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Introduction: The altered expression of genes encoding histone

acetyltransferases (HATs) and histone deacetylases (HDACs) has been

implicated in the tumorigenesis and progression of various solid tumors.

However, systematic characterization of the transcriptomic landscape and

clinical relevance of HATs and HDACs in pan-cancer contexts remains lacking.

Methods: Transcriptome and clinical data of 9,483 patients across 31 tumor

types from The Cancer Genome Atlas were collected for systematic pan-cancer

analysis. Additional glioma-specific datasets (Chinese Glioma Genome Atlas,

GlioVis, GSE43378, and GSE182109) were also collected to validate the

transcriptional characteristics of HATs and HDACs in gliomas. Consensus

clustering analysis was applied to identify distinct expression patterns of HATs

and HDACs.

Results: Based on the transcriptomic data of 25 genes encoding 9 HATs and 16

HDACs, we identified five major subtypes across 31 cancer types (AC-I to AC-V).

Notably, the AC-V subtype comprised over 95% of glioma patients, suggesting

glioma patients exhibited distinct expression patterns of histone acetylation-

modifying enzymes compared to patients with other solid tumors. Therefore, we

re-conducted the consensus clustering analysis specifically within the context of

gliomas and identified five subtypes, denoted “AC-GI” to “AC-GV”, which were

characterized by differences in HATs/HDACs expression patterns, biological and

immune status, genetic alterations, and clinical outcomes. The AC-GII patients

exhibited the best prognosis and were sensitive to temozolomide, while AC-GV

patients had the poorest prognosis and the lowest sensitivity to temozolomide

among all subtypes. Moreover, based on the Connectivity Map database analysis

and experimental verification, we identified several pan-HDAC inhibitors that

could serve as sensitizers for temozolomide therapy in AC-GV patients, such as
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panobinostat and scriptaid. Considering the distinctive clinical characteristics of

patients with AC-GII and AC-GV, we constructed the “ACG score”model capable

of effectively recognizing patients with these subtypes and predicting

patient prognosis.

Conclusion: Herein, we established novel biologically and clinically relevant

molecular classifications for pan-solid tumors and gliomas based on

transcriptional expression profiles of HATs and HDACs. Moreover, the ACG

score model, calculated by the transcriptional expression of 29 genes, was not

only an independent prognostic factor for glioma patients, but can also provide

valuable references for promoting more effective therapeutic strategies.
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1 Introduction
As a primary epigenetic mechanism influencing oncogenesis,

the acetylation of histone lysine residues, modulated by the

opposing activities of histone acetyltransferases (HATs) and

histone deacetylases (HDACs), can markedly affect chromatin

compaction, further impacting transcription factors accessing the

promoter region and the transcriptional expression of genes (1–4).

Considering that HDACs are frequently dysregulated across various

tumors and inhibiting their activity could effectively disrupt tumor

cell viability, HDACs have emerged as promising therapeutic

targets for multiple tumor types (5, 6). However, although in vitro

and in vivo studies have shown promising results (7, 8), clinical

trials for HDAC inhibitors (HDACis) in solid tumors have been

unsatisfactory, possibly owing to the lack of patient stratification,

with existing inhibitors targeting multiple HDACs, potentially

eliciting unwanted side effects (9–11). Therefore, elucidating the

expression features of histone acetylation-modifying enzymes at the

pan-cancer level could provide a more comprehensive view of the

acetylation-deacetylation balance, which may help unravel both the

commonalities and heterogeneity of various human malignancies,

offering insights for screening patients suitable for HDACis therapy.

Recently, the mRNA expression of histone acetylation-modifying

enzymes has been used to define molecular subtypes with substantial

prognostic differences in patients with gastric and colon cancer (12,

13). However, systematic efforts to characterize the transcriptomic

landscape and clinical relevance of HATs and HDACs in pan-cancer

backgrounds are lacking. In this study, we first conducted a pan-

cancer analysis of the transcriptomic expression of 9 HATs and 16

HDACs to provide a preliminary overview of mRNA expression

patterns of histone acetylation-modifying enzymes across various

tumor types. More importantly, given our findings suggested that

glioma displayed unique expression patterns of HATs and HDACs

compared to other solid tumors, we specifically performed consensus
02
clustering analysis on specimens of patients with glioma to identify

molecular subtypes with distinct biological features, tumor

microenvironment (TME) and clinical outcome.
2 Materials and methods

2.1 Data retrieval

The cancer-associated datasets, including mRNA sequencing

(n = 10,079), clinical (n = 9,483), single nucleotide variation

(SNV) (n = 10,234), copy number variation (CNV) (n =

10,878), microRNA data (n=10,818), and proteomic data

(n=8,657) were gathered from the “TCGA pan-cancer” section

of University of California Santa Cruz (UCSC) Xena database

(https://xenabrowser.net). A total of 31 types of solid tumors were

included in our pan cancer analysis (Supplementary Table S1).

Particularly, we also collected the transcriptomic data of gliomas in

Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/),

GlioVis (http://gliovis.bioinfo.cnio.es/), and GEO (http://

www.ncbi.nlm.nih.gov/geo, GSE43378 and GSE182109) databases

for exploring and validating our findings in glioma (Supplementary

Table S2).
2.2 Consensus clustering analysis based on
transcriptomic profiles of HATs and HDACs

We conducted an unsupervised clustering (K-means) analysis

based on transcriptomic profiles of HATs and HDACs to delineate

different acetylat ion regulator modificat ion patterns .

ConsensusClusterPlus (14) was applied to choose the optimal

clustering number and assess clustering stability. To ensure both

robustness and computational feasibility of the results, the

parameters were chosen as follows: maxK (the maximum number
frontiersin.org

https://xenabrowser.net
http://www.cgga.org.cn/
http://gliovis.bioinfo.cnio.es/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://doi.org/10.3389/fimmu.2024.1523034
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1523034
of clusters) = 10, reps (the number of resampling iterations) = 1,000,

pItem (the proportion of data points randomly sampled for each

iteration) = 0.95, pFeature (the proportion of features considered in

each iteration) = 1.
2.3 Prediction of molecular subtype by a
combination of prediction analysis for
microarray and nearest template
prediction algorithms

To map the classification obtained from consensus clustering

analysis on independent datasets, we first employed the prediction of

molecular subtype by a combination of prediction analysis for

microarray (PAM) algorithm to identify gene markers whose

expression best discriminates each subtype based on the whole

transcriptome (15). Then, the filtered gene sets were subsequently

used as template features for nearest template prediction (NTP) (16),

which is a correlation-based method specifically constructed to

provide robust class predictions for high-dimensional and noisy

gene expression data (17).
2.4 Biological process, metabolic activation
and immune infiltration analysis

To analyze biological processes, we implemented gene set

variation analysis (GSVA) (18) against a collection of 50 hallmark

biological pathways and 186 Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways as previously described (19, 20). The

activation of metabolic gene signatures and immune cell signatures

in each sample were analyzed using the “IOBR” R package (21). A

total of 6 algorithms for estimating immune cell infiltration

including quantTIseq, TIMER, EPIC, MCP-counter, ESTIMATE,

and xCell were embedded in “IOBR”.
2.5 Trajectory analysis

The pseudotime analysis was conducted using the ‘monocle’ R

package (22). Firstly, a monocle object was established utilizing the

‘newCellDataSet’ function. Following this, genes with a minimum

expression level of 0.1 and expressed in at least 0.5% of samples

were selected. Moreover, the ‘differentialGeneTest’ function was

utilized for identifying genes for trajectory sequencing. Next, the

‘reduceDimension’ function was adopted for dimension reduction,

applying the parameter ‘reduction_method = DDRTree’. Lastly, the

samples were organized in a pseudotime sequence using the

‘orderCells’ function and visualization was implemented by the

‘plot_cell_trajectory’ function.
2.6 Somatic genetic mutation and miRNA
enrichment analysis

For somatic genetic mutation analysis, the genetic mutation file

was acquired using the TCGAbiolinks package (23), and the
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identification of significant cancer mutated genes (SMGs) was

performed through the application of MutSigCV algorithm (24).

Subsequently, we selected the top 100 SMGs based on their total

mutation frequency and conducted a chi-square test to analyze the

distribution of effective mutations among different groups as

previously described (25, 26). As for the miRNA enrichment

analysis, the pathway enrichment analysis based on miRNAs was

conducted by using the miRNA Enrichment Analysis and

Annotation Tool (https://ccb-compute2.cs.uni-saarland.de/mieaa2/).
2.7 Identify potential therapeutic drugs by
Cancer Therapeutics Response Portal
database analysis and Connectivity
Map analysis

To identify potential therapeutic drugs for each subtype, we

utilized pRRophetic package (27), which employs a ridge regression

model based on the Cancer Therapeutics Response Portal (CTRP)

database, to predict the single agent drug sensitivity of each sample.

Drug sensitivity quantification was determined based on the area

under the dose-response curve (AUC), where higher AUC values

corresponded to diminished sensitivity. Moreover, to discover

compounds that may improve chemosensitivity in subtypes

resistant to chemotherapy, we performed Connectivity Map

(CMap) analysis utilizing the online tool (https://clue.io/). We

selected 300 differentially expressed genes (DEGs) with the most

significant fold changes between samples in the targeted subtype

and those in the control group (150 upregulated and 150

downregulated). These DEGs were input into the CMap database

according to the website’s instructions. Compounds with

enrichment scores below −90 were identified as potentially

effective drugs.
2.8 In vitro and in vivo drug
sensitivity assays

GBM cell line U87 was routinely maintained in Dulbecco’s

Modified Eagle Medium (DMEM) supplemented with 10% fetal

bovine serum at 37 °C with 5% CO2. U87 cell line was authenticated

by the short tandem repeat profiling. As for the in vitro

experiments, we measured cell survival of U87 cells under

different treatment groups using CCK8, flow cytometry, and

clonogenic assays, as previously described (28, 29). As for in vivo

experiments, all animal experiments received approval from the

Nanfang Hospital Animal Care and Use Committee and were

conducted in accordance with the National Guidelines for Animal

Experimentation. Female BALB/C nude mice, aged six weeks, were

housed in a pathogen-free facility with unrestricted access to food

and water, and were maintained under a 12-hour alternating dark/

light cycle. The BALB/C nude mice received intracranial injections

of 1 × 106 cells, and tumor nodule volumes were monitored every

other day. In the drug treatment experiments, mice were allocated

to various treatment groups in a non-blinded manner once the

tumor volume reached approximately 50 mm³. On the 14th day, the
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mice were executed, and the transplanted tumors were removed for

photography and weighing. The weight of transplanted tumors at

the time of executing mice was used as an indicator to compare the

efficacy of different drug treatment groups.
2.9 Identification of marker genes used for
establishing signature scores

First, the TCGA/CGGA cohort was divided into the training set

and validation set according to the histological types by utilizing the

caret package (30). Then, we screened the candidate genes used for

establishing signature scores through the following methodology:

First, the limma package (31) was employed to identify DEGs

between samples in the targeted subtype and samples in the

control group. Only genes with |log2FC|>1.5 and adj p value <

0.05 were included in subsequent analysis. Afterwards, leave-one-

out cross-validation (LOOCV) framework, a specialized form of

cross-validation with each individual data point in the dataset is

used as a test set and the remaining data points serve as the training

set over each iteration, was employed to fit 105 prediction models

generated by 11 independent methods, including Boruta feature

selection (32), Random Survival Forest (33), Elastic Net,

Generalized Boosted Regression Modeling (GBRM), Stepwise

Cox, CoxBoost, Partial Least Squares Regression for Cox (34),

Supervised Principal Components (35), Survival Support Vector

Machine, Ridge, and Lasso (36), which were adopted to reduce the

dimensions of DEGs and select genes with high C-index in both

training and test cohort.
2.10 Single-cell RNA sequencing
data processing

The glioblastoma multiforme (GBM) single-cell RNA sequencing

(scRNA-seq) dataset GSE182109 (37) was analyzed utilizing the

workflow of Seurat package (38). The unqualified cells were filtered

out according to the following metrics: cells 1) expressing less than 300

genes; 2) with UMI counts < 500 or >200,000; 3) percentage of

mitochondrial genes >20%; 4) ribosomal transcripts > 50% were

filtered out. Genes expressed in fewer than three cells were also

removed. Potential doublets or multiplets were identified and

meticulously removed using Scrublet (39). After removing the low-

quality and doublet cells, library size normalization was performed by

adopting the LogNormalize method. Dimensionality reduction was

subsequently conducted through principal component analysis (PCA),

utilizing the matrix of the top 2,000 highly variable genes generated by

the FindVariableFeatures function. We utilized Harmony (40) to

correct batch effects. Then, the FindNeighbors and FindClusters

functions were used to construct the shared nearest neighbors and

major cell clusters, respectively. Dimensionality reduction and

visualization of the clusters were conducted using Uniform Manifold

Approximation and Projection. All cluster assignments underwent

manual verification to ensure the precise partitioning of cells.
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2.11 Statistical analysis

For the comparison between two groups of continuous

variables, the Student’s t-test was employed to assess the

disparities in parametrically distributed variables, while the

Mann-Whitney U test was used to evaluate the nonparametrically

distributed variables. When comparing more than two groups, we

utilized the Kruskal-Wallis and one-way ANOVA tests for

parametric and nonparametric variables, respectively. Analysis of

categorical variables involved the use of chi-square and Fisher’s

exact tests. Survival analyses were conducted utilizing Kaplan-Meier

analysis, supplemented by the log-rank test as needed. The optimal

threshold values for high- and low-score groups were determined

utilizing the Survminer package. Statistical significance was

established with a two-tailed p-value < 0.05. Version 4.3.3 of the

R software was applied to conduct all the statistical analyses.
3 Results

3.1 Expression profiles of 25 genes
encoding 9 HATs and 16 HDACs across 31
cancer types

Figure 1A illustrates the study workflow. We retrieved two

reviews on histone acetylation modification (1, 41), and 29

recognized histone acetylation modification regulators were

initially collected. After eliminating four HATs/HDACs genes

that were absent from TCGA-pan cancer cohort, a total of 25

genes encoding 9 HATs and 16 HDACs, were collected and defined

as histone acetylation regulator genes (ACRGs) for subsequent

analysis. Comparing expression levels of these ACRGs in tumor

and adjacent normal tissues, we found most ACRGs consistently

dysregulated across various tumors. Specifically, HDAC4, HDAC5,

KAT2B, NCOA1, SIRT1, and SIRT4 had lower expression in tumor

tissues across 14, 12, 18, 17, 16, and 12 cancer types, respectively.

Conversely, HDAC1, HDAC10, KAT2A, SIRT6, and SIRT7 were

upregulated in 13, 16, 17, 14, and 12 cancer types (Figure 1B).

Although transcriptomic levels varied significantly between tumor

and normal tissues, methylation levels of most ACRGs did not,

except for CREBBP, which was consistently hypomethylated across

15 tumor types (Figure 1C). Regarding somatic mutations, out of

9,477 samples, 1,796 (18.95%) had at least one ACRG mutation

(defined as the total mutation rate), predominantly in CREBBP,

EP300, and HDAC9. The total mutation rate was the highest in skin

cutaneous melanoma (47.54%), followed by bladder urothelial

carcinoma (40.15%) and uterine corpus endometrial carcinoma

(35.59%) (Figure 1D, Supplementary Table S3). Moreover, most

genes underwent CNV amplification or deletion (Figure 1E), with

CNV significantly positively correlating with ACRG expression

levels in most cancers (Figure 1F). Additionally, N6-

methyladenosine (m6A) modification signature (42) was

significantly associated with ACRG expression, suggesting a

synergistic regulatory effect between m6A modification and
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histone acetylation modification in gene expression (Figure 1G).

Finally, considering the prognostic significance of ACRGs, we

found that ACRG expression levels were significant prognostic

markers in several cancers, particularly kidney renal clear cell

carcinoma and lower-grade glioma, indicating their role in

malignant progression (Figure 1H).
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3.2 Clustering analysis based on
transcriptional expression of ACRGs across
pan-cancer samples

To explore the expression pattern of ACRGs at the pan-cancer

level, we performed unsupervised clustering analysis in the TCGA
FIGURE 1

Landscape of histone acetylation regulator genes (ACRGs) in each cancer type of TCGA pan-cancer cohort. (A) Workflow of this study. (B, C) Dot
plot depicted the differential mRNA expression level (B) and methylation level (C) of ACRGs between tumor and normal samples in each cancer type.
The yellow dots indicated high gene expression or high methylation level in tumors and the blue dots represented low gene expression or low
methylation level in tumors. (D) The mutation rate of each ACRG. The upper and right bar plot indicates the proportion of each variant type in
different cancer types and ACRGs. (E) Histogram showed the frequency of somatic copy number alterations for each ACRG in each cancer type. (F)
Dot plot depicted the correlation between somatic copy number alterations and mRNA expression of each ACRG in each cancer type. The yellow
dots indicated positive correlations and the blue dots represented negative correlations. (G) Dot plot depicted the correlation between the W-E
signature level and mRNA expression of each ACRG in each cancer type. The yellow dots indicated positive correlations and the blue dots
represented negative correlations. (H) Dot plot depicted the correlation between overall survival (OS) and mRNA expression of ACRGs. The yellow
and blue dots represented longer and shorter OS in the groups with higher mRNA levels of ACRGs, respectively.
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pan-cancer cohort. As shown in Figures 2A, B, five major subtypes,

denoted “AC-I” to “AC-V”, were identified. The transcriptional

expression levels of 25 ACRGs among five AC subtypes are shown

in Supplementary Figure S1. In terms of the proportion of patients

with different cancer types in each AC subtype, we found that AC-V

comprised over 95% of patients with glioma (up to 98% of low-

grade glioma (LGG) and nearly 50% of GBM patients, Figures 2C,

D, Supplementary Table S4). Moreover, AC-V subtype also

exhibited the highest silhouette widths (Supplementary Table S5)

indicating a distinctive histone acetylation status for patients with

glioma, which could possibly be attributed to the unique biology of

brain tissue origin, distinct oncogenic mutations, and

microenvironmental pressures (43–45). Therefore, we performed

further consensus clustering analysis in the remaining solid tumors
Frontiers in Immunology 06
of the TCGA pan-cancer cohort after eliminating gliomas.

Consistent with the previous finding, four optimal clusters

(Figure 2E, subsequently referred to as “ACR subtype”, with “R”

standing for remaining tumors) were identified in this context. Each

cluster displayed the enrichment of partial regulators (Figure 2F),

contained various cancer types (Figures 2G, H, Supplementary

Table S6), and exhibited similar silhouette width levels

(Supplementary Table S5), suggesting a new classification model

for solid tumors beyond the cell-of-origin context. Interestingly,

among pan-gastrointestinal tumors, the proportions of esophageal

squamous cell carcinoma (ESCA), stomach adenocarcinoma, colon

adenocarcinoma (COAD), and rectum adenocarcinoma classified

into the AC-RII subtype were 75.3%, 50.60%, 0.04%, and 0.05%,

respectively, while the proportions classified into the AC-RIV
FIGURE 2

Consensus clustering based on mRNA expression of histone acetylation regulator genes (ACRGs) in the TCGA pan-cancer cohort. (A, B) Consensus
matrix (A) and heatmap (B) depicted the expression pattern of the 25 ACRGs identified by the unsupervised clustering analysis in the TCGA pan-
cancer cohort. Cohort details were illustrated as patient annotations. (C, D) Bar charts summarized the proportions of patients with different cancer
types within and across different AC subtypes (C) and the proportions of patients with different AC subtypes within and across different cancer types
(D). (E, F) Consensus matrix (E) and heatmap (F) depicted the expression pattern of the 25 ACRGs identified by the unsupervised clustering analysis.
Cohort details were illustrated as patient annotations. (G, H) Bar charts summarized the proportions of patients with different cancer types within
and across different ACR subtypes (G) and the proportions of patients with different ACR subtypes within and across different cancer types (H). (I)
Kaplan-Meier curves of overall survival (OS) according to ACR subtypes. (J) The forest plot showed the associations between ACR subtypes and OS
of patients in each cancer type. (K) Box plots exhibited predicted area under curve values of entinostat (left), panobinostat (middle), and vorinostat
(right) corresponding to patients with different ACR subtypes based on CTRP analysis. (L, M) Box plots showed the biological pathway activation
status (L) and tumor microenvironment landscape (M) among the ACR subtypes. (N) Sankey diagram of ACR subtypes in groups with different
molecular subtypes. ***p < 0.001; NA, not available.
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subtype were 24.7%, 46.02%, 90.91%, and 87.50%, respectively,

demonstrating a transition of histone acetylation modification

from upper to lower gastrointestinal tract (Supplementary Table

S6). In addition, over 50% of patients with pan-squamous cell

carcinoma, except those with ESCA, were classified into AC-RIV,

showing commonalities in histone acetylation among cancer types

with similar tissue origin. In terms of clinical relevance, the survival

analysis showed that AC-RIV subtype had the shortest overall

survival (OS, Figure 2I) and higher mortality risks in 16 of 23

cancer types (Figure 2J). Furthermore, the predicted AUC values for

three pan-HDACis indicated higher sensitivity in AC-RII and AC-

RIV (Figure 2K). In terms of biological and immune characteristics

(Figures 2L, M), we found that AC-RIV exhibited downregulated

angiogenesis and estimated infiltration scores of endothelial cells

but activated pathways related to cell cycle regulation (E2F, MYC,

MTORC1, G2 checkpoint signaling). Finally, the Sankey diagram

showed that AC-RIV patients tended to concentrate in the subtype

exhibiting immune-depleted characteristics, including wound

healing and IFN-gamma dominant, while AC-RIII patients were

enriched in the immune-inflamed subtype (Figure 2N) (46, 47).

Collectively, these findings suggested that the transcriptional

profiling of these 25 ACRGs could aid in establishing molecular

classifications transcending tissue-of-origin cancer types.
3.3 Clustering analysis based on the
transcriptomic expression of ACRGs in
patients with glioma

Given the distinctive ACRG expression pattern observed in

glioma patients, we integrated the transcriptome data from the

TCGA-GBMLGG (containing 529 LGG and 166 GBM patients),

CGGA-692 (containing 443 LGG and 249 GBM patients), and

CGGA-321 (containing 182 LGG and 139 GBM patients) datasets

and re-performed consensus clustering analysis. As a result, these

glioma patients were classified into five clusters (subsequently

referred to as “ACG subtype”, where “G” stands for gliomas),

which were referred to as “AC-GI” to “AC-GV” (Figures 3A, B).

Each cluster comprised varying proportions of LGG and GBM

patients, suggesting that the ACG subtype was a novel classification

scheme for glioma beyond histopathological features (Figure 3C).

Among these clusters (Figures 3D, E), AC-GI was characterized by

elevated expression of KAT2A, while HDAC4 emerged as the most

critical ACRG for distinguishing AC-GII patients, with its high

expression correlating with longer survival. For samples within AC-

GIII, the synergistic downregulation of KAT2A, HDAC10, and

SIRT7 mRNA expression can serve as a defining molecular

characteristic. As for AC-GIV, the ACRGs that were most

important for distinguishing patients within this subtype included

EP300, CREBBP, NCOA1, and CLOCK, all of which exhibit low

expression levels in AC-GIV. Finally, in terms of AC-GV, the

mRNA expression of HDAC11 was significantly reduced, while

that of HDAC1, HAT1, and HDAC7, which are strongly associated

with poor prognosis, were significantly elevated in this subtype. We

further explored the prognostic significance of ACG subtype in

glioma patients. The results showed that, within the entire patient
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cohort, AC-GII subtype displayed markedly longer survival,

whereas the AC-GV corresponded to worst prognosis (Figure 3F).

Furthermore, the prognostic significance of ACG subtype was

preserved in subgroup analysis stratified by dataset used

(Supplementary Figures S2A, B) or treatment received by the

patient (Figures 3G–I). To clarify whether our proposed ACG

classification scheme is robust, we collected supplementary

transcriptomic data of glioma samples from the GlioVis database

and GEO database (GSE43378). Subsequently, we classified the

patients using the NTP algorithm based on the molecular

expression signatures obtained by PAM algorithm in the whole

transcriptome (48) (Supplementary Figures S2C-E). Similarly, we

identified five patient groups based on ACRG transcription

expression in both GlioVis and GSE databases, and the ACRG

expression characteristics (Figures 3J, L, Supplementary Figures

S2F, G), histopathological features (Figure 3K) and prognostic

differences (Figure 3M, Supplementary Figure S2H) between each

group were generally consistent with the original ACG subtype.

Taken together, these results indicated that the transcriptional

expression of ACRGs represents a novel molecular marker with

significant clinical implications for the precise characterization and

classification of gliomas.
3.4 Association between ACG subtypes and
other genetic markers with
clinical significance

Currently, the clinical classification of glioma has been achieved

by integrating both histopathologic characteristics and molecular

markers, such as IDH mutation status, codeletion of chromosomal

arms 1p and 19q (1p/19q codeletion), and combined gain of

chromosome 7 and loss of chromosome 10 (7+/10-), etc (49).

Hence, we investigated the correlation between ACG classification

and molecular markers that are routinely assessed in clinical

practice. As shown in Figures 4A, B, we observed that the AC-GV

subtype was significantly enriched with molecular features linked to

high malignancy, such as IDH wild-type, 1p/19q non-codeletion,

EGFR amplification, 7+/10- mutations, and CDKN2A/B

homozygous deletion (HD) (Supplementary Table S7). In

addition, some genetic mutations that were frequently observed in

GBM, including PTEN and NF1, were more prevalent in AC-GV

compared to other ACG subtypes. Conversely, the AC-GII subtype

was concentrated in molecular characteristics such as IDH mutant,

1p/19q codeletion, non-EGFR amplification, and CDKN2A/B non-

HD. Notably, the CIC mutation, a genetic feature of

oligodendrogliomas, exhibited the highest incidence in the AC-

GII subtype. Furthermore, the frequency of MGMT promoter

methylation, a biomarker indicative of response to temozolomide,

was the highest in the AC-GII (85.4%), followed by AC-GIII,

whereas AC-GV showed the lowest incidence of MGMT

methylation. Consistently, the drug sensitivity analysis also

showed that the predicted AUC for temozolomide was the lowest

in AC-GII but significantly higher in AC-GIV and AC-GV

compared to other subtypes, suggesting that patients within AC-

GIV and AC-GV may have primary resistance to temozolomide
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(Figure 4C). Alterations in telomeres and telomerase have been

regarded as prognostic biomarkers for glioma patients (50). Our

findings revealed that the telomerase signature score and telomere

length was the highest in AC-GV subtype (Figures 4D, E). However,

aberrant telomere variant repeats and targeted telomere insertion

did not exhibit significant differences among the various ACG

subtypes (Supplementary Figure S3). Additionally, we also

evaluated the associations between ACG subtypes and genomic

instability. The findings indicated that genomic breakpoints,

aneuploidy scores, and chromosomal instability 25 scores were

significantly elevated in AC-GV patients compared to other

subtypes (Figures 4F–H). Correspondingly, the proteomic data

analysis also revealed increased expression of proteins involved in
Frontiers in Immunology 08
DNA damage repair, such as ATM, X53BP1, and MSH6, within the

AC-GV subtype (Figure 4I). Finally, the transcriptional

differentiation trajectory analysis showed that the AC-GV subtype

was concentrated at the terminal point of the differentiation

trajectory, indicating that AC-GV represents the most aggressive

subgroup of glioma (Figure 4J).
3.5 Disparity in biological characteristics
and immune TME among ACG subtypes

The biological characteristic of each ACG subtype was assessed

using GSVA analysis (Figure 5A, Supplementary Figures S4A, B).
FIGURE 3

Consensus clustering based on mRNA expression of histone acetylation regulator genes (ACRGs) in patients with glioma. (A, B) Consensus matrix (A)
and heatmap (B) depicted the expression pattern of the 25 ACRGs identified by the unsupervised clustering analysis in the TCGA-GBMLGG & CGGA
cohort. Cohort details were illustrated as patient annotations. (C) Bar charts summarized the proportions of patients with different ACG subtypes
within and across LGG and GBM. (D) Heatmap (left) displayed the correlation and importance generated by random forest model of each ACRGs in
different ACG subtypes and the boxplot above represented the degree of interpretation of the model to the target ACG subtypes. The forest plot
(right) showed the associations between different ACRGs and OS of patients. (E) Box plots showed the mRNA expression of 25 ACRGs in different
ACG subtypes in the TCGA-GBMLGG & CGGA cohort. (F) Kaplan-Meier curves of overall survival (OS) according to ACG subtypes in TCGA-GBMLGG
& CGGA cohort. (G-I) Kaplan-Meier curves of overall survival (OS) according to ACG subtypes of radio-therapied (G), chemo-therapied (H) and
untreated (I) patients in CGGA cohort. (J) Heatmap depicted the expression pattern of the 25 ACRGs between different predicted ACG subtypes in
the GlioVis cohort. (K) Bar charts summarized the proportions of patients with different predicted ACG subtypes within and across LGG and GBM in
GlioVis cohort. (L) Box plots showed the mRNA expression of 25 ACRGs in different predicted ACG subtypes in the GlioVis cohort. (M) Kaplan-Meier
curves of overall survival (OS) according to predicted ACG subtypes in GlioVis cohort. ***p < 0.001.
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The results suggested that the majority of biological pathways

cataloged in Hallmark and KEGG databases showed high

activation levels in AC-GV subtype. Specifically, biological

processes related to angiogenesis, epithelial-mesenchymal

transition, unfolded protein response, MTOR signaling, cell cycle

regulation, DNA damage repair, and apoptosis had the highest

activation levels in AC-GV compared to other subtypes. Similarly,

pathway enrichment analysis based on differential miRNAs also

indicated that miRNAs related to epithelial-mesenchymal transition

and cell cycle regulation were significantly upregulated in patients

with AC-GV compared with others (Figure 5B). The most

significantly elevated pathways in the AC-GIV subtype were the

ROS pathway, oxidative phosphorylation, and myogenesis,

indicating a higher degree of oxidative stress in the tumor tissues

of AC-GIV. Interestingly, the activation levels of the above three

biological processes were found to be significantly inhibited in AC-

GII subtype. The enrichment of metabolism-related pathways in

each ACG subtype is shown in Figure 5C, Supplementary Figure

S4C. Notably, AC-GV was characterized by the highest activation

levels of glycolysis, indicating that targeting glucose metabolism

could also be a potential therapeutic strategy for these patients.

To explore the immune heterogeneity among different ACG

subtypes, we estimated the immune infiltration score of each sample
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utilizing six transcriptomic-based immune cell infiltration

algorithms embedded in the IOBR package (21) (Figure 6A,

Supplementary Figure S5A). The analysis revealed that AC-GV

patients, despite having the poorest prognosis, exhibited the highest

estimated enrichment score of TME cells, especially CD4+ T cells,

M1 macrophages, activated dendritic cells, and cancer-associated

fibroblasts (CAFs). In particular, CAFs exhibit a highly infiltrated

pattern that was specific in AC-GV. Consistent with findings

generated from immune cell infiltration analysis, patients within

AC-GV also exhibited the highest levels of TMB (Figure 6B),

neoantigens (Figure 6C), and intratumoral heterogeneity

(Figure 6D), along with the lowest levels of tumor purity

(Figure 6E). Additionally, the activation levels of immune

regulatory pathway genes (e.g., antigen presentation, chemokine,

and immune checkpoint, etc) were also the highest in AC-GV

(Figure 6F, Supplementary Figure S5B). On the contrary, for

patients within AC-GI and AC-GII subtypes, both the estimated

infiltration abundance of most immune cells and the expression

levels of immune-related genes were observed to be at low levels,

suggesting that the TME of these two subtypes presents an

“immune desert” phenotype. In brief, the results mentioned above

identified an extensive immune infiltration disparity among five

ACG subtypes within gliomas.
FIGURE 4

The association between ACG subtypes and other genetic markers with clinical significance. (A) Sankey diagram of ACG subtypes in groups with
different molecular subtypes in the TCGA-GBMLGG cohort. (B) Oncoprints depicted significantly mutated genes and different mutation types of
different ACG subtypes in the TCGA-GBMLGG cohort. (C) Box plot showed the predicted area under curve values of temozolomide based on the
CTRP database. (D-H) Violin plots displayed the telomere length (D), telomerase signature score (E), genomic breakpoints (F), aneuploidy score (G),
and CIN25 score (H) among different ACG subtypes in TCGA-GBMLGG cohort. (I) Heatmap exhibited the landscape of differentially expressed
proteins in different ACG subtypes in the TCGA-GBMLGG cohort. (J) Pseudotemporal analysis plot of TCGA-GBMLGG & CGGA cohort demonstrated
the potential development trajectory of different ACG subtypes. NA, not available.
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3.6 Screening of potential therapeutic
agent by CTRP and CMap database analysis

To explore the potential therapeutic agents that could be used

for treating glioma patients within different ACG subtypes, we

calculated the AUC value of 354 drugs documented in CTRP

database among TCGA-GBM and CGGA patients (Figures 7A,

B). We discovered that in addition to temozolomide mentioned

earlier, some pan-HDACis (vorinostat and pandacostat) also

showed the lowest mean AUC values in AC-GII subtype, while

the average AUC values were significantly increased in AC-GV,

suggesting that patients within AC-GII rather than AC-GV subtype

may benefit from pan-HDAC inhibitor treatment. Interestingly,

certain statins (e.g., fluvastatin and lovastatin), which have

demonstrated anti-tumor efficacy in both in vivo and in vitro

studies (51), showed significantly lower mean AUC values in AC-

GV patients compared to patients with other ACG subtypes,

suggesting that AC-GV patients may be suitable for statin therapy.

Since patients in the AC-GII subtype tended to be more sensitive

to temozolomide, we used the CMap bioinformatic tool to identify

drug candidates that can improve the efficacy of temozolomide based

on the differential transcriptome characteristics between AC-GV and

AC-GII subtypes. As shown in Figure 7C, we identified 12 compounds

whose CMap scores were lower than -90 in at least two glioma
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cohorts. Further investigation of the activity and gene targets of these

compounds revealed that four compounds were inhibitors of the

HDAC family (Figures 7D, E). Among them, belinostat, panobinostat,

and scriptaid were pan-HDACis, while ISOX is capable of specifically

inhibiting the activity of HDAC6. Since our previous findings have

demonstrated the lowest sensitivity of pan-HDACis and

temozolomide in AC-GV type patients (Figure 7B), we hypothesized

whether the combination of pan-HDACis and temozolomide could

exhibit synergistic antitumor effect. As panobinostat and scriptaid

exhibited lower enrichment scores compared to the other identified

pan-HDACis, we selected panobinostat and scriptaid for subsequent

empirical validation through wet lab experiments. By conducting in

vitro experiment, we validated that panobinostat or scriptaid could

enhance the inhibitory effects of temozolomide on U87 cell

proliferation (Figure 7F) and colony formation (Figure 7G), as well

as potentiate the temozolomide induced cell apoptosis (Figures 7H, I).

The xenotransplantation experiments further indicated that

temozolomide combined with panobinostat therapy limited the

capacity of U87 cells to form tumors in vivo (Figure 7J). To

conclude, these findings suggested that panobinostat or scriptaid

could serve as chemosensitizers for AC-GV subtype. The

combination of pan-HDACis with temozolomide represents a

promising novel therapeutic strategy for patients with AC-

GV subtype.
FIGURE 5

Disparity in biological and metabolic characteristics between ACG subtypes. (A) Heatmap depicted the Hallmark and KEGG biological pathways
among 5 ACG subtypes. (B) Bar plots showed the results of the over-representation analysis performed by using the up-regulated and the down-
regulated microRNAs derived by the differential expressed miRNA analysis. (C) Heatmap displayed the metabolic characteristics among 5
ACG subtypes.
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3.7 Construction and validation of an ACG
subtype-related scoring model to discern
AC-GII and AC-GV

Since AC-GII and AC-GV were characterized by possessing

contrasting clinical characteristics, with AC-GII patients having

improved prognosis and higher temozolomide sensitivity, while

AC-GV displayed the opposite features, it would be beneficial to

establish an effective scoring scheme capable of accurately

identifying AC-GII and AC-GV patients. To provide a more

comprehensive view of the acetylation landscape without

overlooking important genes that are not directly involved in

enzymatic process, we screened the candidate genes from the

whole transcriptome. To reduce the dimensions of DEGs in AC-

GII (Figure 8A, Supplementary Table S8) and AC-GV (Figure 8B,
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Supplementary Table S9), we employed LOOCV framework to fit

105 prediction models and computed the c-index for each within

the TCGA/CGGA cohort. The GBRM algorithm was selected for

AC-GII subtype discrimination, while the combination of StepCox

and RSF was chosen to identify the AC-GV subtype. Subsequently,

by combing the results of these two prediction models, we

constructed a scoring scheme composed of 29 genes

(Supplementary Table S10), termed the “ACG score”, which was

defined as (the average value of up-regulated genes in AC-GV) -

(the average value of up-regulated genes in AC-GII). Among these

genes, SMC4, CAS2L3, DEPDC1, IGF3BP3, ANXA1, IGFBP2, and

PLAT were significantly upregulated in the AC-GV subtype and

associated with higher survival risks, while the remaining 22 genes

were upregulated in the AC-GII subtype and linked to improved

prognosis (Figures 8C, D). To examine the distribution of 29
FIGURE 6

Diversity in immune tumor microenvironment between ACG subtypes. (A) Heatmap displayed the tumor microenvironment cell infiltration among 5
ACG subtypes. (B-E) Box plots illustrated the differences in TMB score (B), Neoantigen score (C), Intratumor Heterogeneity score (D), and
TumorPurity score (E) between 5 ACG subtypes. (F) Heatmap showed expression of different immune regulatory pathways genes in different ACG
subtypes. NA, not available.
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scoring genes among different TME cells, we obtained the glioma

scRNA-seq dataset GSE182109, in which 214,366 cells from 44

tumor tissues were categorized into seven major cell types,

including glioma cells, oligodendrocytes, myeloid cells, T cells, B

cells, endothelial cells, and pericytes (Supplementary Figures S6A,

B). The marker gene expression for different cell types was shown in

Supplementary Figure S6C. The violin plot demonstrated that

IGFBP2, SMC4, PLAT, and ANXA1, showed relatively higher

expression levels in pericytes and glioma cells compared to other

scoring genes (Supplementary Figure S6D). The ROC curves

demonstrated that the ACG score could accurately identify both

the AC-GII and AC-GV subtypes, with elevated ACG scores
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indicating AC-GV and reduced scores prompting AC-GII subtype

in TCGA-GBMLGG&CGGA (Figures 8E, F), GlioVis cohorts

(Figures 8G, H), and GSE43378 (Supplementary Figures S7A, B).

Subsequent survival analyses revealed that elevated ACG score was

linked to higher mortality risk in the univariate model (Figures 8I, J,

Supplementary Figure S7C) and was validated as an independent

prognostic indicator by multivariate Cox regression (Figure 8K,

Supplementary Tables S11-13). Moreover, high ACG score

subgroup was associated with reduced temozolomide sensitivity

(Figure 8L, Supplementary Figure S7D). We also investigated the

correlation between ACG score and molecular markers that are

routinely assessed in clinical practice. As shown in Supplementary
FIGURE 7

Screening of potential therapeutic agent by CTRP and CMAP database analysis. (A) Heatmap depicted the predicted area under curve values of 30
drugs with the most significant difference among different ACG subtypes based on the CTRP database. (B) Box plot showed the predicted area
under curve values of entinostat (left), panobinostat (middle), and vorinostat (right) in different ACG subtypes based on the CTRP database. (C)
Heatmaps showing the enrichment score of each compound based on the Connectivity Map analysis in the TCGA-GBMLGG, CGGA, and GlioVis
cohorts. (D, E) Heatmap showing the mechanisms of the action (D) and gene targets of each compound (E). (F) U87 cells were treated with vehicle
control + Temozolomide, Panobinostat (12 nM) + Temozolomide, and Scriptaid (3.2 mM) + Temozolomide for 48h or 72h. Cell viability was detected
by cell counting kit-8 (CCK8). (G) U87 cells were treated with vehicle control, Panobinostat(12nM), Scriptaid(3.2mM), Temozolomide(800mM),
Panobinostat(12nM) and Temozolomide(800mM), or Scriptaid(3.2mM) and Temozolomide(800mM) for 48h, and cultured up to 2weeks in drug-free
DMEM complete media. Colonies were fixed with paraformaldehyde and stained with crystal violet, then analyzed by ImageJ. Representative images
of colony formation assay and mean percent difference in colony formation in different drug treatment groups from three independent experiments.
(H) Representative Annexin V and PI staining of vehicle control, Panobinostat, Scriptaid, Temozolomide, Panobinostat + Temozolomide, and
Scriptaid + Temozolomide treated U87 cells. Quantification (percentage of) early and late apoptotic cells. (I) U87 cells were incubated with the drugs
mentioned above for 48h, and lysates were subjected to Western blot to identify the levels of apoptotic proteins, cleaved PARP, Bcl2 and cleaved
caspase-3. (J) U87 cells (1X10^6 cells in 100ml of DMEM) were intracranially injected into 6week-old female BALC/c nu/nu mice. After one week,
measured tumor growth, and mice were randomized into 4 groups and treated with vehicle control, Panobinostat(5mg/kg), Temozolomide(25mg/
kg), Panobinostat(5mg/kg) +Temozolomide(25mg/kg) for 5 days a week. On the 14th day, images of tumors in both groups of mice were obtained.
Histogram comparison of tumor weights among different treatment groups in mice with tumors. *p < 0.05, **p < 0.01, ***p < 0.001. ns,
not significant.
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Figure S8, we observed that the high ACG score group was enriched

with molecular features linked to high malignancy, such as IDH

wild-type, 1p/19q non-codeletion, EGFR amplification, 7+/10-

mutations, and CDKN2A/B HD (Supplementary Table S14).

Meanwhile, the frequency of MGMT promoter methylation, a

biomarker indicative of response to temozolomide, was

significantly lower in the high ACG score group (82.1%). Taken

together, these findings confirmed the robustness and

reproducibility of the ACG subtypes and revealed that the ACG

score could be a reliable biomarker predicting survival outcomes

and therapeutic efficacy in glioma patients.
4 Discussion

Growing evidence has demonstrated that histone acetylation

plays a pivotal role in tumorigenesis and progression owing to its

indispensable function in dynamic transcriptional control and the

maintenance of genomic integrity (52). Therefore, enzymes

involved in the histone acetylation process, particularly members

of the HDAC family, are considered a promising class for drug

targets (53). Currently, most developed HDACis simultaneously

target multiple classes of enzymes, including classes I, II, and IV
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(54). Although these pan-HDACis were found to exert potent anti-

tumor effects both in vivo and in vitro (55, 56), their clinical efficacy

was observed predominantly in patients with hematological tumors

(53), failing to meet expectations in the treatment of most solid

tumors (10, 57, 58). In this study, by performing a clustering

analysis based on transcriptional expression of ACRG in the pan-

cancer cohort, we found that compared to other tumor types, which

tend to cluster together due to similarity in ACRG transcriptional

expression patterns, the ACRG expression characteristics of glioma

patients have strong cancer species specificity; more than 90% of

patients in the AC-V subtype are diagnosed with glioma, while each

of the other four subtypes contains over 15 tumor types. Moreover,

each AC subtype was characterized by the distinct expression

pattern of histone acetylation-modifying enzymes. This finding

suggested that the mRNA expression characteristics of ACRG

were able to classify tumors beyond their anatomical origin.

Meanwhile, such heterogeneous distribution pattern implies that

clinical trials of HDACis based solely on the conventional

anatomical classification of cancer, as currently performed in pan-

HDACi clinical trials, may fail to effectively stratify patients who

may experience benefits, possibly resulting in suboptimal outcomes.

Particularly, we noticed that patients with COAD were

predominantly distributed to the AC-IV and AC-RIV subtypes
FIGURE 8

Construction and validation of ACG score in different glioma cohorts. (A, B) Bar plots displayed machine learning prediction models using
differentially expressed genes in AC-GII (A) and AC-GV subtype (B) respectively via leave-one-out cross validation framework and further calculated
the C-index of each model across Train and Test datasets in TCGA-GBMLGG & CGGA cohort. (C) Heatmap exhibited the expression of genes
consisting of ACG score in different ACG subtypes in the TCGA-GBMLGG & CGGA cohort. (D) The forest plot showed the associations between the
expression of genes consisting of ACG score and OS of patients in the TCGA-GBMLGG & CGGA cohort. (E, F) The receiver operating characteristics
curve (E) and violin plots (F) showed the ability of ACG score to distinguish AC-GV (blue) and AC-GII subtype (red) from other ACG subtypes in the
TCGA-GBMLGG & CGGA cohort. (G, H) The receiver operating characteristics curve (G) and violin plots (H) showed the ability of ACG score to
distinguish predicted AC-GV (blue) and predicted AC-GII subtype (red) from other ACG subtypes in the TCGA-GBMLGG & CGGA cohort. (I, J)
Kaplan-Meier curves of OS in the TCGA-GBMLGG & CGGA cohort (I) and GlioVis cohorts (J) according to the ACG score. (K) The forest plot showed
the associations between the various factors and OS in a multivariate regression model in the TCGA-GBMLGG cohort. (L) Box plots exhibited
predicted area under curve values of temozolomide among different ACG score groups based on CTRP analysis in the TCGA-GBMLGG & CGGA
(left) and GlioVis (right) cohorts. NA, not available.
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(over 90%), indicating a homogeneous acetylation modification

profile within this population. Recently, Wang et al. reported the

significant therapeutic benefits of combining a PD-1 antibody, an

HDACi, and a VEGF antibody in treating patients with

microsatellite stable/proficient mismatch repair advanced

colorectal cancer (59). Given that most patients with COAD were

categorized into the AC-RIV subtype, the proposed triplet

combination therapy may also yield positive outcomes in non-

colorectal AC-RIV patients.

Another important finding of this study is that we proposed a

classification model for gliomas based on ACRG transcriptional

expression patterns. In recent years, the importance of molecular

alterations in achieving precise classification of gliomas has been

widely recognized. Some molecular markers, such as IDH, 1p/19q

codeletion, EGFR amplification, CDKN2A/B loss, and TERT

promoter mutation, etc. have been routinely tested in clinical

practice and cooperated with histopathological information to form

the classification scheme of glioma (49). However, the intra-subtype

heterogeneity still exists under the current categorizations of gliomas,

suggesting that more molecular markers need to be developed for

more detailed classification. To our knowledge, this is the first report

exploring the role of transcriptional expression of ACRGs in

classifying gliomas. Our study showed that differences exist in the

distribution of transcriptional expression of ACRG in glioma, and

this difference is independent of some classical glioma classification

indicators, such as IDH, etc. Among them, AC-GII patients, who

were characterized by high expression of HDAC4, EP300, and

CREBBP, had the best prognosis and were sensitive to

temozolomide and pan-HDACis. HDAC4 is a member of the Class

IIa HDAC family that is highly expressed in brain cells. Although

analysis of multiple bulk RNA-seq datasets of glioma patients showed

that higher mRNA expression of HDAC4 was significantly correlated

with lower tumor grade and prolonged OS (60), overexpression of

HDAC4 (especially its nuclear overexpression) promotes

proliferation, invasion, and drug resistance in glioma cells in

cellular experiments (61, 62). Therefore, we hypothesized that the

biological role of HDAC4 in vivo may be modulated by additional

genetic factors (e.g., gene mutations) rather than being independent.

Unlike HDAC4, EP300 and CREBBP are acyltransferases whose

activity is essential for promoting histone H2B hyperacetylation.

The role of histone H2B hyperacetylation in tumorigenesis and

development remains controversial (63, 64). In gliomas, the degree

of H2B acetylation has been reported to be associated with reduced

immune infiltration scores. Coincidentally, our results also indicated

that the estimated abundance of immune cell infiltration within the

TME of AC-GII patients is notably low. This observation implies that

the use of inhibitors targeting EP300 and CREBBP molecules may

help to heat the TME of AC-GII tumors and exert a synergistic effect

with anti-PD-1 therapy in patients belonging to this subtype.

In contrast to AC-GII, AC-GV patients, characterized by high

expression of HAT1 and HDAC1 combined with loss of HDAC11

expression, had the worst prognosis and the highest predicted AUC

values for temozolomide and pan-HDACis, suggesting that these

patients may have primary resistance to these drugs. Meanwhile, AC-

GV subtype displayed enriched genomic instability features,

including genomic breakpoints, aneuploidy, and intratumor
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heterogeneity. In terms of estimated immune infiltration scores,

although the AC-GV tumors had a high enrichment of CD8T cells

maker gene expression, CAFs, which have been recognized as crucial

contributors to the physical obstruction of T-cell infiltration through

the formation of a dense extracellular matrix, also exhibited highly

estimated infiltration abundance specifically in this subtype (65).

Therefore, we hypothesized that the TME characteristics of AC-GV

could be cataloged into the “immune-excluded” phenotype, which

may account for the poor prognosis of AC-GV subtype. Interestingly,

through the CTRP database analysis, we found that these patients

were more sensitive to statins. Previous studies have reported that

statins suppressed glioma growth through various mechanisms in

vitro (66); however, clinical observational studies showed that the use

of statins only reduces the incidence rate of glioma but does not

prolong the survival of glioma patients (67). Our study suggested that

only patients within AC-GV subtype may benefit from statin therapy.

Therefore, it is necessary to screen enrolled patients for clinical

studies on statins. In addition, through CMap analysis based on

DEGs between AC-GV and AC-GII, we also uncovered four HDACis

as potential chemotherapy sensitizers. Among them, we further

validated that the pan-HDAC inhibition by either panobinostat or

scriptaid demonstrated the ability to enhance chemosensitivity to

temozolomide in GBM cells. The combination therapy was more

effective in suppressing cell proliferation and inducing apoptosis than

either treatment alone. Since the dysregulation of HDACs has been

implicated in tumor adaptation and resistance to genotoxic

chemotherapy (68, 69), the pairment of HDACis with DNA-

damaging chemotherapeutic agents in GBM treatment appears to

be a rational and promising treatment sensitizing option for AC-GV

patients, thus warrant further investigation of this combination

therapy in clinical trials. Moreover, the ACG scoring model was

composed of 29 genes, which is easy to be converted into a clinically

usable kit, making the generation and standardization of ACG score

simple and convenient. The ACG score was not only an independent

predictor of poor prognosis of glioma patients, but could

also effectively identify patients with temozolomide resistance,

guide the decision of the combination therapy of pan-HDACis

and temozolomide, and thus possess significant clinical

transformation values.

This study has some limitations. First, previous studies have

reported that the ACRGs included in this study regulate many other

acylation modifications besides acetylation, including propionylation,

crotonylation, butyrylation, succinylation, glutarylation, 2-

hydroxyisobutyrylation, and b-hydroxybutyrylation (70–75).

Therefore, the connection between tumor classification system we

established based on the transcriptional expression of ACRGs and the

levels of histone acetylation modifications should be interpreted with

caution. Second, our study was solely based on a retrospective

analysis of public patient cohorts. Therefore, it is necessary to

collect multi-center patient cohorts to verify our findings. Further

validation in prospective cohorts using patient specimens can

significantly enhance the clinical applicability of ACG score. Third,

the cut-off values of the ACG score need to be standardized in future

prospective studies. Fourth, the analysis of drug sensitivities was

based exclusively on in silico results, thus, requiring further wet lab

experiment validation in the future. Last, other identified potential
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sensitizers for temozolomide combination treatment require further

experimental verification.

In conclusion, our study suggested that the transcriptional

expression characteristics of HATs and HDACs can yield novel

molecular classifications that transcend tissue-of-origin cancer types.

In particular, we identified five novel molecular subtypes (ACG subtype)

in the context of gliomas, unveiling differences in clinical, biological,

TME, and genomic alteration characteristics. These classification

patterns and the associated ACG score established in this study may

serve as key references for individualized treatment of gliomas.
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