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Myeloid dendritic cells and
periodontal disease association:
integrated study of single-cell
sequencing and Mendelian
randomization analysis
ChengJi Shi1†, XinYi Ou2†, XiaoXu Lei1, LiJuan Huang1,
ShuHao Xu1, Wei Li1* and Xi Zhao1*

1Department of Stomatology, The People’s Hospital of Deyang City, Deyang, Sichuan, China,
2Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of
Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical
University, Luzhou, Sichuan, China
Background: Periodontal disease is a widespread inflammatory condition that

compromises the supporting structures of the teeth, potentially resulting in tooth

loss if left untreated. Despite advancements in therapeutic interventions and an

enhanced understanding of its pathophysiology, emerging techniques such as

single-cell RNA sequencing (scRNA-seq) and Mendelian randomization (MR)

present new opportunities for precision medicine in the management of

periodontal disease.

Methods: Data derived from the GSE152042 dataset underwent rigorous quality

control, normalization, and dimensionality reduction using Seurat and the

MonacoImmuneData framework. Marker genes were identified to delineate

subgroups for subsequent analysis utilizing CellChat and ClusterProfilerR. MR

analysis of the expression quantitative trait loci (eQTLs) for these genes was

conducted to determine causal relationships with periodontal disease, leveraging

data from the IEU Open GWAS project.

Results: Single-cell analysis revealed distinct immune cell subtypes and indicated

an increased presence of myeloid dendritic cells (mDCs) in patients with

periodontal disease. MR analysis identified twenty-six significant genes, with

LIMA1 (LIM domain and actin-binding 1) demonstrating a robust causal

association with the progression of periodontal disease. Gene ontology and

Kyoto Encyclopedia of Genes and Genomes analyses highlighted crucial

pathways involved in periodontal inflammation and tissue destruction.

Visualization at the single-cell level elucidated the role of LIMA1 in disease

progression, alongside differences in cell communication dynamics between

LIMA1-positive and -negative populations.
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Conclusion: This study underscores the utility of scRNA-seq and MR in

elucidating essential factors in the pathogenesis of periodontal disease,

thereby reinforcing the necessity for targeted therapeutic strategies. The

identification of LIMA1 as a pivotal gene in periodontal disease progression

opens new avenues for precision medicine approaches, potentially enhancing

treatment efficacy and patient outcomes in periodontal management.
KEYWORDS

eQTL, GWAS, Mendelian randomization, myeloid dendritic cells, periodontal disease,
single-cell sequencing
1 Introduction

Periodontitis is a chronic inflammatory disease with multiple

contributing factors, linked to the buildup of dental plaque, and is

characterized by the gradual destruction of the structures

supporting the teeth, including the periodontal ligament and

alveolar bone (1, 2). Periodontal disease affects approximately

11% of the global adult population—around 743 million

individuals with severe periodontitis—is influenced by various

risk factors, including genetic predispositions, environmental

exposures, and unhealthy lifestyles (3, 4). While there has been

progress in understanding the mechanisms of periodontal disease,

its complexity remains incompletely elucidated, and treatment

prospects continue to face challenges. With the development of

treatment strategies for periodontal disease, researchers have shifted

from non-specific antibiotics to more targeted approaches aimed at

modulating immune responses and promoting tissue regeneration

(5, 6). However, due to the heterogeneity of periodontal disease,

variations in age of onset, differences in severity, the transmission of

bacteria between individuals, and the involvement of multiple

pathogens, it becomes difficult to clarify the role of genetic factors

in the pathogenesis of periodontal disease. Furthermore, many

patients often show poor responses or experience adverse

reactions during treatment, complicates the treatment process (7).

Therefore, there is an urgent need to develop precise intervention

strategies based on individual patient characteristics to advance the

field of precision medicine.

Identifying the molecular features and cellular changes in

periodontal tissues has always been challenging, primarily due to

the presence of diverse cell populations. Gingival tissue comprises

various cell types, including epithelial cells, infiltrating immune

cells, fibroblasts, and endothelial cells (8). The interactions among

these cells collectively maintain tissue homeostasis and influence
i; LIMA1, LIM domain

DCs, myeloid dendritic
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the onset and progression of periodontitis. Traditional bulk RNA

sequencing and microarray technologies can only provide average

expression levels for the samples, and due to the coexistence of

multiple cell types in gingival tissues, these methods fail to reveal

information specific to particular cell types and cellular

heterogeneity. Recently, the introduction of scRNA-seq

technology has made it possible to identify gene expression

profiles at the single-cell level with unprecedented accuracy.

Compared to cell sorting and subsequent transcriptomic analysis,

scRNA-seq greatly expands the range of cell characterization and

subtyping because it does not rely on pre-defined differentiation

cluster (CD) proteins and provides high-resolution cellular gene

profiling. This unbiased analysis of cellular changes can deeply

unveil the entire periodontal tissue ecosystem, including the

mechanisms of cell signaling and intercellular interactions (9).

MR serves as a powerful analytical tool for inferring causal

relationships between genetic variants and complex traits or

diseases (10). MR utilizes the random assortment of alleles at

conception as a natural experiment, providing a robust

framework to validate the functional relevance of candidate

markers identified through scRNA-seq (11). Additionally, it

circumvents confounding factors and reverse causation inherent

in observational studies. By integrating genetic instruments

associated with potential markers, MR analysis can elucidate the

genetic determinants of periodontal disease risk and progression,

facilitating the translation of molecular discoveries into clinical

applications (12).

By combining cutting-edge scRNA-seq with MR analysis, this

integrative approach has the potential to enhance our

understanding of periodontal disease. It facilitates the exploration

of genetic variation’s impact on the expression of various cell

subpopulation markers in periodontal tissue through single-cell

eQTL mapping. Notably, we demonstrate for the first time at the

single-cell level the causal influence of mDCs markers on

periodontitis. This research also enables the identification and

validation of novel biomarkers and therapeutic targets, ultimately

advancing the implementation of precision medicine in the

management of periodontal disease.
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2 Research methodology and
data sources

2.1 Research design

This study obtained single-cell transcriptomic data from the

Gene Expression Omnibus (GEO) database and analyzed it using R

and the Seurat package. These tools facilitated data retrieval, quality

control, dimensionality reduction, clustering, and annotation.

Marker genes were employed to identify subpopulations within

each cellular cluster. CellChat software was utilized to explore

intercellular communication. MR analysis was performed to

validate the eQTLs associated with the studied condition, utilizing

single nucleotide polymorphisms (SNPs) to evaluate heterogeneity

and pleiotropy for determining causal genes. A schematic diagram

of the workflow is depicted in Figure 1.
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2.2 Collection of sequencing data

The single-cell transcriptomic data utilized in this study was

obtained from the GSE152042 dataset, which is accessible in the

GEO database. This dataset comprises multiple samples, including

samples from periodontitis patients and corresponding healthy

controls. Data retrieval and analysis were conducted using R

language and the Seurat package.

To ensure the integrity and accuracy of the data, a series of

quality control standards were implemented. First, cells with fewer

than 200 or more than 4,000 genes were excluded to eliminate

damaged cells. Second, cells with mitochondrial gene expression

accounting for more than 10% of total expression were removed to

eliminate those in an abnormal state.

In the data preprocessing phase, the raw gene expression counts

were first normalized to ensure that the total expression level for
FIGURE 1

Schematic diagram of the research workflow.
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each cell equaled 10,000. Then, the NormalizeData function from

Seurat was used to perform log transformation, stabilizing the

variance between cells and adjusting for differences in sequencing

depth. Next, the FindMarkers method was used to calculate the

expression variance for each cluster, with a log2 mean difference in

expression set at 0.5 and statistical significance at p < 0.05.

The data underwent scaling and centering, using the ScaleData

function to ensure that the range of expression levels would not

affect subsequent analyses. Principal component analysis (PCA)

was then performed for dimensionality reduction, followed by

uniform manifold approximation and projection (UMAP) for

further dimensionality reduction. Finally, based on the PCA

results, t-distributed stochastic neighbor embedding (t-SNE) was

utilized for the visualization of cell clustering.

In studying the cell subpopulations in periodontal disease, the

MonacoImmuneData was utilized, providing a comprehensive and

validated set of immune cell phenotype markers that accurately

identify and classify complex cell populations. The application of t-

SNE and UMAP algorithms aids in preserving the overall structure

of the data while highlighting clustering within the high-

dimensional dataset, facilitating a more detailed interpretation of

cellular functions and interactions.

This study primarily focuses on subpopulations such as

monocytes and mDCs, that play crucial roles in immune

responses and the inflammatory processes of periodontal tissue.
2.3 Single-cell RNA sequencing
data analysis

The expression of marker genes facilitated the identification of

significant subgroups within cellular populations related to

periodontal disease. Initially, specific cells were isolated and

analyzed through clustering. Following this, genes in each

population underwent pseudotime and single-cell trajectory

analysis. The communication network was inferred, analyzed, and

visualized using the “CellChat” package in R. This tool utilizes gene

expression data as input and groups cells by constructing a shared

neighborhood graph based on distances in pseudotime trajectory

space. CellChat then estimates the probabilities of intercellular

communication by examining interactions between gene expression,

signaling ligands, receptors, and other associated factors. Additionally,

the “Viridis” package in R was employed to annotate the distribution

of marker expression in the cell clusters. By analyzing the distinct

features of various cell types, we can classify and metabolically

evaluate cells, as well as identify alterations in Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways related to the identified

subgroups. We conducted Gene Ontology (GO) functional

enrichment analysis and KEGG pathway enrichment analysis on

the marker genes using the ClusterProfilerR software package.
2.4 Mendelian randomization validation of
key gene eQTLs

To ensure the robustness and reliability of the findings, we

followed the guidelines of the STROBE-MR checklist in conducting
Frontiers in Immunology 04
our MR analysis (13). Specifically, we identified 26 key markers for

mDCs clusters by intersecting two different genomes and retrieved

relevant eQTLs as exposure factors from the IEU Open GWAS

project database (https://gwas.mrcieu.ac.uk/datasets/). Additionally,

we accessed the periodontal disease cohort from this database,

identified by the ID finn-b-K11_PERIODON_CHRON, which

included 195,395 standard samples and 3,046 samples diagnosed

with periodontal disease, providing whole-genome data that served

as our outcome data. MR analysis was conducted on marker genes

within each cluster and eQTLs associated with periodontal disease

to identify causal genes relevant to the disease in each cluster.

Initially, we selected SNPs that were closely associated with gene

expression, applying a significance threshold of p < 5×10−8 when

using marker genes as exposure factors. Subsequently, we computed

the F-statistic to assess the strength of the association between

instrumental variables and exposure factors. SNPs with an F-value

less than 10 were excluded to mitigate potential weak instrument

bias. The inverse variance-weighted fixed-effect (IVW-FE) model

was employed as the primary MR analysis method. Cochran’s Q test

was conducted to evaluate the heterogeneity among instrumental

variables, with p > 0.05 indicating a minimal likelihood of

heterogeneity. MR Egger intercept tests were performed to assess

horizontal pleiotropy, where a statistically significant intercept term

would suggest the presence of significant horizontal pleiotropy.

In addition, we accessed the periodontitis cohort in the database

through ID finn-b-K11_PERIODON_ACUTE to conduct MR

analysis, further validating the causal relationship between the

marker gene and periodontitis.
2.5 R-MR analyses

R-MR analyses were performed for all associations that survived

multiple testing to investigate reverse causation (i.e., whether

genetic predisposition to periodontitis influences the marker

eQTL). To further validate this, the MR Steiger directionality test

was employed to assess the directionality of the associations

between marker eQTL and periodontitis.
3 Results

The workflow is visualized in Figure 1.
3.1 Data normalization and
dimensionality reduction

The scRNA-seq and microarray datasets were obtained from

the Gene Expression Omnibus (GEO) database. Additionally, the

microarray datasets, including GSE152042 (platform: GPL16791),

included data from gingival tissues of both periodontal patients and

healthy individuals. The scRNA-seq analysis identifies all major cell

types in gingival tissue, integrating results from periodontal disease-

affected and healthy gingival tissues. After filtering out cells with

fewer than 200 genes and genes detected in fewer than 3 cells, a total
frontiersin.org
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of 4,564 cells and 18,697 genes were retained (Figure 2A). Following

a quality control step, the dataset was further refined to 3,544 cells

while retaining the same number of genes (Figure 2B).

Subsequently, the 15 principal components (PCs) contributing

most significantly to the observed variation were identified

(Figures 2C, D). Among these, the degree of clustering between

samples in 2 PCs was relatively high (Figures 2E, F).
3.2 Single-cell transcriptomic analysis of
periodontal disease

In GSE152042, 14 distinct cell clusters were identified through

UMAP cluster analysis (Figure 3A). Across all samples, 8 cell types were

annotated via SingleR, namely CMP, Monocyte, B cell, Endothelial,

Tissue stem cells, Epithelial cells, DC, and T cell (Figures 3B, C). By

analyzing the expression patterns of immune cell marker genes, we

identified four cell types: mDCs, Classical monocytes, Plasmacytoid

dendritic cells, and non-classical monocytes. Dimensionality reduction

plots and proportional representations were generated (Figure 3D).

Notably, the levels of certain immune cells, particularly monocytes,

were significantly elevated in patients with periodontal disease

compared to healthy controls, indicating a strong correlation between

monocyte levels and the severity of periodontal disease.

The most abundant population was mDCs, while the Monocyte

population was predominantly comprised of Classical monocytes

(Figure 3E). Moreover, there were no specific differences in cell
Frontiers in Immunology 05
populations between the control and periodontal groups. Among

these, mDCs were most prevalent in the periodontal group, while

these cells were less abundant in the control group (Figure 3E).

Furthermore, cell communication analysis among eight cell

types in the two groups revealed that the periodontal disease

group exhibited the most ligand-receptor relationships and the

highest level of communication intensity (Figure 3F). The analysis

indicated extensive interactions between mDCs and various other

cell types, suggesting potential crosstalk between mDCs and a range

of immune cells (Figure 3G). MDCs were found to communicate

with T cells and classical monocytes via the LGALS9-CD45

pathway. Additionally, interactions between mDCs and classical

monocytes were observed through pathways including ANXA1-

FPR1, CCL3-CCR1, LGALS9-CD44, and LGALS9-CD45. They also

interacted with B cells through MIF-(CD74+CD44) and MIF-

(CD74+CXCR4) pathways (Figure 3H).
3.3 Utilization of MR to validate the causal
relationship between key genes’ eQTL
and periodontal

eQTL data were sourced from the IEU OpenGWAS project

(https://gwas.mrcieu.ac.uk/). The periodontal GWAS data from

FinnGen R11 (https://www.finngen.fi/fi) encompassed data from

13,261 periodontal patients and 195,395 healthy individuals, all

derived from individuals of European ancestry. To investigate the
FIGURE 2

Single-cell quality control and standardization. Pre (A) and post-quality (B) control comparisons of nFeature_RNA, nCount_RNA, and percent mt in
periodontal disease and control samples show improved data quality by removing low-quality cells and correcting sequencing depth discrepancies,
enhancing analysis accuracy. (C) The principal component analysis method was used for dimensionality reduction on the integrated data, with the
information (variance percentage) represented by each principal component ranked in percentage order, and a principal component line graph was
generated to visualize the PCA downscaling. (D) In the fragmentation map for principal component screening, the x-axis represents the component
number, and the y-axis shows the variance explained by each component. The first 15 PCs are selected based on the elbow point. (E) Distribution of
cells in periodontal disease and control samples in principal components. (F) After eliminating batch effects, the correlation of gingival tissue cells
between periodontal disease and normal control patients is shown in the PCA scatter plot.
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genetic relationship between mDCs and periodontal disease, we

selected markers of mDCs and analyzed them using MR through a

genome-wide association study (GWAS). Initially, cross-analysis of

data from two distinct genomes identified 26 key markers from

mDCs clusters (Figure 4A), along with volcano maps of marker
Frontiers in Immunology 06
genes (Figure 4B) and their expression at the single-cell level

(Figure 4C). The study found that LIMA1 demonstrated a strong

correlation with the risk of periodontitis at the single-cell level, with

expression levels significantly higher in patients with periodontitis

compared to healthy individuals.
FIGURE 3

Cell clustering and communication analysis. (A) UMAP cell clustering of all samples in the single-cell dataset, with different colors representing
distinct cell clusters. (B) Distribution of cell clusters in periodontal disease and control samples. (C) Percentage of different cell types in both
periodontal disease and control groups. (D) Distribution of various cell types in periodontal disease and control groups. (E) Percentage of different
cell types in both periodontal disease and control groups. (F) Number and strength of cell communication interactions in the periodontal disease
group. Number and strength of cell communication interactions in the control group. (G) Number and strength of mDCs communication
interactions in both the periodontal disease and normal control groups. (H) Proportion of communication interactions among mDCs.
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Mapping eQTL is an effective approach for examining how

common genetic variations influence gene expression among

individuals (14). To explore the role of these markers in

periodontitis, a total of 96 eQTLs linked to the expression of 26

markers were identified following the clustering of SNPs in linkage
Frontiers in Immunology 07
disequilibrium (r² < 0.001). The average F statistic for the SNPs

employed as instruments ranged from 30.17 to 3,141.78, indicating

strong instrumental variables. Public genome-wide association

study data were utilized in a two-sample MR analysis, wherein

eQTL SNPs served as instrumental variables, the markers
FIGURE 4

MR analysis of dendritic cells and periodontal disease. (A) The Venn diagram illustrates the dendritic cell cluster screening strategy, identifying 26 key
markers in the mDCs cluster. (B) Volcano plot of MR results for multiple markers, showing the risk of periodontal disease determined using the IVW
method. The odds ratios (ORs) for periodontal disease risk are represented by standard deviations of marker levels. (C) Expression levels of
statistically significant marker (including LIMA1, PEA15, CMTM6, PDP1, VAC14, FFAR4, TMEM158, TGFA, and LINC00528) in single cells, as identified
by the IVW method. (D) Forest plot of MR model results. (E) Scatter plot of the five MR models. Each point represents an IV, with the line on each
point indicating the 95% CI. The y-axis shows the effect of SNPs on the outcome, and the x-axis shows the effect of SNPs on exposure. (F) Forest
plot of MR analysis results estimated for the individual SNP LIMA1, with the red line representing the summary results of all SNPs, indicating that
LIMA1 is a risk factor. (G) Funnel plot of three SNPs on MR analysis. (H) MR sensitivity analysis for LIMA1 after removing SNPs using the leave-one-out
method. The red line represents the pooled results for all SNPs.
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functioned as exposure variables, and periodontitis represented the

outcome variable. The MR analysis revealed that ten markers

related to mDCs possessed a direct causal link to the onset of

periodontitis. Specifically, LIMA1 (IVW, 3 SNPs, p = 0.004), PEA15

(IVW, 5 SNPs, p = 0.04), TGFA (IVW, 5 SNPs, p = 0.04), TMEM158

(IVW, 18 SNPs, p = 0.004), CMTM6 (IVW, 2 SNPs, p = 0.01), PDP1

(IVW, 2 SNPs, p = 0.009), and FFAR4 (IVW, 2 SNPs, p = 0.01) were

identified as risk factors for periodontitis, while VAC14 (IVW, 2

SNPs, p = 0.02) and ENHO (IVW, 2 SNPs, p = 0.03) were

recognized as protective factors (Figure 4D). Additionally, we

generated scatter, forest, funnel, and leave-one-out plots (Figures

4E–H) for further analysis of LIMA1.

For MR validation, the periodontal validation set ID “finn-b-

K11_PERIODON_ACUTE” confirmed the reliability of LIMA1,

showing no evidence of heterogeneity (all p > 0.1), pleiotropy (all p

< 0.05), or reverse causality (all p > 0.05) (Figure 5B). Among all

SNPs for LIMA1, the most significant risk factor for periodontal

disease was rs7315690, which exhibited the highest F statistic and

the lowest p-value for correlation with LIMA1 (F = 1576.22, p = 4.92

× 10-3). Additionally, we conducted reverse MR analysis, and the

results indicated no evidence of reverse causality, suggesting that

there is no inverse relationship with LIMA1 (Figure 5A).

Finally, we performed a co-localization analysis of these genes at

the eQTL-GWAS level. Our results indicated that LIMA1 is
Frontiers in Immunology 08
associated with periodontal disease and shares genetic loci with

specific mutations (Figure 5C).
3.4 Analysis of single-cell RNA sequencing
data of marker gene

Our study elucidated the causal relationship between 26

identified marker genes and periodontal disease. We visualized

the expression levels of these genes at the cellular level, including

B cells, T cells, monocytes, and endothelial cells (Figure 6A).

Subsequently, we conducted a developmental trajectory

visualization analysis of these marker genes at the monocyte level.

The results demonstrated that LIMA1 functions as a downregulation

switch gene in periodontal disease, with the expression profiles of

their surface proteins and associated transcription factors undergoing

significant changes over time, indicating their crucial role in

monocyte development (Figure 6B). Furthermore, correlation

analysis between the expression of the marker genes and

periodontal progression suggested a negative correlation with

expression levels over time (Figure 6C).

Next, we investigated cell communication and cellular metabolic

pathways between mDCs and LIMA1-positive and negative groups. The

results indicated that communication intensity levels in LIMA1-positive
FIGURE 5

Mendelian randomization validation analysis and reverse Mendelian randomization between marker genes and periodontal disease. (A) Validation of
the reverse Mendelian randomization analysis between periodontal disease and LIMA1 indicates no reverse causal relationship. (B) Forest plot of MR
validation through finn-b-K11_PERIODON_ACUTE. (C) Regional association plot of GWAS results and marker-eQTLs at the marker, PTB, and PTB
locus. SNPs are colored based on LD (r2) with the lead marker-eQTL (rs12424335). Purple diamonds represent the lowest p-value for each locus.
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bone marrow mDCs were higher compared to the negative group,

reflecting extensive interactions with various other cell types (Figure 6D).

This LIMA1-positive group also exhibited enhanced ANXA1-FPR1 and

CXCL12-CXCR4 pathways in terms of cell communication compared to

the LIMA1-negative mDCs group (Figures 6E). Differential expressions

were observed at the cellular metabolism level in pathways including

other glycan degradation, Glycosphingolipid biosynthesis-ganglio, and

Glycosphingolipid biosynthesis-globo and isoglobo series (Figure 6F).

Additionally, the LIMA1-positive group displayed an increase in the

expression of Glycosphingolipid biosynthesis-ganglio, suggesting a

stronger correlation.

LIMA1 is present in various network types within the protein-

protein interaction (PPI) network, including co-expression, co-

localization, and genetic interactions (Figure 6G). Utilizing the

ClusterProfilerR package, we conducted GO and KEGG

enrichment analyses on the marker genes. The GO analysis

encompassed biological processes (BP), cellular components (CC),

and molecular functions (MF). The enriched BP terms included

cellular responses to reactive oxygen species. The enriched CC terms,

such as the leading edge of cells and lamellipodia, indicate that

LIMA1 may uphold the stability and functionality of lamellipodia by

regulating actin polymerization and depolymerization, thereby

facilitating cellular motility. Furthermore, the enriched MF terms

involved beta-catenin binding, single-stranded DNA binding, and

binding to damaged DNA (Figures 6H, I).

The KEGG pathway enrichment analysis identified significant

pathways, including bacterial invasion of epithelial cells, leukocyte

transendothelial migration, and apoptosis in the context of

periodontitis. This implies that these biological processes may play

crucial roles in the onset and progression of periodontitis (Figure 6J).
4 Discussion

This study seeks to elucidate themolecular mechanisms underlying

periodontal disease through scRNA-seq and eQTL analysis, thereby

providing novel insights into its etiology. We identified a significant

subset of cells—mDCs—within the gingival tissue of patients with

periodontal disease, which exhibited specific functional characteristics.

By analyzing existing genome-wide association study (GWAS) data, we

assessed the potential causal impact of mDCs markers on the risk of

periodontal disease. Our findings demonstrate that mDCs markers

play a pivotal role in the pathogenesis of periodontal disease,

identifying several key markers, such as LIMA1, as potential targets

for future preventive and therapeutic strategies. This research

contributes essential evidence for a deeper understanding of the

immune mechanisms involved in periodontal disease and opens new

avenues for related intervention strategies.

By utilizing scRNA-seq data and MR techniques, our study

analyzed the cellular and molecular characteristics of periodontitis.

Through dimensionality reduction and clustering, we identified four

distinct cell phenotypes. Compared to the control group, the

monocyte phenotype was significantly elevated in patients with

periodontitis, enhancing our understanding of the role of

monocytes in the pathophysiology of the disease. Further
Frontiers in Immunology 09
investigation into the monocyte subpopulations revealed

significant disparities in mDCs expression levels between patients

with periodontitis and healthy individuals, suggesting their potential

as biomarkers or therapeutic targets. Additionally, our analysis of

cell communication indicated that the ligand-receptor interactions

among patients with periodontitis were notably complex, with the

highest communication intensity observed. This complexity

underscores the critical role of mDCs in modulating the immune

response to periodontitis. The relationship between mDCs and

periodontitis is mediated through various mechanisms, including

inflammatory responses, immune modulation, and intercellular

signaling (15–17). As a crucial component of the immune system,

mDCs are responsible for presenting antigens from external

pathogens to naïve T cells, thereby initiating and amplifying the

immune response (18–20). Specifically, mDCs capture, process, and

present antigens, activating and promoting T cell proliferation—a

process essential for generating effective immune responses against

periodontal pathogens (21, 22). However, dysfunction in the

maturation and regulatory capacities of mDCs may lead to

inappropriate immune responses. Such dysregulation can trigger

excessive inflammatory reactions, resulting in tissue damage and

exacerbating the progression of periodontitis (23, 24). For instance,

whenmDCs fail to adequately regulate immune responses, they may

attack host tissues, leading to pathological consequences (25, 26).

Moreover, mDCs are particularly susceptible to periodontal

pathogens, such as Porphyromonas gingivalis; their invasion can

impair mDCs function, diminishing their efficacy in responding to

immune challenges, thereby accelerating the deterioration of

periodontitis (27–29). The distribution and function of mDCs in

the oral mucosa are also noteworthy. They are not only present in

the gingival epithelium and connective tissue but also play a role

in monitoring and responding to periodontal pathogens. MDCs are

indispensable for maintaining periodontal health, regulating

immune responses, and defending against pathogen invasion,

thereby ensuring the stability and health of the oral environment.

Therefore, an in-depth investigation of mDCs functions is crucial

for understanding the pathological mechanisms of periodontitis.

MR analysis corroborated the inferences drawn from scRNA-

seq, identifying ten causal gene markers associated with

periodontitis, including LIMA1, PEA15, TMEM158, CMTM6,

PDP1, FFAR4, VAC14, and ENHO. LIMA1 exhibited the

strongest association with periodontal disease risk, underscoring

its significance in the disease’s pathogenesis. In periodontitis

patients, the odds ratio (OR) for LIMA1 was 1.17 (95%

confidence interval (CI): 1.04–1.31), suggesting that LIMA1+

mDCs patients are 1.17 times more likely to develop periodontitis

compared to LIMA1− mDCs patients. Our findings were further

validated using independent cohorts, ensuring the reliability of the

results across different populations. Functional enrichment analysis

revealed that these gene markers are involved in critical biological

processes, including responses to reactive oxygen species. LIMA1,

also known as the epithelial protein, lost in tumors (EPLIN) and

sterol regulatory element-binding protein 3 (SREBP3), was initially

identified as a differentially expressed gene in oral epithelial

carcinogenesis through cDNA differential analysis. Subsequently,
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maul et al. first described and confirmed the existence of LIMA1 as

a novel cytoskeletal protein. LIMA1 has two distinct isoforms:

LIMA1-a, which consists of 600 amino acids, and LIMA1-b,

which comprises 759 amino acids. As a LIM domain protein,
Frontiers in Immunology 10
LIMA1 provides binding sites for specific signaling proteins and

facilitates its own dimerization or interaction with other proteins.

Due to its importance in regulating actin cytoskeletal dynamics and

its potential involvement in cadherin-mediated cell adhesion, the
FIGURE 6

Core downstream functional analysis of dendritic cell clusters marked in periodontitis. (A) Proportions of marked gene expression across different
cell types. (B) Pseudotime analysis of marked genes. (C) Correlation analysis between marked genes and the progression of periodontitis. (D) The
number of receptor-ligand pairs shown by the intercellular communication network between LIMA1-positive and -negative dendritic cells and other
cell subpopulations. The thickness of each line represents the strength of paired interactions. (E) Bubble plot of possible interaction pathways
between LIMA1+ mDCs, LIMA1- mDCs, and other cells in periodontitis patients. (F) Bubble chart of enriched metabolic pathways, highlighting
metabolic differences between LIMA1-positive and -negative dendritic cells. Each bubble represents a metabolic pathway, with p-values and the
total number of metabolites involved listed on the right. (G) Analysis of gene-gene interaction networks for biomarkers using the GeneMANIA
database. (H, I) Description of marked gene GO analysis using fanyiwei. (J) Bar chart showing KEGG analysis of marked genes.
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loss of LIMA1 in cancer cells may affect cellular behavior,

enhancing their invasive characteristics (30). LIMA1 deficiency

could lead to dysregulation of cytoskeletal dynamics, altered

motility, and impaired intercellular adhesion, thereby promoting

tumor proliferation, invasion, and migration (31, 32).

In summary, the elevated expression of LIMA1 in patients with

periodontitis suggests its potential as a diagnostic biomarker, which

could aid in the early detection of the disease. Additionally,

targeting the LIMA1 pathway may offer a promising therapeutic

approach to modulate immune responses associated with

periodontitis. LIMA1 may also have utility in risk stratification,

helping to guide personalized treatment strategies. Further studies

are needed to assess the clinical applicability of LIMA1, including its

role in disease progression monitoring and treatment response.
5 Conclusion

This study highlights the role of mDCs and their markers,

particularly LIMA1, in the pathogenesis of periodontal disease.

Through the integration of single-cell RNA sequencing and

Mendelian randomization, we identified several key genetic markers

that contribute to disease progression, with LIMA1 showing a strong

association with periodontitis risk. Our findings suggest that LIMA1

could be a potential diagnostic biomarker and a therapeutic target for

personalized treatment strategies. While these results provide new

insights into the immune mechanisms underlying periodontal disease,

further studies with larger sample sizes and experimental validation

are needed to confirm these findings and fully explore the clinical

potential of mDCs and their markers.
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