 5,933 marker

genes, which are detailed in Supplementary Table 2. We conducted

a detailed examination of the expression patterns for the nine key

genes within the constructed model. Notably, the INHBB gene

exhibited significantly elevated expression in cluster 15, while

CCDC80 showed higher expression in cluster 13, and S100A11 was

notably expressed in cluster 12 (Figures 8E, F). Analysis of cell types

within each cluster revealed diverse populations, including T cells, B

cells, epithelial cells, monocytes, macrophages, fibroblasts, tissue stem

cells, and natural killer cells (Figure 8G). Further annotation revealed

specific gene-cell type associations: INHBB was most highly

expressed in endothelial cells, CCDC80 in fibroblasts, and S100A11

in epithelial cells. These findings provide crucial molecular evidence

for understanding the roles of different cell types in biological

processes. The cells were primarily derived from hematopoietic

stem cells and differentiated along two distinct pathways: one

pathway leading to the formation of epithelial-like cells, and the

other leading to the generation of monocytes (Figure 8H).
3.6 Candidate drug prediction and
molecular docking

In the prognostic model, the INHBB gene was identified as the

most significant biomarker affecting OS in COAD patients, as

shown in Supplementary Figure 2. To explore potential

therapeutic strategies targeting this key gene, we conducted a

comprehensive drug screening using a gene-drug prediction

database. By considering adjusted p-values, we successfully

identified 22 compounds with potential therapeutic relevance in

Supplementary Table 3. To further assess the binding affinity of

these candidate drugs with their targets, we performed molecular

docking for the top four compounds. Using AutoDock Vina v.1.5.7,

we analyzed the binding sites and interactions of these candidates

with the INHBB protein, calculating binding energies for each

interaction. The docking results indicated that INHBB had the

lowest binding energy with risperidone at -9.5 kcal/mol, suggesting

a stable interaction. Visualize the docking results of four drugs with

INHBB using Pymol software (Figures 9A–D). This analysis not
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only allows us to predict potentially effective drugs but also provides

critical insights into drug-target interactions, informing drug

development and optimization efforts.
3.7 Impact of INHBB knockdown on
proliferation and survival

Further analysis revealed that patients with high INHBB

expression in COAD had worse OS and disease-free survival

(DFS) (Figures 10A, B). In RKO and SW620 cell lines, INHBB

knockdown resulted in significant changes in INHBB expression

levels (Figure 10C). The verification of the low efficiency protein

level is shown in the Supplementary Figure 3. In the wound healing

assay, we observed a significant decrease in the proliferation activity

of RKO and SW620 cells post-INHBB knockdown compared to

control cells (Figures 10D, E). To further validate the impact of

INHBB on the proliferative capacity of colorectal cancer cells, we

conducted colony formation assays. The results showed that after

INHBB gene knockdown, both cell lines exhibited reduced colony

number and size (Figure 10F, G).
4 Discussion

Anoikis was first described in 1994 and refers to the

programmed cell death of normally adherent cells when they

remain in a suspended state for an extended period, leading to

their demise due to “homelessness” (6). This form of apoptosis,

characterized as a type of cellular “suicide,” is induced by the loss of

contact with the ECM. Anoikis serves to eliminate cells that fail to

attach properly to the matrix, thereby preventing their excessive

proliferation (30). This mechanism is crucial for immune

surveillance, helping to avoid the survival and dissemination of

potential tumor or infected cells within the body. Tumor cells often

evade immune attacks by suppressing anoikis; they may upregulate

anti-apoptotic proteins (such as Bcl-2 family proteins) to inhibit

apoptosis, thereby surviving even in the absence of matrix

attachment, which provides a selective advantage for tumor

progression. In the tumor microenvironment, anoikis may also

impact the infiltration and functionality of immune cells (31).

Damaged or unstable matrices can enable tumor cells to escape

immune surveillance, adversely affecting the efficacy of

immunotherapy. COAD cells frequently escape normal death

signals through anoikis, thereby acquiring the ability to grow at

distant sites (32). Understanding the mechanisms underlying

anoikis is essential for elucidating how tumor cells survive during

the metastatic process.

Due to the high heterogeneity of tumors, traditional molecular

subtyping still exhibits significant variability in treatment outcomes

for COAD patients. Precision therapy is crucial in the management

of various solid tumors and represents a key direction for future

cancer treatment. In this study, we leveraged COAD samples from

TCGA database and GEO database to explore and identify a series

of ARGs. Leveraging these genes, we established a prognostic model

comprising nine key genes (NAT1, INHBB, FGF2, CD36, CCDC80,
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SPP1, MMP3, S100A11, and GZMB) (33, 34). This model stratified

COAD patients into high-risk and low-risk groups based on risk

scores, revealing significant disparities in survival outcomes,

mutation patterns, immune cell infiltration, and chemotherapy

responses between the two groups.

GO and KEGG enrichment analyses conducted on the

differentially expressed genes across the risk categories indicated
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their participation in cellular responses to chemokines. This

suggests these genes could have significant roles in inflammation

and immune response mechanisms. KEGG pathway enrichment

further suggests active inflammatory responses and intercellular

signaling among the differentially expressed genes, which could

significantly impact tumor progression and metastasis. Significant

differences were observed in the expression levels of various
FIGURE 8

Single-cell analysis. (A) Select the top 1500 genes with the largest fluctuations and mark the top 10 genes for ranking. (B) Using PCA to reduce the
dimensionality of the top 1500 genes in the ranking. (C) Heatmap displays the characteristic genes of PC1-PC4. (D) Divide all cells into 17 clusters
using t-SNE algorithm. (E, F) Expression of model genes in 17 clusters. (G) After dimensionality reduction using t-SNE algorithm, the classification of
cells was demonstrated. (H) Cell differentiation trajectory diagram.
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immune cell populations, such as plasma cells, activated CD4

memory T cells, resting NK cells, monocytes, and M1 and M2

macrophages across the risk groups. The notable decrease in plasma

cell expression within the high-risk group may suggest a

compromised ability to produce antibodies, which could diminish

the immune system’s capacity to combat tumor cells. Additionally,

lower NK cell infiltration in the high-risk group may facilitate

immune evasion by tumor cells, as NK cells are critical for directly

killing tumor cells. M1 macrophages are typically associated with

anti-tumor immune responses, while M2 macrophages may

promote tumor development and metastasis, suggesting a

potential strong immune evasion mechanism in the high-risk

group. Notable differences in immune scores and tumor

microenvironment scores reinforce the link between immune cell

infiltration and tumor progression. Single-cell analysis uncovered

unique expression patterns of different cell types and their

associated genes within the COAD microenvironment, offering

valuable insights into the biological mechanisms driving

tumor behavior.

Elevated levels of crucial genes such as INHBB, CCDC80, and

S100A11 could be significantly linked to tumor development,

p r o g r e s s i o n , a n d t h e mo d u l a t i o n o f t h e t umo r

microenvironment. INHBB is a member of the transforming

growth factor-beta (TGF-b) superfamily, primarily encoded by

the INHBB gene, and is part of the inhibin family, functioning

alongside inhibin subunit beta A (INHBA) and inhibin subunit

beta C (INHBC) to play important physiological roles (35).
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INHBB is involved in various biological processes, including cell

proliferation and apoptosis, making it an important candidate in

cancer research. Previous studies have shown that INHBB exhibits

a complex dual role in different types of cancer. It not only

promotes the proliferation and invasion of various cancers, such

as clear cell renal carcinoma (36), hepatocellular carcinoma (37),

endometrial carcinoma (38), and prostate cancer (39), but also, in

some cases, suppresses the metastasis of nasopharyngeal

carcinoma (40) and induces apoptosis. For example, INHBB

expression is significantly elevated in endometrial carcinoma

tissues and enhances cancer cell invasion by activating the

SMAD2/3 and integrin b3 signaling pathways. INHBB promotes

gastric cancer (GC) by reprogramming fibroblasts into cancer-

associated fibroblasts (CAFs) and activating the NF-kB pathway,

which enhances gastric cancer cell proliferation, migration, and

invasion (41). However, research on the mechanisms of INHBB in

colon cancer is relatively limited. Some studies suggest that

increased INHBB expression may promote epithel ial-

mesenchymal transition (EMT) in cancer cells, thereby

enhancing their metastatic potential (42). In our study, we

observed a negative correlation between INHBB levels and OS

in high-risk COAD patients. We also validated the expression

level and functional role of INHBB in COAD, finding that

knocking down INHBB significantly reduced cell proliferation,

further supporting its potential as a prognostic biomarker (43).

We also explored the therapeutic potential of INHBB and used

molecular docking technology to identify risperidone as the
FIGURE 9

Potential therapeutic compounds and molecular docking analysis of INHBB. (A–D) Molecular docking technology was applied to the top four drugs
(syrosingopine, niclosamide, risperidone and uric acid) ranked.
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compound with the lowest binding energy to INHBB. Risperidone

may indirectly affect COAD cell proliferation by regulating

dopamine and serotonin receptor signaling pathways. On the

other hand, CCDC80 has been shown to reduce COAD cell

proliferation by negatively regulating the ERK1/2 signaling

pathway, thereby inhibiting tumor progression (44). SPP1 is

overexpressed in COAD, significantly enhancing tumor cell

invasion and metastasis, and is associated with poor prognosis

(45). GZMB plays a key role in the immune system, and studies
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have shown that it participates in regulating cancer cell apoptosis

during COAD immune responses, indicating its potential

application in immunotherapy (46).

This study, however, does have certain limitations. Our analysis

relies on transcriptomic data from public databases, which may

introduce selection bias, as these datasets may not fully represent

the diversity of all COAD patients. The predictive capability of this

model requires further assessment and validation in independent,

diverse patient cohorts through prospective studies.
FIGURE 10

Analysis and experimental validation of INHBB expression. (A, B) Investigating INHBB’s impact on COAD OS and DFS in TCGA dataset. (C) INHBB was
knocked down in RKO and SW620. (D, E) Scratch assays demonstrated that the migratory activity of cells with INHBB knockdown was significantly
reduced. (F, G) Colony formation assays showed that the proliferative activity of cells with INHBB knockdown was significantly decreased. These
symbols (* for P < 0.05, ** for P < 0.01, *** for P < 0.001) are used to denote the significance levels of statistical results.
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5 Conclusions

In conclusion, our research, based on the features of ARGs, offers

novel perspectives on themolecular subtyping and prognostic evaluation

of COAD, as well as highlighting potential targets for future therapeutic

interventions and drug development. The findings of this research hold

promise for advancing the field of personalized treatment for COAD,

offering patients more precise and effective therapeutic options.
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SUPPLEMENTARY FIGURE 1

Exploration of Anoikis-Related Prognostic Genes. (A) Correlation network

diagram of ARGs. (B) The histogram displays the gain or loss of CNV. (C) Copy
loop diagram showing the position of ARGs on chromosomes. (D) The PPI

network of ARGs. (E) The correlation network diagram shows the correlation
between ARGs.

SUPPLEMENTARY FIGURE 2

The impact of expression levels of six genes on OS in COAD patients, as

compared by ROC curves and survival analysis.

SUPPLEMENTARY FIGURE 3

The WB blot of INHBB after siRNA transfection to indicate its

knockdown efficiency.
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