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Novel pyroptosis-immune-
related lncRNA signature exhibits
a distinct immune cell infiltration
landscape in breast cancer
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Shandong, China, 2Breast and Thyroid Surgery, Jining No 1 People’s Hospital, Jining,
Shandong, China, 3Physiology Teaching and Research Office, Jining Medical College, Jining,
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Introduction: This study investigated pyroptosis- and immunity-related long

non-coding RNAs (lncRNAs) to identify promising therapeutic targets for breast

cancer (BC), and constructed lncRNA signatures to determine the prognosis and

immunotherapy responses of BC patients.

Methods: Pearson’s correlation coefficient was used to identify pyroptosis- and

immune-related differentially expressed lncRNAs (DE-pyrolncRNAs and DE-

ImmlncRNAs, respectively). The Cancer Genome Atlas dataset was allocated to

training and testing subsets. Prognostic lncRNA signatures were derived based on

the training subset using univariate Cox regression analysis and Least Absolute

Shrinkage and Selection Operator methods. Stepwise Cox regression was used

to refine these signatures and to select the optimal lncRNA signature. Themedian

risk score of the training subset was applied as a threshold to divide patients into

high-risk (HR) and low-risk (LR) groups. The Wilcoxon test was used to reveal

differences in immune scores, cell types, functions, and checkpoint genes

between these groups. Single-cell sequencing data from GSE176078 were

used to validate the immune cell infiltration landscape of the identified

lncRNA signatures.

Results: We identified a six-lncRNA pyroptosis-immune signature comprising

MAPT.AS1, CTA.384, D8.34, RP11.561, I11.3, HID1.AS1, AC097713.3, and USP2.AS1.

Patients in the HR group demonstrated inferior prognoses in the training, testing,

and full datasets (P=3.622e-07, P=3.736e-03, and P=1.151e-08, respectively).

Immune scores were significantly enhanced in the LR group, whereas tumor

purity was elevated in the HR group. Fifty-eight immune scores showed

significant differences between the groups (P<0.05). Immune function (APC

coinhibition, CCR, and checkpoints) more significantly impaired in the HR

group. Expression levels of 38 immune checkpoint genes, including KIR2DS4,

KIR3DL2, CD40LG, KIR3DL1, and PDCD1, were significantly higher in the LR

group. Conversely, the TDO2, PVR, and CD276 levels were elevated in the HR

group. Single-cell sequencing data from GSE176078 showed sparse T cell, B cell,

myeloid, and plasmablast clusters in the HR group, whereas the LR group

displayed significant clustering of B cells, myeloids, and plasmablasts.
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Conclusion: The six-lncRNA pyroptosis-immune signature effectively predicted

BC prognosis and highlighted distinct immune cell infiltration patterns. This holds

promise for evaluating immunotherapy responses and guiding therapeutic target

identification in BC.
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1 Introduction

In 2020, breast cancer (BC) became the most prevalent form of

cancer and the leading cause of cancer-related deaths among

women (1). Given BC’s highly heterogeneous nature of BC (2),

current treatment strategies are inadequate to address key issues,

such as tumor metastasis, recurrence, and drug resistance (3). This

underscores the urgent need to identify crucial genes involved in

BC, explore the underlying molecular mechanisms, and identify

novel and effective treatment options.

Pyroptosis, a form of programmed cell death, triggers

inflammation by releasing signaling molecules and cytokines,

resulting in robust inflammatory responses and immune

activation (4, 5). Unlike apoptosis, pyroptosis causes cell swelling,

plasma membrane rupture, chromatin fragmentation, and release of

proinflammatory substances (6). Recent research indicates that

pyroptosis is crucial for tumor proliferation, invasion, and

metastasis and is regulated by various molecules. It has been

linked to the progression and treatment of multiple cancers (7–9),

including breast (10), colon (11), ovarian (12), lung (13), gastric

(14), and hepatocellular carcinoma (15).

Long noncoding RNAs (lncRNAs, >200 nucleotides in length)

participate in cell proliferation, apoptosis, and migration (16–18).

Several lncRNAs have high tissue- and cell-type specificity and

regulate the malignant function of BC cells and multidrug

resistance, making them potential therapeutic targets (16, 18).

Recent evidence suggests that lncRNAs involved in pyroptosis are

associated with other cancers (19, 20). For example, in triple-negative

BC, DDP-induced pyroptosis involves the MEG3/NLRP3/caspase-1/

GSDMD pathway (21), and the MALAT1/miR-124/SIRT1 axis has

been implicated in pyroptosis, offering therapeutic targets (22).

Accumulating evidence has shown that dysregulation of

lncRNAs is closely associated with tumor development. Their

roles in processes such as pyroptosis, tumor immunity, and

tumor microenvironment have garnered significant attention (23).

During pyroptosis, immune components within the tumor

microenvironment exert regulatory effects, often by modulating

immune cell function (24). Our study on lncRNAs related to

pyroptosis and immunity in BC aimed to uncover new

therapeutic targets. We developed a lncRNA signature to assess

patient outcomes and immunotherapy reactions.
02
2 Materials and methods

2.1 Data collection and analysis

BC RNA-Seq data were sourced from the University of

California, Santa Cruz (UCSC) Xena Project (https://

xena.ucsc.edu/), including datasets from The Cancer Genome

Atlas (TCGA) and the Genotype-Tissue Expression (GTEx)

project, RSEM expected_count data from TCGA and GTEx, and

RSEM transcript per million (TPM) data from TCGA (25). The

UCSC Xena project addresses issues, such as limited normal

samples in TCGA, improved compatibility between datasets, and

standardized raw expression data to minimize variation between

sources (26). We converted TCGA and GTEx expected count data

from log2 (expected count + 1) data, referred to as TCGA-GTEx

expected_count. Similarly, TCGA TPM data were transformed

from log2 (TPM + 0.001) values. The TCGA dataset included

1,086 female BC cases and 112 tumor-adjacent normal tissue

samples, whereas the GTEx dataset included 79 normal female

breast tissue samples. The corresponding patients’ clinical

information was collected via a gdc-client.
2.2 Identification of pyroptosis-immune-
related lncRNAs

Differential gene expression was analyzed using TCGA-GTEx

expected count. Annotation of lncRNAs and mRNAs in the dataset

TCGA-GTEx was based on the ENSEMBL human gene annotation

file (https://ftp.ensembl.org//pub/release-110/gtf/homo_sapiens/).

Duplicate genes were removed, retaining only genes with the

highest expression. Differentially expressed genes (DEGs) were

unveiled using “limma” (v.3.58.1), “edgER” (v.4.0.16), and

“DESeq2” (v.1.42.1) with a false discovery rate (FDR) < 0.05 and

|log2fold change (FC)| ≥ 1. The converging results from these three

methods were used to identify the DEGs.

We retrieved 405 pyroptosis-related genes from GeneCards

(https://www.genecards.org/) with a relevance score > 1 and

acquired 2,483 immune-related genes from the ImmPort database

(http://www.immport.org). Using the “limma” package, we

calculated and uncovered pyroptosis- and immune-related
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differentially expressed lncRNAs (DE-PyrolncRNAs and DE-

ImmlncRNAs, respectively) using |Pearson’s correlation

coefficient| > 0.4| and p-value < 0.01 as the threshold. The final

set of PyroI-mm-lncRNAs was obtained by overlapping the DE-

pyrolncRNAs and DE-immune-lncRNAs.
2.3 Construction of PyroImm-lncRNAs
prognostic signatures

BC TCGA TPM data were integrated with prognostic data,

focusing solely on overall survival (OS) as the survival endpoint.

Using the createDataPartition() function from the R caret package

(27), The dataset was assigned to the training and testing subsets to

create a prognostic risk model using the createDataPartition function

in the R caret package (27). In the training subset, univariate Cox

proportional hazards regression (R package library “survival”)

identified PyroImm-lncRNAs associated with OS, including genes

with P < 0.05. To refine the model and address overfitting, least

absolute shrinkage and selection operator (LASSO) Cox proportional

risk regression was conducted with parameters family = “cox” and

maximum = 1,000 via the “glmnet” package in R (28) to reduce gene

numbers. Stepwise Cox regression was then applied to optimize the

model (29), calculating each patient’s risk score as the sum of each

RNA expression (EXP) multiplied by its coefficient; that is, the

formula was as follows: risk score = EXPa × coefficient a + EXPb ×

coefficient b + EXPc × coefficient c +…+ EXPn × coefficient n, where

n is the number of RNAs. Based on these scores, patients were

classified into high-risk (HR) and low-risk (LR) groups. Kaplan-

Meier (K-M) survival curves (using R packages “survival” and

“survivor”) compared OS between these groups in the full, training,

and testing datasets, with a log-rank P<0.05 as significance. Receiver

operating characteristic (ROC) curves (using R packages “timeROC,”

“survival,” and “survivor”) assessed sensitivity and specificity at 1-, 3-,

and 5-year OS, while risk heat maps, risk curves, and survival-status

maps illustrated the model’s prognostic performance.
2.4 Clinicopathological features and
nomogram establishment

Univariate and multivariate Cox regression analyses were

performed to identify independent prognostic indicators using the

R survival package, based on the risk scores of clinicopathological

factors, including age, distant metastasis (M) (ajcc_pathology M),

lymph node metastasis (N) (ajcc_pathology N), stage

(ajcc_pathology stage), estrogen receptor (ER), progesterone

receptor (PR), human epidermal growth factor receptor 2

(HER2), and tumor size and invasiveness (T) (ajcc_pathology T).

Significance was set at P<0.05, with OS as the endpoint. Stepwise

Cox regression (R package “My.stepwise”) refined these factors to

create an optimal nomogram model (30). The prognostic

performance of the model was examined using the consistency

index (C-index), receiver operating characteristic (ROC) curve, and

the calibration curve of the full dataset. Decision curve analysis
Frontiers in Immunology 03
(DCA) with R packages “survival” and “stdca. R” validated the

clinical utility of the model, with P<0.05 indicating significance.
2.5 Immune landscape analysis

Stromal, immune, and ESTIMATE scores, and tumor purity in each

TCGA-BRCA case were evaluated using the R package ESTIMATE

(v.1.0.13) (31) and compared across risk groups using the Wilcoxon test.

Differences in various immune cells fromTCGA database were examined

across TIMER, CIBERSORT, CIBERSORT ABS, QUANTISEQ,

MCPCOUNTER, XCELL, and EPIC platforms based on their immune

scores downloaded from TIMER2.0 (http://timer.compgenomics.org)

(32). Immune function scores of thirteen gene sets from TCGA-

BRCA (33) were gathered from https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC6310928/bin/ and measured using single-sample gene

set enrichment analysis (ssGSEA) with R packages “GSEABase”

(v.1.64.0), “limma” (v.3.58.1), and “GSVA” (v.1.50.5). Differences

between the HR and LR groups were compared using Wilcoxon

test. In addition, seventy-nine immune checkpoint genes were

downloaded (34), and differences between the HR and LR groups

were evaluated using the Wilcoxon test.
2.6 GSEA and gene set variation analysis

DEGs were uncovered using R package “limma” (v.3.58.1) based on

TCGA expected_count, applying the cut-off threshold of |log2FC|> 0.585

and FDR < 0.05. To explore downstream pathways potentially

influenced by the signature, three gene sets (“h.all.v2024.1.

Hs.symbols”, “c2.cp.kegg_legacy.v2024.1. Hs.symbols”, and

“c7.immunesigdb.v2024.1. Hs.symbols”) from the MSigDB database

(https://www.gseamsigdb.org/gsea/msigdb/) were examined using

GSEA via the R package “GseaVis” (v.0.0.5), and the differences

with normalized enrichment scores |NES|>1, P value <0.05, and

p.adjust (Method = ‘Benjamini and Hochberg’) <0.05 were

considered statistically significant. For GSVA, two gene sets

(“h.all.v2024.1. Hs.symbols” and “c2.cp.kegg_legacy.v2024.1.

Hs.symbols”) from the MSigDB (https://www.gseamsigdb.org/

gsea/msigdb/) were selected. Their GSVA scores in HR and LR

groups were calculated and compared using R packages

“GSEABase” (v.1.64.0), “limma” (v.3.58.1), and “GSVA” (v.1.50.5)

to unveil differentially enriched functions and pathways with the

threshold of a GSVA score |t-value| >2 (35).
2.7 Validation of PyroImm-lncRNA
signature by single nuclear RNA-seq data

The GSE176078 dataset from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/) (36) was used to validate the PyroImm-

lncRNA signature using the R package Seurat (v.5.1.0, https://

Github/Satijalab/Seurat). The number of genes and mitochondrial

gene proportions in each cell line were determined. Cells expressing

< 200 genes or genes expressed in < three cells were excluded. After
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quality control using the R package basic_qc, qualified snRNA seq

data was normalized using the “LogNormalize” method. Principal

Component Analysis (PCA) and UniformManifold Estimation and

Projection (UMAP) were applied to minimize the size.
2.8 Statistical evaluation

All evaluations were performed using R v.4.3.1. Classification

variables were reported as counts and percentages. Quantitative

comparisons were made using the Wilcoxon rank-sum test, and

categorical comparisons were made using the Chi-square test.

Linear correlations were inspected using Pearson’s correlation

with significance set at P<0.05.
3 Results

3.1 Examination of PyroImm-lncRNAs

A total of 33,540 genes, including mRNAs and lncRNAs, were

extracted from the TCGA-GTEx expected_count. DEGs between

BC and normal tissues were unveiled using the R packages “limma,”

“edgeR,” and “DESeq2,” with overlapping DEGs from the three
Frontiers in Immunology 04
methods selected. In total, 5,089 DEGs were identified, including

2,805 upregulated and 2,284 downregulated genes, as shown in the

volcano plots (Figures 1A–E). Among these, 1,180 were

differentially expressed lncRNAs (DE-lncRNAs), comprising 724

upregulated and 456 downregulated lncRNAs. Pearson’s correlation

analysis of DE-lncRNAs with pyroptosis-related genes and

immune-related genes identified 537 DE-pyrolncRNAs and 657

DE-immune-related genes. After overlapping the DE-pyrolncRNAs

and DE-ImmlncRNAs , 498 PyroImm-lncRNAs were

identified (Figure 1F).
3.2 Prognostic risk model construction

TCGA TPM data were merged with the downloaded

clinicopathological data, and OS was used as the sole survival target,

resulting in 1,072 patients. Using the createDataPartition() function from

the R caret package, the dataset was assigned to training and testing

subsets in a ratio of 5:5. Univariate Cox proportional hazards regression

examination of the training subset via the R library “survival” package

identified PyroImm-lncRNAs linked to OS prognosis, with genes

showing P < 0.05 selected. To reduce the number of lncRNAs and

address overfitting, LASSO Cox regression analysis further refined the

model to 19 genes (Figures 2A, B; Table 1). Stepwise Cox regression was
FIGURE 1

Identification of differentially expressed genes (DEGs) and pyroptosis-immune-related long non-coding RNAs (lncRNAs) in breast cancer. (A-C) The
volcano plots of DEGs analyzed using the limma, edgeR, and DESeq2 methods, respectively. (D, E) The Venn diagram shows the overlap of
upregulated and downregulated DEGs. (F) The Venn diagram shows the overlap of the DE-PyrolncRNAs and DE-ImmlncRNAs.DE-PyrolncRNAs, the
pyroptosis-related differentially expressed lncRNAs; DE-ImmlncRNAs, immune-related differentially expressed lncRNAs.
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used to derive an optimal six-lncRNA prognostic model, including

MAPT.AS1, CTA.384, D8.34, RP11.561, I11.3, HID1.AS1,

AC097713.3, and USP2.AS1 (Table 2), with a concordance index of

0.743 (se = 0.031, p=2e-09). Based on the median risk score of the

training subset, the cases were assigned to the HR and LR groups. HR
Frontiers in Immunology 05
scores correlated with mortality (P = 8.9e-12) (Figure 2C), and risk heat

maps, risk curves, and survival status maps were created using pHeat

maps (Figures 2D–F). The K-M survival curves revealed a substantially

poorer prognosis for the HR group across the training, testing, and full

datasets (P = 3.622e-07, P = 3.736e-03, and P = 1.151e-08, respectively)
FIGURE 2

The development and validation of prognostic signatures for pyroptosis-immune-related lncRNAs (PyroImm-lncRNAs). (A)The distribution of
coefficient in the LASSO regression analysis. (B) the distribution of lambda values in the LASSO regression analysis. (C) Comparison of risk scores
among patients with different overall survival (OS). (D–F) RNA expression heatmap(top), Plot of risk score(middle), and survival status (below) of
patients in the training datasets、testing datasets and full datasets respectively. (G–I) Kaplan-Meier survival analyses for high- and low-risk patients
across training, testing, and full datasets respectively. (J–L) Receiver operating characteristic (ROC) curves evaluating the predictive efficacy of the
signature for patients’ 1-year, 3-year, and 5-year survival rates in the training datasets、testing datasets and full datasets respectedly. LASSO, least
absolute shrinkage and selection operator; OS, overall survival; TCGA, The Cancer Genome Atlas.
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(Figures 2G–I). The ROC curves demonstrated predictive values for the

model, with areas under the ROC curve (AUCs) of 0.729, 0.738, and

0.780 for 1-, 3-, and 5-year OS in the training subset, 0.722, 0.732, and

0.680 in the testing subset, and 0.726, 0.732, and 0.732 in the full dataset

(Figures 2J–L), indicating that the six lncRNA prognostic models had

predictive values for OS.
Frontiers in Immunology 06
3.3 Nomogram model establishment
and validation

Based on the survival analysis, 1029 patients with BC with

detailed clinicopathological characteristics were included. The key

variables were the risk score, age, distant metastasis (M)

(ajcc_pathology M), lymph node metastasis (N) (ajcc_pathology

N), staging (ajcc_pathology staging), tumor size and invasiveness

(T) (ajcc_pathology T), ER,PR,HER2,and mortality (Table 3). The

HR group displayed a significantly elevated risk score, advanced

staging, advanced T,negative estrogen receptor (ER) status, negative

progesterone receptor (PR) status, positive human epidermal

growth factor receptor 2 (HER2) status,and mortality compared

to the LR group (P<0.05), while other clinical features showed no

significant differences. Univariate analysis revealed that age, stage

(III vs I;IV vs I), T(T3 vs T1;T4 vs T1), N(N1-3 vs N0;Nx vs N0),M

(M1vsM0),ER(positive vs negative),PR(positive vs negative), HER2

(positive vs negative), and risk score were prognostic factors

(P<0.05) (Figure 3A), whereas multivariate regression analysis

highlighted age, stage(IV vs I), N(Nx vs N0),HER2 (others vs

negative),and risk score as independent prognostic factors

(P<0.05) (Figure 3B). An optimal nomogram model was

developed using stepwise Cox regression (R package “My.stepwise”)

and constructed with R package “survival (v3.3-1)”, incorporating age,

stage, and risk score (Table 4). This model showed strong predictive

performance,witha concordance indexof0.801 (SE=0.019, P=2e-16).

The nomogram was visualized using R package “survival (v3.3-1)”

“rms,” and “survivcomp” (Figure 3C), and calibration curves indicated

accurate 1- and 3-year OS predictions, though 5-year predictions were

slightly less accurate (Figure 3D). The ROC curves demonstrated

robust prognostic values across 1-, 3-, and 5-year prognoses with all

AUC exceeding 0.8, and the full dataset C-index was 0.801 (CI: 0.68–

0.88) (Figure 3E). Additionally, DCA curves confirmed the clinical

effectiveness of both the nomogram and the risk models, with the

nomogram model showing superior net benefits at the 3- and 5-year

time points (Figures 3F–I).
3.4 Partial validation of prognostic
risk model

The dataset utilized in this study was sourced from the Gene

Expression Omnibus (GEO) under the accession number

GSE96058 (platform GPL11154), which includes a total of 3,069

breast cancer (BC) cases. The X-tile software was employed to

identify the optimal threshold value, and subsequent Kaplan-Meier

analysis indicated that the genes MAPT-AS1 and USP2-AS1 possess

significant prognostic relevance within both the GSE96058 dataset

and the TCGA dataset (Figures 4A–D). To assess the combined

prognostic prediction capabilities of MAPT-AS1 and USP2-AS1,

the concordance index (C-index) was calculated. The C-index for

the GSE96058 dataset was found to be 0.633 (95% CI: 0.57, 0.69),

while the C-index for the TCGA dataset was determined to be 0.647

(95% CI: 0.52, 0.76) (Figure 4E).
TABLE 1 Pyroptosis-immune-related lncRNAs related to overall survival
(OS) in the training set.

id

UniCox LASSO

HR HR.95L HR.95H
p-

value
coefficient

RP11-
161H23.5

0.828 0.691 0.991 0.0399* -0.139

MIR205HG 0.858 0.771 0.955 0.0050**

RP11-
638I2.6

0.736 0.596 0.908 0.0043** -0.011

LIPE-AS1 0.761 0.613 0.944 0.0128*

RP11-
1143G9.4

0.868 0.764 0.985 0.0286* -0.069

RP11-
303E16.2

1.368 1.059 1.767 0.0166*

PDXDC2P 1.454 1.014 2.085 0.0419* 0.154

RP11-
459E5.1

0.817 0.692 0.965 0.0176* -0.140

RP11-
265N6.1

0.799 0.658 0.972 0.0246* -0.035

LINC00853 0.666 0.456 0.971 0.0346* -0.062

CTA-
384D8.34

0.769 0.600 0.985 0.0377* -0.269

MAPT-AS1 0.730 0.600 0.888 0.0017** -0.179

CTD-
2589H19.6

0.541 0.315 0.930 0.0263* -0.071

GRIK1-AS1 0.736 0.543 0.996 0.0470*

RBM5-AS1 0.548 0.301 0.999 0.0495* -0.558

RP11-
290O12.2

1.862 1.112 3.118 0.0181* 0.536

ZEB2-AS1 0.344 0.128 0.926 0.0347* -0.137

USP2-AS1 1.786 1.055 3.023 0.0310* 0.586

C9orf163 2.125 1.060 4.261 0.0336* 0.907

HID1-AS1 2.594 1.083 6.211 0.0324* 1.372

RP11-
561I11.3

0.203 0.042 0.990 0.0485* -1.193

AC097713.3 0.247 0.068 0.900 0.0340* -1.018

RP11-
439A17.9

2.027 1.167 3.522 0.0121* 0.472
UniCox, univariate Cox analysis; HR, Hazard Ratio; LASSO, least absolute shrinkage and
selection operator; *:<0.05; **:<0.01.
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TABLE 3 Clinical pathological features of patients between high- and low-risk groups.

Overall (1029) Low-risk (426) High-risk (465) P value

Risk score (median [IQR])

-0.34[-1.62,0.78] -1.05[-2.0,-0.21] 0.17[-0.43,0.88] <0.001

Age (median [IQR])

58[40,76] 57[37.9,75.4] 59[41,77] 0.456

ajcc_pathology T(%) 0.002

T1 266 (25.85%) 152 (30.28%) 114 (21.63%)

T2 599 (58.21%) 273 (54.38%) 326 (61.86%)

T3 133 (12.93%) 68 (13.55%) 65 (12.33%)

T4 31 (3.01%) 9 (1.79%) 22 (4.17%)

ajcc_pathology N(%) 0.805

N0 490 (47.62%) 243 (48.41%) 247 (46.87%)

N1-3 528 (51.31%) 253 (50.40%) 275 (52.18%)

Nx 11 (1.07%) 6 (1.20%) 5 (0.95%)

ajcc_pathology M(%) 0.429

M0 865 (84.06%) 418 (83.27%) 447 (84.82%)

M1 18 (1.75%) 7 (1.39%) 11 (2.09%)

Mx 146 (14.19%) 77 (15.34%) 69 (13.09%)

ajcc_pathology stage(%) 0.016

I 179 (17.40%) 103 (20.52%) 76 (14.42%)

II 593 (57.63%) 291 (57.97%) 302 (57.31%)

III 239 (23.23%) 101 (20.12%) 138 (26.19%)

IV 18 (1.75%) 7 (1.39%) 11 (2.09%)

ER: <0.001

Negative 229 (22.25%) 77 (15.34%) 152 (28.84%)

Positive 753 (73.18%) 400 (79.68%) 353 (66.98%)

others 47 (4.57%) 25 (4.98%) 22 (4.17%)

PR: <0.001

Negative 328 (31.88%) 111 (22.11%) 217 (41.18%)

(Continued)
F
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TABLE 2 Stepwise regression screening for the optimal prognostic model.

coefficient HR HR.95L HR.95H p-value

MAPT.AS1 -0.386 0.680 0.556 0.832 0.000179 ***

CTA.384D8.34 -0.421 0.656 0.506 0.851 0.001452 **

RP11.561I11.3 -2.000 0.136 0.029 0.633 0.010996 *

HID1.AS1 1.883 6.575 2.489 17.368 0.000145 ***

AC097713.3 -1.737 0.176 0.041 0.764 0.020372 *

USP2.AS1 0.770 2.161 1.248 3.740 0.005937 **
HR, Hazard ratio; ***, 0.001; **, 0.01; *, 0.05.
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By synthesizing data acquired from the TCGA data portal

(https://portal.gdc.cancer.gov/) with our results from the UCSC

Xena Project (https://xena.ucsc.edu/), we conducted a prognostic

analysis involving 1,038 female breast cancer patients to assess the

predictive accuracy of various prognostic models. The area under

the curve (AUC) values for 1-year, 3-year, and 5-year survival rates

all surpassed 0.7. This finding indicates that our novel model, which

integrates six long non-coding RNAs (lncRNAs), surpasses

previously established prognostic signatures developed by

researchers such as Ping et al. (37), Luo et al. (38), Zhou et al.

(39), and Zheng et al. (40) (Figures 5A–E). Additionally, the

Kaplan-Meier analysis demonstrated significant disparities in

overall survival rates between low- and high-risk breast cancer

patients as categorized by our risk signature and other models

(Figures 5F–J). Importantly, our risk model exhibited the highest

consistency index, thereby bolstering the reliability of our six

lncRNA model in predicting breast cancer outcomes (Figure 5K).
3.5 Immune landscape analysis

Stromal, immune, and ESTIMATE scores were increased in the

LR group (Figures 6A–C), whereas tumor purity was notably

elevated in the HR group (Figure 6D). The TIMER, CIBERSORT,

CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and

EPIC platforms were used to investigate immune cell infiltration in

relation to risk scores. Across these platforms, 58 immune cells

showed significant differences between groups (P < 0.05)

(Figure 6E). K-M survival analysis further revealed that 15 of

these immune cells correlated with distinct prognoses depending

on their expression levels (Figure 6F). Next, we examined the

association between risk scores, immune-related functions, and

immune checkpoints. Using ssGSEA, we assessed immune

function scores in TCGA-BRCA samples and found significant

differences in 11 immune functions (Figure 6G). Functions such as

APC co-inhibition, CCR, checkpoints, cytolytic activity, HLA,

inflammation promotion, para-inflammation, T-cell co-inhibition,

T-cell co-stimulation, type I IFN response, and MHC class I were
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poorer in the HR group. Further examination of immune

checkpoints revealed that 38 immune checkpoints, including

KIR2DS4, KIR3DL2, CD40LG, KIR3DL1, and PDCD1, were

significantly elevated in the LR group, whereas others such as

TDO2, PVR, and CD276 were upregulated in the HR group.

Immune checkpoints with log2FC ≥0.2 are shown in Figure 6H.
3.6 GSEA and GSVA

DEGs across different groups were unveiled using the R package

“limma” (v.3.58.1), applying a threshold of |log2FC|>0.585 and FDR

<0.05. We identified 994 DEGs (Figure 7A), 195 lncRNAs, and 799

mRNAs. GSEA pathway analysis of the 799 mRNAs identified

significant pathways, including G2M checkpoint, E2f targets,

mitotic spindle, estrogen response early, mtorc1 signaling, and

estrogen response late, in the “h.all-v2024.1. Hs. (Figure 7B).

Analysis using the “c2. cp. kegg.legacy. v2024.1. Hs. symbol”gene

set was significant only in the cell cycle pathway (Figure 7C). GSEA

analysis of the gene set of “c7. immunosgdb. v2024.1. Hs. symbols”

identified 221 immune gene sets that were significantly enriched; the

top five positive and negative absolute enrichment scores are shown

in Figure 7D. GSVA of “h.all.V2024.1. Hs. symbols” and “c2. cp.

kegg.legacy. V2024.1. Hs. symbol” gene sets reveal the most

significant pathways. Out of the 50 pathways in “h.all. v2024.1. Hs.

symbols,” 37 pathways reached statistical significance with a GSVA

score of |t-value| >2 (Figure 7E). For “c2. cp. kegg. legacy. v2024.1. Hs.

symbols”, 113 out of 186 pathways showed statistically significant

differences, with the key pathways displayed in Figure 7F.
3.7 Validation of PyroImm-lncRNA
signatures using snRNA-seq data

GSE176078 classified cells by type (Figure 8A), showing the

distribution of six pyroptosis immunity-related signature lncRNAs

in each cell type and in all cells (Figure 8B). A violin plot of the risk

scores, calculated from the coefficients of these six lncRNAs,
TABLE 3 Continued

Overall (1029) Low-risk (426) High-risk (465) P value

Risk score (median [IQR])

Positive 651 (63.27%) 365 (72.71%) 286 (54.27%)

others 50 (4.86%) 26 (5.18%) 24 (4.55%)

HER2: 0.001

Negative 531 (51.60%) 274 (54.58%) 257 (48.77%)

Positive 150 (14.58%) 52 (10.36%) 98 (18.60%)

others 348 (33.82%) 176 (35.06%) 172 (32.64%)

Vital status (%) <0.001

Alive 891 (86.59%) 464 (92.43%) 427 (81.02%)

Dead 138 (13.41%) 38 (7.57%) 100 (18.98%)
IQR, interquartile range; ER, estrogen receptor; PR: progesterone receptor; HER2, human epidermal growth factor receptor 2.
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identified endothelial cells ashaving thehighest risk scores (Figure 8C).

Depending on the risk scores (>, =, and < 0), the cases were categorized

into the HR, medium-risk (MR), and LR groups. Endothelial and

cancer epithelial cells predominantly aggregated in the HR group,
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whereas B cell, myeloid, and plasmablast clusters were concentrated in

the LR group and T cell clusters were concentrated in the MR group

(Figures 8D, E).These distinct cellular aggregations across the different

risk groups indicate varying mechanisms of immune evasion.
FIGURE 3

Nomogram model establishment and validation. (A) Univariate and (B) Multivariate Cox regression analysis of clinical factors and risk score. (C) A
nomogram established in the entire cohort by combining risk score and other clinical factors containing age, staging. (D) Calibration curve used to
assess the agreement between nomogram-predicted survival and true survival of patients in the entire cohort. (E) ROC curve for assessing the
efficacy of the Nomogram in predicting patients’ 1-year, 3-year, 5-year survival rates. (F–I) DCA comparing the efficacy of nomogram, risk score,
age and staging in predicting patients’ 3-year and 5-year survival rates. M, ajcc_pathology M; N, ajcc_pathology N, staging, ajcc_pathology stage; T,
ajcc_pathology T; ROC, Receiver operating characteristic; DCA, Decision curve analysis.
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4 Discussion

Growing evidence highlights the importance of pyroptosis

genes in cancer progression, where dysregulated pyroptosis fosters

tumor growth and development (41–43). Although apoptosis

suppresses tumor cell proliferation, invasion, and metastasis, it

creates an immunosuppressive microenvironment conducive to

tumor expansion (44). Immune cells regulating tumor cell

pyroptosis appear to depend on immune cell distribution and

subtypes within the tumor, necessitating further research to

clarify the regulation of pyroptosis and immune evasion

mechanisms in specific tumors (24). In this study, we identified

498 pyroptosis-related lncRNAs in BC samples, from which a

prognostic model of six lncRNAs, − MAPT.AS1, CTA.384D8.34,

RP11.561I11.3, HID1.AS1, AC097713.3, and USP2. AS1− was
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developed. Patient risk scores derived from lncRNA expression

and associated coefficients revealed significant OS disparities across

different groups in the KM survival curves. The HR group

consistently exhibited poorer prognosis in the full, training, and

test datasets. For the 1- and 3-year prognoses, the ROC curve AUCs

exceeded 0.7, whereas the 5-year AUCs reached 0.780, 0.680, and

0.732 for the training, testing, and full datasets, respectively,

confirming the prognostic potential of the six-lncRNA model.

Stepwise Cox regression analysis of 1029 patients with complete

clinicopathological characteristics revealed age, stage, and risk score

as prognostic factors, yielding an optimal nomogram model with a

concordance of 0.801 (se=0.019 and P=2e-16). This nomogram

effectively visualizes survival probabilities and simplifies prediction,

displaying a calibration across datasets (45, 46) with a C-index of

0.801 at confidence intervals of (0.68, 0.88) and AUCs > 0.8, for 1-,

3-, and 5-year OS. DCA curves indicated that both the nomogram

and risk models provided good net benefits, with the nomogram

model displaying superior clinical value.

The six lncRNA prognostic models demonstrated clear

predictive value, owing to significant prognostic differences across

different risk groups. To analyze immune evasion across these

groups, we first evaluated each TCGA-BRCA sample using the

ESTIMATE R package. The stromal, immune, and ESTIMATE

scores were markedly elevated in the LR group, whereas tumor

purity was augmented in the HR group. Immune cell infiltration

was explored using seven analytical tools: − TIMER, CIBERSORT,

CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and

EPIC. Across the different risk groups, 58 immune cell types showed
TABLE 4 Stepwise regression screening for the optimal
nomogram model.

coefficient HR HR.95L HR.95H pvalue

riskScore 0.643 1.901 1.545 2.341
1.35×10-
9 ***

TMN 0.710 2.034 1.621 2.552
8.89×10-
10 ***

age 0.794 2.212 1.574 3.110
4.92×10-
6 ***
HR, Hazard ratio; ***:0.001.
FIGURE 4

Partial Validation of prognostic risk model. (A, B) Kaplan-Meier survival analyses were performed for patients with MAPT-AS1 and USP2-AS1,
employing data obtained from The Cancer Genome Atlas (TCGA) datasets. (C, D) Kaplan-Meier survival analyses were performed for patients with
MAPT-AS1 and USP2-AS1, employing data obtained from the GSE96058 dataset. (E) Evaluate the collective prognostic predictive abilities of MAPT-
AS1 and USP2-AS1 within the TCGA and GSE96058 datasets.
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significant differences (P<0.05). By correlating these 58 immune

cells with patient prognosis in the KM survival analysis, we

identified a prognostic distinction in the expression of 15

immune cells. Specifically, elevated macrophageM2_CIBERSORT

expression in BC correlated with poorer prognosis and was more

common in the HR group, whereas 14 other immune cells showed

poorer prognosis with low expression in the HR group. These

findings revealed the potential of immunotherapy to enhance the
Frontiers in Immunology 11
prognosis of patients with HR. We then assessed the immune-

related functions and found notable differences in 11 immune

functions across the different risk groups, with the HR group

demonstrating weaker immune functionality. Additionally, 38

immune checkpoint genes were upregulated in the LR group, and

three were upregulated in the HR group. These disparities in

immune cell profiles, functionality, and checkpoint gene

expression indicate distinct immune evasion mechanisms across
FIGURE 5

Evaluate the predictive validity of different prognostic models. (A–E) Univariate and (B) Multivariate Cox regression analysis of clinical factors and risk
score. (F–J) ROC curve for assessing the efficacy of different prognostic models in predicting patients’ 1-year, 3-year, 5-year survival rates.
(K) The consistency index demonstrates the reliability of our six lncRNA model when compared to other prognostic models.
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groups, highlighting the potential of targeted immunotherapy for

improving patient outcomes. Pathway differences across the risk

groups were analyzed using |log2FC |>0.585 and FDR <0.05, and

799 significantly differentially expressed mRNAs were identified.

GSEA on the “c7. immunesgdb. v2024.1. Hs. symbols” gene sets

revealed 221 significant immune gene sets. Further GSVA on “h.all.

v2024.1. Hs. symbols” and “c2. cp. kegg. legacy. v2024.1. Hs.
Frontiers in Immunology 12
Symbols” gene sets showed 37 out of 50 pathways in “h.all.

v2024.1. Hs. symbols” and 113 out of 186 pathways in “c2. cp.

kegg. legacy. v2024.1. Hs. symbols” were significant, illustrating the

distinct biological characteristics of the HR and LR groups. Finally,

we validated the pyroptosis-related lncRNA signature using

snRNA-seq data (GSE176078) with clusters based on the cell type

_major metadata. The HR group possessed very few T cells, B cells,
FIGURE 6

Immune landscape analysis between the high-risk (HR) and low-risk (LR) groups. (A–D) Comparison of stromal scores, immune scores, ESTIMATE
scores, and tumor purity for tumors in both HR and LR groups. (E) Heatmap illustrating differences in immune cell infiltration between HR and LR
groups. (F) The Kaplan-Meier curve comparing the effects of these immune cell infiltrations on the survival of breast cancer patients. (G) Differences
in immune functions between high- and low-risk groups. (H) Differences in expression of immune checkpoints between high- and low-risk groups.
***:0.001;**:0.01;*:0.05.
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myeloids, and plasmablast clusters, whereas the LR group displayed

significant B-cells, myeloids, and plasmablast clusters, indicating

immune evasion in the HR group.

This study has certain limitations. We only analyzed the BC

data from TCGA for female patients. External GEO validation may

have been influenced by imbalanced patient characteristics,

necessitating further studies using additional datasets to confirm

these findings.
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In conclusion, the present study investigated the prognostic

value of Pyro I mm lncRNAs in BC, leading to the development of a

six-lncRNA prognostic risk model. By incorporating age, stage, and

risk score, we constructed a nomogram model with strong

predictive value for patient outcomes. The risk score calculated

from ncRNA expression and risk coefficients demonstrated

significant differences across different risk groups in terms of

immune cell profiles, immune functionality, and immune
FIGURE 7

Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) of high- and low-risk groups. (A) The volcano plot of differentially
expressed genes (DEGs). (B-D) GSEA results for the gene sets “h.all.v2024.1.Hs.symbols,” “c2.cp.kegg_legacy.v2024.1.Hs.symbols,” and
“c7.immunesigdb.v2024.1.Hs.symbols,” respectively. (E, F) GSEA results for the gene sets “h.all.v2024.1.Hs.symbols” and
“c2.cp.kegg_legacy.v2024.1.Hs.symbols,” respectively.
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checkpoint gene levels, suggesting distinct immune escape routes.

These findings indicate the potential for improved HR patients with

HR through immunotherapy. GSEA and GSVA revealed significant

pathway and immune gene set differences between the risk groups,

further supporting the unique biological characteristics of these

groups. Validation using single-cell data revealed a scarcity of

myeloid cells, T cells, B cells, and plasmablast clusters in

the HR group, indicating immune evasion. Continued research

is essential to uncover new therapeutic targets and guide

personalized immunotherapy.
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