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Deciphering hub genes and
immune landscapes related to
neutrophil extracellular traps in
rheumatoid arthritis: insights
from integrated bioinformatics
analyses and experiments
Yang Li1,2, Jian Liu1,3*, Yue Sun1,3, Yuedi Hu1,2, Qiao Zhou1,2,
Chengzhi Cong1,2 and Yiming Chen1,2

1Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine,
Hefei, Anhui, China, 2First Clinical Medical School, Anhui University of Chinese Medicine, Hefei,
Anhui, China, 3Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease

characterized by synovial inflammation and progressive joint destruction.

Neutrophil extracellular traps (NETs), a microreticular structure formed after

neutrophil death, have recently been implicated in RA pathogenesis and

pathological mechanisms. However, the underlying molecular mechanisms

and key genes involved in NET formation in RA remain largely unknown.

Methods: We obtained single-cell RNA sequencing data of synovial tissues from

the Gene Expression Omnibus (GEO) database and performed cellular

annotation and intercellular communication analyses. Subsequently, three

microarray datasets were collected for a training cohort and correlated with a

bulk RNA-seq dataset associated with NETs. Differentially expressed genes were

identified, and weighted gene correlation network analysis was used to

characterize gene association. Using three machine learning techniques, we

identified the most important hub genes to develop and evaluate a nomogram

diagnostic model. CIBERSORT was used to elucidate the relationship between

hub genes and immune cells. An external validation dataset was used to verify

pivotal gene expression and to construct co-regulatory networks using the

NetworkAnalyst platform. We further investigated hub gene expression using

immunohistochemistry (IHC) in an adjuvant-induced arthritis rat model and real-

time quantitative polymerase chain reaction (RT-qPCR) in a clinical cohort.

Results: Seven cellular subpopulations were identified through downscaling and

clustering, with neutrophils likely the most crucial cell clusters in RA. Intercellular

communication analysis highlighted the network between neutrophils and

fibroblasts. In this context, 4 key hub genes (CRYBG1, RMM2, MMP1, and

SLC19A2) associated with NETs were identified. A nomogram model with a

diagnostic value was developed and evaluated. Immune cell infiltration analysis

indicated associations between the hub genes and the immune landscape in

NETs and RA. IHC and RT-qPCR findings showed high expression of CRYBG1,
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RMM2, and MMP1 in synovial and neutrophilic cells, with lower expression of

SLC19A2. Correlation analysis further emphasized close associations between

hub genes and laboratory markers in patients with RA.

Conclusion: This study first elucidated neutrophil heterogeneity in the RA

synovial microenvironment and mechanisms of communication with

fibroblasts. CRYBG1, RMM2, MMP1, and SLC19A2 were identified and validated

as potential NET-associated biomarkers, offering insights for diagnostic tools and

immunotherapeutic strategies in RA.
KEYWORDS
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1 Introduction

Rheumatoid arthritis (RA) is a common chronic autoimmune

disease characterized by persistent synovial hyperplasia,

inflammation, and gradual joint damage (1). Patients with RA

usually present with symmetric polyarticular pain primarily

affecting the small joints of the hands and feet. However, as the

disease progresses, it may involve bone destruction in the larger joints

and damage to other organs (2). RA affects approximately 0.5% to

1.0% of the global population and heavily burdens patients’ quality of

life due to its disabling nature, multisystemic damage, and increased

mortality (3, 4). Although substantial progress has been made in RA

management and research, the exact mechanisms underlying its

pathogenesis remain poorly understood, and effective tools to

identify patients at risk, aid treatment, and predict prognosis are

still lacking. Thus, a thorough understanding of the cellular features

and molecular mechanisms within the synovial microenvironment in

RA and identifying new molecular biomarkers are essential to

improving clinical diagnosis and treatment.

It is widely recognized that RA pathogenesis is a complex process

involving multiple interacting factors, including genetics,

environmental factors, immune dysfunction, and metabolic and

infectious factors (5, 6). Synovial tissue is the primary site of the

RA inflammatory cascade and exhibits remarkable diversity and

heterogeneity. Tissue-resident mesenchymal cells, known as

fibroblast-like synoviocytes (FLS), engage in a complex dialogue

and response with infiltrating immune cells, leading to qualitative

changes in the cellular phenotype, resulting in an intricate

inflammatory microenvironment (7). Recent accumulating evidence

reveals the important role of neutrophil-dominated innate immunity

in the pathogenesis of RA (8). Following bacterial or viral stimulation,

numerous neutrophils are activated and recruited to inflamed

synovial tissues and joints, generating various effector mechanisms,

including phagocytosis, degranulation, delayed apoptosis, and the

release of reactive oxygen species (9). Notably, most of the existing

studies, which have focused on FLS-centered phenotypic
02
identification and its mediated immune response, have largely

overlooked the critical role of neutrophils (10). Moreover, the

pathway mechanisms of how neutrophils interact with other

microenvironmental components, especially FLS, are still poorly

understood. Therefore, additional investigations are essential to

enhance our mechanistic understanding of RA and the

development of effective intervention pathways.

Among the effector funct ions of neutrophi l s , an

ultramicroscopic meshwork of DNA and various cytoplasmic and

granule proteins, known as neutrophil extracellular traps (NETs),

has been a focus of neutrophil research (11). NETs often play

complex, dual roles in various autoimmune diseases, inflammation

and cancer (12, 13). Initially, NETs were proposed as a defense

mechanism that traps and kills pathogens, thereby protecting the

host from aggression (14). Recent studies indicate that NETs can

activate FLS, which may serve as key drivers in initiating and

perpetuating RA’s inflammatory pathology (15). Elevated

biomarkers demonstrate considerable diagnostic value in RA,

suggesting their potential utility for identifying individuals at risk

and initiating prophylactic treatments (16, 17). Similarly, multiple

experimental studies have demonstrated the feasibility of targeting

NET formation in RA therapeutic strategies. For example, Zhao

et al. reported a study on MSC infusion therapy to ameliorate

inflammatory arthritis by inhibiting NETs formation through the

PGE2-PKA-ERK signaling pathway (18). Shu et al. found that

populin inhibited the entry of MPO and PADI4 into the nucleus

to block the release of NETs, thereby ameliorating RA inflammation

(19). Recently, a single-cell mapping analysis revealed the

heterogeneity of neutrophils in periodontitis tissues and

constructed a predictive model of key genes associated with NETs

by a machine learning algorithm (20). However, studies on

neutrophil function and hub genes associated with NETs involved

in the synovial microenvironment of RA remain sparse. In the

context of existing studies, identifying NET-related genetic

biomarkers will enhance our understanding of these mechanisms

and provide more potential targeted therapeutic strategies for RA.
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Recently, systems bioinformatics, combining biology, computer

science, and statistics, has been widely applied to explore the

mechanisms underlying various disease phenomena (21). Single-cell

RNA sequencing (scRNA-seq) is a revolutionary technology for high-

dimensional mapping of diseased organisms at single-cell resolution,

revealing cellular heterogeneity, developmental processes, and

interactions in specific tissues (22, 23). Machine learning algorithms

can accurately identify specific expression patterns in gene expression
Frontiers in Immunology 03
profiles, prioritize key regulatory genes, and construct predictive

models for identifying disease risk and treatment response (24).

Based on these, we first analyzed synovial tissue single-cell mapping

in RA, revealing neutrophil-fibroblast communication networks.

Subsequently, we integrated multiple datasets and multiple machine

algorithms to identify and develop a valuable RA diagnostic model

based on hub genes associated with NETs. The specific investigation

procedure are displayed in detail in Figure 1. Notably, the expression of
FIGURE 1

The flowchart depicting the investigation procedure of this study.
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these pivotal genes was not only validated in single-cell mapping, but

also fully explored in ex vivo and in vivo experiments and clinical data,

which are expected to provide new insights into the immune

mechanisms and precise diagnostic strategies for RA.
2 Materials and methods

2.1 Data sources and preparation

For this study, scRNA-seq, microarray, and bulk RNA-seq

datasets were obtained from the Gene Expression Omnibus

database (GEO, https://www.ncbi.nlm.nih.gov/geo/). The dataset

GSE192504, involving sequencing data from the knee joints of

collagen-induced arthritis (CIA) mice and healthy control mice,

was used for single-cell level analysis. Three microarray datasets,

GSE55235, GSE55457, and GSE206848, containing a large number of

human synovial tissue samples, were selected as training cohorts for

the machine learning program, providing a solid foundation for

model development. In cases where multiple probes identified the

same gene, we calculated the median as the final expression and

normalized the expression matrix. We applied the “Combat”

algorithm in SVA to normalize the expression values of different

batches or platforms, ensuring robust data. We also used the Uniform

Manifold Approximation and Projection (UMAP) algorithm to assess

the success of batch effect removal. The dataset GSE150466, which

includes extensive RNA sequencing data from FLS treated with NETs

for 48 h, was used to screen for genes closely associated with NETs.

Additionally, GSE77298 was selected as an external validation cohort

to ensure that our results could be confirmed using different datasets.

Supplementary Table S1 lists the details of all datasets involved.
2.2 Single-cell data processing and
cellular annotation

Single-cell RNA sequencing data analysis was primarily

performed using the “Seurat (v 5.1.0)” package (25). Initially, cells

with fewer than 200 genes and fewer than three cells covered by the

genes were excluded. We performed standard data preprocessing

procedures to ensure the high quality of the data, and the quality

control criteria included (1) RNA features > 200 and < 5000, (2)

unique molecular identifiers (UMIs) of not less than 600, (3)

percentage of mitochondrial genes < 10%, and (4) percentage of

hemocyte genes < 1%. Subsequently, the “SCTransform” function

was used to normalize data, scale it, and remove cell cycle effects;

3000 highly variable genes were identified for further analysis. We

also performed principal component analysis (PCA) to reduce

dimensionality, and “Harmony” corrected batch effects in the

single-cell analysis, selecting the top 30 principal components for

integration. We used t-distributed stochastic neighborhood

embedding (t-SNE) for dimensionali ty reduction and

visualization of single-cell data. Next, the “FindAllMarkers”

function was used to identify differentially expressed marker

genes in each cluster, and we manually labeled cell types based on

a combination of SingleR auto-annotation as previously reported in
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the literature. Further visualization of hub genes was achieved using

the “FeaturePlot” function.
2.3 Intercellular communication analysis

we used the “CellChat (V1.6.1)” package to visualize the cellular

communication network and reveal key signaling pathways, specific

ligands, and receptors to explore the communication patterns

between different cells in the RA microenvironment. Special

attention was paid to interactions between neutrophils and other

cells, particularly fibroblasts.
2.4 Identification of differently
expressed genes

The R package “limma” was used to identify genes showing

significant differential expression in different comparison sets as

visualized by volcano plots. Analyses were conducted in the merged

training cohort of GSE150466 and GSE77298 with screening

conditions of P < 0.05 and |logFC|> 1.5. NETs Related genes were

defined as overlapping genes from training set-based DEGs, key

module genes, and GSE150466-based DEGs, as shown in the

UpSet plot.
2.5 Bioinformatic enrichment analysis

In order to identify major biological terms and related molecular

pathways, Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses were primarily

performed using the Metascape (https://metascape.org/) website

with parameters set to “H species” and P < 0.05 as the threshold

for significant enrichment. Biological processes (BP), cellular

components (CC), and molecular functions (MF) constituted the

GO annotation system. In addition, we used the R packages

“ClusterProfiler” and “enrichplot” to perform gene set enrichment

analysis (GSEA). It is commonly used to estimate differences

in BPs and pathways between samples in expression datasets

(26), and p < 0.05 and FDR < 0.25 are considered statistically

significant enrichments.
2.6 Weighted gene correlation
network analysis

In the training cohort, the R package WGCNA was utilized to

construct gene co-expression networks, a systems biology approach that

identifies gene co-expression modules linked to clinical phenotypes

through hierarchical clustering (27). First, we deleted 50% of the

median absolute deviation (MAD) genes while removing outlier

samples from the cluster tree. Based on the scale-free topology

criterion, the “pickSoftThreshold” function was used to select the

appropriate soft-threshold power (b) to compute the neighbor

relationship. Subsequently, we constructed an adjacency matrix and
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converted it into a topological overlapping matrix (TOM). Using the

dissimilarity measure of TOM, we performed average chained

hierarchical clustering, where each module was required to contain at

least 30 genes; the sensitivity was set to 3, the module-merging threshold

was 0.25, a clustering tree was constructed, and the genes were classified

into different modules with random colors. Furthermore, we collected

candidate genes by calculating the correlation coefficients between the

modules and clinical traits to select themodules with themost significant

module-trait relationships. Correlations between gene significance (GS)

and module affiliation (MM) values for all genes within a module were

also generated and evaluated, and significant genes were selected for

subsequent analyses.
2.7 Chromosomal location of genes

The R package “RCircos” was used to map the locations of the

featured genes in the chromosomes, with the gene location

information referenced from previously organized literature.
2.8 Machine learning

Here, we applied the Least Absolute Shrinkage and Selection

Operator (LASSO) regression, Support Vector Machine Recursive

Feature Elimination (SVM-RFE), and Random Forest (RF)

algorithms to identify the most important genes associated with

NETs. LASSO, a machine learning technique combining variable

selection and regularization, is implemented through the “glmnet”

package and executed to identify the hub genes in the training set,

using 10-fold cross-validation for selection and lambda with

minimum binomial deviation as the optimal value (28). SVM-

RFE selects the best subset of features by eliminating noisy or

redundant features, reducing the dimensionality of the data, and

then evaluating the accuracy, primarily performed by “e1071,”

“kernlab” and “caret” packages (29). The RF algorithm, on the

other hand, utilizes integrated learning to generate a decision tree to

evaluate the importance of the feature genes (30). Overlapping

genes identified by the three algorithms were defined as central

genes for subsequent research and validation.
2.9 Development and validation
of nomogram

Based on the four central genes, the R package “rms”was applied to

construct a nomogram model for predicting the risk of RA, which

mainly consists of “Points” indicating the corresponding values of the

candidate genes and “Total Points” displaying the sum of the scores of

all the genes. Furthermore, the “nomogramFormula” and “pROC”

packages were used to plot the receiver operating characteristic (ROC)

curves to evaluate the predictive performance of the nomogram and the

pivotal genes in the diagnosis of RA. The “calibrate” function and the

“rmda” package were used to construct calibration curves, decision

curve analysis (DCA), and clinical impact curves (CIC) to validate the

clinical validity of the nomogram.
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2.10 Immune infiltration analysis

We applied the “CIBERSORT” algorithm to determine the

distribution ratio of 22 immune cells in the synovial tissues of RA

and control groups in the training set (31), characterizing the immune

landscape of RA. The results were presented in stacked histograms and

box plots using the “ggplot” package. Furthermore, we applied the

Spearman method to analyze the correlation between NETs-related

hub genes and immune cells, as well as the correlation between

different immune cells, and visualized the results in a combined

correlation heatmap using the “ggcor” package.
2.11 Targeted network construction

We utilized the NetworkAnalyst (http://www.networkanalyst.ca)

platform for the complex targeting analysis of hub genes. The TF-

Gene interaction network was based primarily based on the

ENCODE database; the gene-miRNA interaction network relied

on the miRTarBase database, and the TF-miRNA co-regulation

network also utilized the miRTarBase database. miRNA co-

regulatory networks were constructed using the RegNetwork

database and visualized with Cytoscape software.
2.12 Establishment of animal model

Male Sprague-Dawley rats aged 6-8 weeks (180 ± 20 g) were

purchased from Huachuang Cigna Pharmaceutical Technology Co.,

Ltd. (Jiangsu, China) and housed in the Experimental Animal

Research Center of the First Affiliated Hospital of Anhui University

of Chinese Medicine. All experimental procedures adhered strictly to

the National Institutes of Health Guide for the Care and Use of

Laboratory Animals and were approved by the Laboratory Animal

Ethics Committee of the Anhui University of Traditional Chinese

Medicine (AHUCM-rats-2023020). The rat model of adjuvant-

induced arthritis (AA) was established according to a previously

published protocol (32). In addition, both control and model mice

were fed the same food and kept in the same feeding environment

until their joints were collected for histological analysis.
2.13 Histological assessment

The knee joints of the rats were collected, fixed with 4%

paraformaldehyde, decalcified, embedded, and sectioned.

Hematoxylin and eosin (H&E) staining was subsequently

performed and thoroughly examined under a light microscope.
2.14 Immunohistochemistry

The synovial tissue was sequentially embedded in paraffin,

sectioned, dewaxed, and hydrated. Subsequently, the tissues were

treated with the target repair solution EDTA buffer in an autoclave

under high pressure for antigen repair, incubated with 3% H2O2 for
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http://www.networkanalyst.ca
https://doi.org/10.3389/fimmu.2024.1521634
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1521634
20 min for inactivation, and then washed with water. Next, primary

antibodies CRYBG1 (1:300, bs-9093R, bioss), RRM2 (1:300, bs-

7133R, bioss), MMP1 (1:100, ab52631, abcam), and SLC19A2

(1:300, bs-10738R, bioss) were added dropwise to the sections

and placed in the incubator at 37°C for 60 min. The reaction

mixture was then incubated with the secondary antibody for 30 min

and stained with DAB. Finally, reaction images were obtained using

microscopy and quantified with ImageJ software.
2.15 Clinical sample collection

Thirty patients with rheumatoid arthritis (RA) who were

hospitalized in the Department of Rheumatology at the First

Affiliated Hospital of Anhui University of Chinese Medicine between

January 2022 and June 2024 were included in the study; 20 age- and

sex-matched healthy volunteers were recruited from the physical

examination center. Peripheral blood samples and clinical data were

obtained from the patients for further experimentation and analysis.

The clinical data were mainly included neutrophil to lymphocyte ratio,

erythrocyte sedimentation rate (ESR), hypersensitive C-reactive

protein (hs-CRP), Interleukin 6 (IL-6), antistreptolysin O (ASO),

rheumatoid factor (RF), anti-cyclic citrullinated peptide antibody

(anti-CCP), immunoglobulin (Ig) A, IgG, IgM, complement

component 3 (C3) and complement component 4 (C4). This study

was approved by the Ethics Committee of the hospital, and informed

consent was obtained from all subjects (Ethics Number: 2023AH-52).
2.16 Neutrophil isolation and
immunofluorescence staining

Human peripheral neutrophils (PMNs) were isolated using

Percoll’s continuous density gradient separation method, and the

lower white membrane layer (i.e., the peripheral neutrophil layer)

was aspirated, washed with 10ml of PBS, and centrifuged for last use.

Phorbol 12-myristate 13-acetate (PMA) was used to stimulate the

formation of NETs for 4 hours at a concentration of 5 µmol/µL.

Next, immunofluorescence staining was performed to examine NET

formation. The PMNs were fixed in 4% paraformaldehyde and

incubated with 0.5% TritonX-100 for 30 min for permeabilization.

Then, they were incubated with anti-MPO antibody (1:200, bs-

4943R, Bioss) and the anti-NE antibody (1:400, ab310335, abcam)

for 60 min in a 37°C incubator. The sections were then incubated

with goat anti-rabbit IgG-labeled secondary antibody (1:400) for 30

min and washed three times with PBS before blocking with an anti-

fluorescence quenching blocker containing 4′,6-diamidino-2-

phenylindole (DAPI). Finally, the NETs were imaged using

fluorescence microscopy to assess their locations and numbers.
2.17 Real-time quantitative polymerase
chain reaction

Total RNA was extracted from cell lysates using TRIzol reagent

according to the manufacturer’s instructions and reverse transcribed
Frontiers in Immunology 06
into cDNA using a reverse transcription kit. Taq SYBR Green qPCR

Premix (Universal) was used to perform a fluorescence quantitative

PCR reaction. We chose to use b-actin as a normalized internal control

and applied the 2-DDCtmethod for calculating the relativemRNA level.

All the primers used in this study are listed in Supplementary Table S2.
2.18 Statistical analysis

All statistical analyses were performed using R software (version

4.4.1), GraphPad Prism 9, and SPSS 26.0. Two independent sample t-

test and paired Student’s t-test were used to compare the two groups

of samples. Univariate logistic regression model analysis was used to

identify pivotal genes of diagnostic value. Correlations between

variables were assessed using Pearson’s or Spearman’s method. All

data are expressed as mean ± standard deviation, and statistical tests

were two-sided. Statistical results are reported as p-value with

significance at P < 0.05.
3 Results

3.1 Single-cell landscape of the RA
synovial microenvironment

Initially, two synovial tissue samples were selected for single-cell

analysis using the GSE192504 dataset (Figure 2A). We checked the

mitochondrial gene and blood cell ratios for quality control

(Supplementary Figures S1A, B) to ensure the completeness and

reliability of the single-cell transcriptome dataset analysis. Ultimately,

260 cells derived from normal tissues and 1,800 eligible cells derived

fromCIA tissues were included in the downstream analysis. Given the

potential heterogeneity of cell cycle phases in the dataset, we assessed

the consistent distribution of these phases within the samples using a

cell cycle scoring technique (Supplementary Figure S1C). Filtered data

were analyzed using the HARMONY method, focusing on highly

variable genes (Supplementary Figures S1D-H). Next, we categorized

all cells into 18 clusters using t-SNE (Figure 2B). Based on SingleR and

the related literature, we annotated the cells into seven different types:

macrophages, neutrophils, fibroblasts, endothelial cells, monocytes, T

cells, and B cells (Figure 2C). Dot plots show the expression levels of

the marker genes associated with each cell population (Figure 2D).

Relative to healthy controls, there was a significant increase in

macrophages, neutrophils, fibroblasts, and monocytes and a relative

decrease in endothelial cells in the RA synovium (Figure 2E).

Neutrophils exhibited the most significant increase in abundance

(Figure 2F). These findings suggest a heterogeneous landscape of the

synovial microenvironment between normal and RA samples.
3.2 Kinetic analysis of intercellular
communication in the RA
synovial microenvironment

Dissecting the interactions between neutrophils and other cell

populations in the synovial inflammatory microenvironment,
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especially communication with fibroblasts, will help to further

elucidate the mechanisms of NETs formation in RA. The

evaluation of the “CellChat” package reveals that both neutrophils

and fibroblasts sent a large number of signals to other cells,

suggesting that their high activation is associated with the

development of RA (Figure 3A). Furthermore, we conducted an

in-depth exploration of key ligand pathways in the cellular

communication network. The results showed that the major

pathways extending from neutrophils to fibroblasts were the

collagen, MIF, and Fn1 signaling pathways (Figures 3B–D). We

also found that these interactions mainly occurred through Col1a1-
Frontiers in Immunology 07
Sdc4 interactions (Figure 3E). In addition, the CXCL signaling

pathway, which regulates the immune response and inflammation,

is known to play an important role in the RA microenvironment.

We found that neutrophils, which act as signal initiators and

influencers, dominate this pathway (Figure 3F). Intriguingly,

CXCL2-CXCR2 contributed most to this pathway, suggesting that

it may be critical for promoting crosstalk between neutrophils and

other cells in the RA microenvironment, which warrants further

investigation. Overall, these findings emphasize that neutrophils

affect fibroblasts in the RA microenvironment through multiple

signaling pathways and associated ligands.
FIGURE 2

Single-cell landscape of the RA synovial microenvironment. (A) Flowchart of single-cell analysis. (B) t-SNE plot showing 18 clusters (0-17) identified
from the GSE192504 dataset by dimensionality reduction clustering analysis. (C) Clusters were annotated into 7 cell types based on SingleR and
literature. (D) Dot plots of marker gene expression levels annotated by different cell types. (E) Differences in cell distribution and expression between
RA and healthy controls. (F) Stacked plot of the proportion of abundance of each cell type in synovial tissues of RA and healthy controls.
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3.3 Differential gene identification and
biological characterization of RA

Considering that NETs effectively contribute to the synovial

pathological microenvironment of RA, we next identified key genes

and functional features associated with NETs (Figure 4A). We merged

and batch-normalized the three datasets— GSE55235, GSE55457, and

GSE206848 — downloaded from GEO to broadly and

comprehensively explore key genes in a larger training cohort for

subsequent analyses containing 25 synovial biopsies from RA patients
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and 27 synovial biopsies frommatched healthy individuals (Figure 4B).

Subsequently, 1419 DEGs were identified from the training cohort, of

which 763 were upregulated and 656 were downregulated, based on the

screening criteria of P < 0.05 and |logFC| > 1.5 (Figure 4C). The top 50

genes were selected from the up-down-regulated genes to create a

heatmap (Figure 4D). Next, we performed GO and KEGG enrichment

analyses of the DEGs to characterize RA function. GO analysis showed

that these differential genes were mainly involved in positive regulation

of the immune response, regulation of cell activation, leukocyte

activation, cellular response to cytokine stimulus, and positive
FIGURE 3

Kinetic analysis of intercellular communication in the RA synovial microenvironment. (A) Circle plots plotting the weights of interactions between the
seven major cellular subclusters in the RA group, with fibroblasts and neutrophils shown in detail. (B-D) Graphical representation of the three major
signaling pathways (Collagen signaling pathway, MIF signaling pathway, and Fn1 signaling pathway) by which neutrophils and fibroblasts interact,
including chordal diagrams (left) and circle diagrams (right) demonstrating the process of cellular interactions. (E) Dot plots highlighting ligand-
receptor pairs between neutrophils and other cells in the RA microenvironment, with the size of the dots representing the p-value of pathway
involvement and colored by the probability of communication. (F) A graphical representation of the CXCL signaling pathway, consisting of chord and
circle diagrams demonstrating the process of cellular interactions, an exploratory heatmap highlighting the strength of interactions, and a violin plot
exploring the level of gene expression.
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regulation of cytokine production, among other immune-related

biological processes (Figure 4E). KEGG enrichment analysis

identified the top 10 significantly enriched pathways as follows:

cytokine-cytokine receptor interaction, chemokine signaling pathway,

NF-kappa B signaling pathway, MAPK signaling pathway, TNF
Frontiers in Immunology 09
signaling pathway, neutrophil extracellular trap formation, and other

inflammation-related pathways (Figure 4F). In addition, we performed

GSEA enrichment analysis to explore the differences in gene function

between the RA synovium and normal samples. In GO-enriched

GSEA, neutrophil migration, chemotaxis, and degranulation, as well
FIGURE 4

Differential gene identification and biological characterization of RA. (A) Schematic of batch RNA sequencing analysis. (B) UMAP-based analysis
showing the distribution of sample expression before and after de-batch effects for GSE55235, GSE55457, and GSE206848. (C) Volcano plot
showing the differentially expressed genes (|logFC| > 1.5 and P < 0.05) between RA and control in the training cohort merged by the three data sets.
(D) Heatmap showing the top 50 up-/down-regulated genes in the differential expression analysis between the two samples. (E) Bar graph
demonstrating the results of GO function analysis of RA key genes. (F) Bubble graph showing the KEGG analysis results of RA key genes. GSEA
results of GO enrichment (G) and KEGG enrichment (H) based on gene expression levels.
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as the acute inflammatory response to antigenic stimuli and positive

regulation of the inflammatory response, were significantly activated in

RA (Figure 4G). Notably, in KEGG-enriched GSEA, the chemokine

signaling pathway, cytokine receptor interaction, and toll-like receptor

signaling pathway, which are pathways were significantly enriched in

RA (Figure 4H). These results strongly suggest that neutrophil

migration and inflammatory responses are involved in the

progression of RA synovial pathology.
3.4 Construction of WGCNA and
identification of key module genes in RA

We constructed gene co-expression networks using WGCNA to

mine the key gene modules associated with RA accurately. Based on

module independence and average connectivity, we set the soft

threshold parameter b to 3 to ensure the construction of a scale-

free gene network, in which the corresponding R2 was 0.88, and the

average connectivity was very high (Figures 5A, B). Next, we

constructed a gene hierarchy clustering dendrogram and identified

25 gene co-expression modules (Figure 5C). The correlations among

the modules are shown in Figure 5D. Furthermore, we identified

associations between the genes in each module and the clinical traits

using correlation analysis. In the heat map of module-clinical trait

relationships, the turquoise (r = 0.78), blue (r = 0.63), and green

modules (r =-0.62) showed the strongest correlation with RA

(Figure 5E). The scatter plots showed strong correlations between

GS and MM in all three modules (Figures 5F–H). Subsequently, we

screened a total of 204 center module genes for subsequent analyses

with GS > 0.1 and MM > 0.8.
3.5 Identification of NETs-related hub
genes in RA

we performed differential gene identification on the GSE150466

dataset, obtaining a total of 1,895 NET-associated DEGs (Figure 6A),

comprising 886 upregulated (blue) and 1,009 downregulated (red)

genes to explore the key mechanisms involved in NET formation.

Subsequently, we intersected the above DEGs with RA-associated

DEGs and key module genes and obtained 36 characteristic hub

genes (Figure 6B). The heatmap shows the differences in the

expression of these hub genes in the training set (Figure 6C). The

correlation loop plot demonstrated that all differentially expressed

genes exhibited strong regulatory associations with each other

(Figure 6D). Comprehensive gene annotation and functional

enrichment analyses were performed to elucidate the potential

functions of these 36 key genes. Based on GO enrichment analysis,

12 BP terms, 5 CC terms, and 7 MF terms showed statistically

significant enrichment within the core genes (Figure 6E). Notable BP

enrichment included positive regulation of protein phosphorylation,

regulation of the MAPK cascade, chemotaxis, positive regulation of

cell activation, regulation of the inflammatory response, and negative

regulation of the immune response. KEGG enrichment analysis

showed that NET-related genes in RA were primarily involved in
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the TNF signaling pathway, IL-17 signaling pathway, Th17 cell

differentiation, cytokine-cytokine receptor interaction, FoxO

signaling pathway, and chemokine signaling pathway. Chemokine

signaling pathways and other key pathways (Figure 6F). Here, we

also revealed the distribution of these 36 characteristic genes in the

RA synovial microenvironment by the single-cell mapping drawn

previously (Figure 6G). We observed that these genes were

significantly enriched in neutrophils, macrophages, and fibroblasts,

with the most abundant expression found in neutrophils. Figure 6H

shows the chromosomal locations of these genes. Furthermore, we

integrated and applied three machine-learning algorithms to

simplify the most critical feature variables. Based on the results of

10-fold cross-validation, LASSO identified eight potential candidate

genes (Figures 6I, J). The SVM-RFE algorithm identified the 11 most

important NET-related DEGs (Figure 6K). The RF algorithm

determined the importance of the top 23 genes based on the error

rate and number of classification trees (Figures 6L, M). By

intersecting the results obtained from the three algorithms, a final

list of four overlapping genes (Figure 6N) was obtained, namely

CRYBG1, RRM2, MMP1, and SLC19A2, which will be investigated

as pivotal genes in our future studies.
3.6 Development of NETs-associated
nomogram and characterization of
immune infiltration

In the training cohort, CRYBG1, RRM2, and MMP1 were

highly expressed in RA patients, whereas SLC19A2 was highly

expressed in the normal group (Figure 7A). We developed an RA

disease prediction model based on the four core genes in the

training cohort to determine the diagnostic and predictive ability

of the identified core genes. In the nomogram, each feature variable

corresponded to a specific score, and the sum of all feature scores

within each sample represented the probability of RA (Figure 7B).

ROC curve analysis indicated that the AUC values of the candidate

genes within the nomogram model were all > 0.9, suggesting that it

was effective in distinguishing between RA patients and healthy

individuals and that the nomogram had a superior predictive value

when compared to single genes (Figure 7C). The calibration curves

demonstrated that the predictive probabilities of the constructed

nomogram diagnostic model were very close to the ideal curves,

indicating that the model was predicted with good accuracy

(Figure 7D). The DCA further illustrated that decisions based on

the constructed nomogram model yielded a higher net benefit for

the diagnosis of RA compared to interventions for all or no

interventions (Figure 7E). Similarly, the CIC revealed that the

estimated number of individuals identified as high-risk by the

model converged with the number of true-positive events

(Figure 7F). We also explored the patterns of immune cell

infiltration in the RA training cohort. The results showed that the

RA group exhibited a significantly increased abundance of memory

B cells, plasma cells, T cells CD8, T cells CD4 + memory cells, and

Macrophages M1 compared to the normal group, while T cells CD4

memory resting, monocytes, activated mast cells, and eosinophils
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showed a significant decrease in infiltration (Figures 7G, H).

Correlation analysis revealed that the four identified central genes

were strongly correlated with most immune cells (Figure 7I).

Among these, CRYBG1 was strongly positively correlated with

memory B cells and plasma cells, MMP1 and RRM2 were
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strongly negatively correlated with eosinophils, while SLC19A2

was strongly positively correlated with eosinophils. These results

confirmed the previously identified inseparable relationship

between the expression of hub genes and the pattern of immune

infiltration in RA.
FIGURE 5

Construction of WGCNA and identification of key modular genes in RA. (A) Estimation of scale-independent indices for different soft-threshold
powers. (B) Estimation of average connectivity for different soft threshold powers. (C) Gene hierarchy clustering dendrogram in which different
modules are indicated by different colors. (D) Heatmap for inter-module correlation analysis. (E) Relationships between module-characterized genes
and clinical traits in the RA group and normal control group, with numbers in the modules representing correlation coefficients and p-values. Further
screening of candidate hub genes within modules (with GS > 0.1 and MM > 0.8 as thresholds) was visualized by Cytoscape. Scatter plots were
generated to show the association between GS and MM within the turquoise module (F), blue module (G), and green module (H), respectively.
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FIGURE 6

Identification of NETs-related core hub genes in RA. (A) Volcano plots demonstrating differential genes between NETs-stimulated and unstimulated FLS
in the GSE150466 dataset (|logFC| > 1.5 and P < 0.05). (B) UpSet crossover plot showing the distribution of overlapping genes between RA-DEGs, co-
expressed key module genes, and NETs-DEGs. (C) Heatmap showing the expression differences of the 36 crossovers characterized genes in the tested
cohort. (D) Circle correlation connectivity plot of co-expression among the 36 characterized genes. (E) Circle plot showing the results of GO
enrichment analysis of 36 feature genes, including 12 BP terms, 5 CC terms and 7 MF terms. (F) Sankey bubble plot showing the top 10 most significant
KEGG enrichment results. (G) t-SNE plot showing the distribution of 36 characterized genes in different cells at the single-cell level. (H) Circle plot of 36
characterized genes localized on chromosomes. (I) Eight candidate hub genes were obtained based on LASSO regression and 10-fold cross-validation.
(J) Generation of coefficient profiles for log(lambda) sequences in the LASSO model, the vertical dashed line is the optimal log(l) value. (K) Establishment
of 11 potential hub genes after identification by SVM-RFE algorithm. (L) Random forest tree plot depicting the error rate versus the number of
classification trees, where red, green, and black points represent RA samples, normal group samples, and all samples, respectively. (M) Bar chart showing
the top 23 genes ranked based on importance scores. (N) Venn diagram showing the identification of four final NETs-related core genes by the three
algorithms described above.
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3.7 External validation of NETs-related hub
genes and construction of target
gene networks

Considering the possible bias introduced by the merged dataset,

we selected the external dataset GSE77298 to validate the expression

of the four hub genes (Figure 8A). In a comparison of 16 RA and
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seven control samples, we identified 1414 upregulated DEGs and

2100 downregulated DEGs (Figure 8B). The heatmap further

demonstrates a difference in hub gene expression between the two

groups (Figure 8C). Specifically, CRYBG1, RRM2, and MMP1

showed higher levels in the RA group than in the normal group,

whereas SLC19A2 showed significantly lower expression

(Figure 8D), consistent with observation in the training cohort.
FIGURE 7

Construction of NETs-associated nomogram with immune infiltration characteristics. (A) Comparison of the expression levels of the four NETs-
related hub genes between the control and RA groups in the training cohort. (B) Disease prediction score modeling based on four NETs-related hub
genes for diagnosis of RA. (C) ROC curves of the nomogram model and the diagnostic performance of the four NETs-related hub genes within the
model. (D) Calibration curves predicted by the nomogram model. (E) DCA curves are predicted by the nomogram model. (F) Clinical impact curves
of the nomogram model. (G) The proportion of various immune cell infiltrates in the training cohort analyzed using the CIBERSORT algorithm. (H)
Comparison of the levels of various immune cell infiltrations between the RA group and the control group in the training cohort. (I) Correlation
heatmaps demonstrating the correlation between NETs-related hub genes and various infiltrating immune cells and between immune cells. Data are
expressed as mean ± standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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The diagnostic value of the four hub genes in the external dataset was

assessed using ROC curve analysis, which showed that the AUC

values of all four genes exceeded 0.80, indicating good performance

in identifying RA (Figure 8E). In addition, to confirm the hub genes

and their associated upstream and downstream interplay factors, we

constructed the TF-gene interaction network, gene-miRNA

interaction network, and TF-miRNA co-regulation network

(Figures 8F–H). We found that RRM2 occupied a central position

in hub-gene interactions, IRF1 was a critical regulator, and has-mir-

98-5p played an important co-regulatory role in the hub

gene network.
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3.8 Validation of hub gene expression in
mouse models

The results of the integrated bioinformatics analysis were

validated by establishing an AA rat model. H&E staining showed

that the synovial tissue in the model group exhibited thickening,

disorganization, and significant inflammatory cell infiltration

compared to the control group, confirming successful modeling

for subsequent analysis (Figure 9A). We examined the expression of

these four pivotal genes in the mouse synovium using IHC analysis.

The IHC results showed a small amount of CRYBG1, RRM2, and
FIGURE 8

External validation of NETs-related hub genes and construction of target gene networks. (A) Schematic diagram of the analysis of the external
validation dataset GSE77298. (B) Volcano plot showing the differentially expressed genes (|logFC| > 1.5 and P < 0.05) in the externally validated
dataset GSE77298, in which 4 hub genes were labeled. (C) Heatmap showing the expression differences of the four hub genes between the two
groups in the GSE77298 dataset. (D) Comparison of the expression levels of the 4 NETs-associated hub genes between the control and RA groups in
GSE77298. (E) ROC curves highlighting the diagnostic performance of the 4 NETs-related hub genes in GSE77298. (F) Construction of TF-Gene
interaction network. (G) Construction of Gene-miRNA regulatory network. (H) Construction of TF-Gene-miRNA co-regulatory network. Data are
expressed as mean ± standard deviation. *P < 0.05, ***P < 0.001.
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MMP1 protein staining in the synovial tissues of the control group

(brown color) and a significantly greater distribution and

expression in the synovium of the model rats than in the controls

(P < 0.0001). In contrast, SLC19A2 expression trended in the

opposite direction (Figures 9B–E). These results are consistent

with those obtained from the database.
3.9 Validation of NET formation and hub
gene expression in clinical cohorts

We screened 30 patients with RA and 20 eligible healthy controls,

as shown in Supplementary Table S3, to elucidate the relationship
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between NET-associated hub genes and clinical features of RA. IF

images showed that the key markers for NETs in RA, MPO, and NE

were primarily localized in neutrophil nuclei, with significantly less

positive staining than in controls (Figures 10A, B). Subsequently, RT-

qPCR was performed to detect the expression levels of the pivotal

genes. The results showed significant differences in mRNA expression

levels of CRYBG1, RRM2,MMP1, and SLC19A2, with trends generally

consistent with the bioinformatics analysis (Figures 10C–F). In

addition, our one-way logistic regression analysis identified the

independent predictive roles of these four hub genes in RA

(Figure 11A). We then constructed a clinical nomogram model to

measure the contribution of the characterized variables to RA

prediction (Figure 11B). The ROC curves showed that the AUCs of
FIGURE 9

Validation of pivotal gene expression in the mouse model. (A) H&E-stained images of synovial tissues of a mouse model. Expression of CRYBG1 (B),
RRM2 (C), MMP1 (D) and SLC19A2 (E) proteins in synovial tissues of mouse knee joints was detected by IHC (standard bar = 50 mm). Data are
expressed as mean ± standard deviation. ***P < 0.001, ****P < 0.0001.
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both the nomogram and characterized variables were greater than 0.7,

indicating good predictive ability (Figure 11C). Calibration, DCA, and

CIC curves further supported the accuracy and clinical significance of

the nomogram model (Figures 11D–F). Correlation analysis showed

that CRYBG1 was significantly positively correlated with IgG; RRM2

was significantly positively correlated with ESR, ASO, RF, and C4;

MMP1 was significantly positively correlated with NLR and ESR; and

SLC19A2 was significantly negatively correlated with anti-CCP and C4

(Figures 11G–P). Overall, these results suggest that NET-related hub

genes are strongly associated with clinical features of RA.
4 Discussion

RA is a common chronic inflammatory disease characterized by

synovial thickening and inflammation, where abnormal immune cell
Frontiers in Immunology 16
infiltration plays a crucial role (33). Neutrophils play an intermediate

role in the inflammatory cascade in RA (34). The formation of NETs,

a programmed neutrophil death process, may be key to

understanding inflammation initiation and perpetuation in the RA

synovial microenvironment. In this study, we fully investigated key

features of the RA synovial environment using scRNA-seq analysis

and clarified the regulatory interactions network between

neutrophils and other cells, especially fibroblasts. Second, we

identified the most important hub genes closely related to NETs

using multiple screening procedures. These genes were validated

using external datasets, animal models, and clinical cohort samples.

Most importantly, we identified the clinical relevance and immune

infiltration landscape of hub genes. This comprehensive

bioinformatics study and experimental validation provide valuable

insights into RA pathogenesis and progression, paving the way for

diagnostic model development and precision therapies.
FIGURE 10

Validation of NETs formation and hub gene expression in a clinical cohort. (A, B) Immunofluorescence microscopy examination revealed the
presence of NETs in RA, defined as MPO (green) and NE (red) (standard bar = 50 mm). RT-qPCR was applied to detect the expression levels of hub
genes CRYBG1 (C), RRM2 (D), MMP1 (E) and SLC19A2 (F) in neutrophils. ***P < 0.001, ****P < 0.0001.
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Recent studies have characterized major cell types and

corresponding transcriptomic features in the RA synovial

microenvironment, identifying complex fibroblast subtypes and

their communication networks with other cells (35). Interestingly,

our analysis revealed seven major cellular compartments in the

synovium: fibroblasts, macrophages, neutrophils, endothelial cells,

monocytes, T cells, and B cells (Figure 2C). Neutrophils were the

most abundant, suggesting that they play a key role in RA synovial

pathology progression. Previous studies reported that neutrophils are

the most abundant cells in the joint effusions and inflamed synovial

tissues of patients with RA (36). Consistently, our work revealed

predominant neutrophil infiltration in CIA rat joints, comprising

approximately 57% of all synovial infiltrating immune cells

(Figures 2E, F). FLS is an important structural effector cell in the

synovium, and its tumor-like proliferation and invasiveness are

typical pathological features of RA (37). Neutrophils promote the

FLS inflammatory phenotype and upregu la te major
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histocompatibility complex (MHC) class II through NET release,

which is present in antigen-specific CD4+ T cells (38). Our

intercellular communication analysis revealed significant

interactions between neutrophils and fibroblasts, which is

consistent with these findings (Figure 3A). We also found that

neutrophil-fibroblast communication occurred mainly through the

collagen, MIF, and Fn1 signaling pathways (Figures 3B–D). Notably,

macrophage migration inhibitory factor (MIF) is a pleiotropic pro-

inflammatory mediator that exerts a number of different cellular

regulatory functions in RA. MIF not only promotes fibroblast

proliferation and stimulates neutrophil chemotaxis and Th17 cell

differentiation by increasing the expression of TLR4, but it also

enhances RANKL-induced osteoclastogenesis thereby aggravating

bone erosion in RA (39–41). In addition, MIF inhibitors have

shown potent anti-inflammatory activity in macrophages and

arthritis models (42). Some accumulating evidence found that MIF

was able to promote the production of NETs by neutrophils through
FIGURE 11

NETs-related hub genes are clinically relevant. (A) Forest plot of logistic regression analysis of hub genes in RA prediction. (B) The clinical RA
prediction nomogram model is based on 4 NETs-related hub genes. (C) ROC curves of the nomogram model and the characteristic variables within
the model. Calibration curves (D), DCA (E) and CIC (F) were predicted by the nomogram model. (G-P) Correlation analysis between CRYBG1, RRM2,
MMP1, and SLC19A2 and laboratory markers in RA patients. *P < 0.05, **P < 0.01.
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CXCR4, CXCR2 and stimulation of MAPK activation (43, 44). Our

results also highlight the dominance of neutrophils in the CXCL

signaling pathway that regulates immune response and inflammation

(Figure 3F). A co-incubation experiment revealed a novel positive

feedback loop involving NETs and FLS, whereby NETs stimulate FLS

to secrete IL-33 and the chemokine CXCL8 via Toll-like receptors,

which in turn exacerbates neutrophil recruitment and NETs

production within the synovium (45). Taken together, these

interesting findings enhance the understanding of RA synovial

pathology, highlighting that interactions with fibroblasts and

associated ligand pathways, centered on neutrophil infiltration,

mediate inflammatory disturbances and pathological progression in

the RA synovial microenvironment.

Next, we narrowed our observations from the synovial

microenvironment to NETs, which are important strategies for

neutrophils to execute their functions and have recently gained

significant attention as a critical mechanism. By externalizing

citrullinated autoantigens, NETs induce the production of anti-

citrullinated peptide antibodies (ACPA), which further promote NET

formation, an early event in RA that initiates autoimmune joint

inflammation (46). Excessive NET release stimulates the production

of cytokines like TNF-a, IL-6, IL-8, and IFN-g, creating an

“inflammatory storm” in patients with RA (47). In addition to the

inflammatory phenotype, NETs can be internalized by FLS to enhance

RANKL and matrix metalloproteinases production, which promotes

osteoclast formation activation and exacerbates cartilage damage (48,

49). Immunofluorescence showed significant expression of MPO and

NE — the two major products of reactive neutrophil infiltration and

NETs — in patients with RA (Figures 10A, B). This study combined

bulk RNA-seq data with multiple microarray datasets for differential

gene and co-expressionmodule identification to reveal genes associated

with NETs. Bioconfidence enrichment analyses suggested that the

pathogenesis of RA-NETs mainly focuses on positive regulation of

protein phosphorylation, regulation of MAPK cascade and

inflammatory regulatory pathways in the form of cytokine-cytokine

receptor interactions and chemokine signaling pathways. The MAPK

cascade, which consists of three key family members, ERK, JNK and

p38, is involved in many cellular processes including cell growth,

immunity, inflammation and stress response. Several studies have

already documented that NETs-induced neutrophil activation occurs

through pathways involving Akt, ERK1/2 and p38 phosphorylation

(50, 51). Notably, several studies have emphasized the critical role of

targeting NETs via MAPK signaling in RA therapy. Notably, growing

evidence emphasizes the great potential of targeting NETs through

MAPK signaling in RA therapy. For example, Yang et al. shared the

report that lignans reduce NETs formation and inflammatory arthritis

by inhibiting the Raf1-MEK-1-Erk axis (52). Overall, a comprehensive

understanding of the upstream regulation of NETs could help to

identify promising therapeutic targets and develop superior targeted

therapeutics to treat RA.

Given the important role of NETs in RA, the development of

early RA predictionmodels based on the association of key NETs can

help us gain insight into and manage RA. We performed LASSO

regression, SVE-RF and RF algorithms and crossed them, and

ultimately chose the pivotal genes that were most prominently
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associated with NETs (CRYBG1, RRM2, MMP1, and SLC19A2)

(Figures 6I–N). CRYBG1 (AIM1) is a common marker and

therapeutic target in cancer. Initially, CRYBG1 was mainly

localized to the putative chromosome 6 oncogene region of human

melanoma and served as a good candidate suppressor because of its

high expression level in suppressing melanoma cells (53). With the

development of high-throughput technologies, CRYBG1 has been

shown to be highly expressed in prostate cancer tissues (54).

Although the role of CRYBG1 in different cancers is controversial,

it is capable of interacting with the cytoskeleton. We identified

CRYBG1’s potential role in RA management for the first time.

RRM2, a key protein for DNA synthesis and repair, correlates

significantly with DAS-28, compression pain, and swollen joints,

with higher expression in remission RA (55). A study found that

RRM2 promoted Akt phosphorylation and MMP9 expression,

thereby promoting MH7A cell migration and invasion (56). Our

findings showed that RRM2 was significantly and positively

associated with ESR, ASO, RF, and C4 levels in patients with RA

(Figures 11H–L). MMP1 is known to play an important role in the

degradation and destruction of articular cartilage and bone and is

closely associated with RA bone erosion (57). In a previous study, the

inhibition of MMP1 expression reduced FLS migration and invasion,

thereby linking RA inflammation and cartilage damage (58).

SLC19A2 appears to be closely associated with megaloblastic

anemia syndrome (59). We identified it for the first time as a key

signature gene of RA-NETs and found that it was significantly

associated with anti-CCP antibodies and C4 (Figures 11O, P). Of

note, the expression of these pivotal genes was not only confirmed in

our mapping of single cells, but also fully explored in our constructed

AA rat synovial tissue and clinical cohorts. Using a nomogram

diagnostic model, we mapped their unique value to identify the risk

of RA (Figures 11B–F). Through a correlation analysis, we further

emphasized their strong clinical relevance (Figures 11G–P). Immune

infiltration analysis revealed an association with multiple immune

cells involved in the RA immune microenvironment (Figure 7I).

Interestingly, eosinophils showed a strong negative correlation with

both MMP1 and RRM2, and a positive correlation with SLC19A2.

Although we initially observed that they are differentially expressed

in RA and show meaningful correlations with immune cells, further

experiments are needed to verify their regulatory processes and

immunological mechanisms in RA. In conclusion, understanding

and exploring these genes is crucial for exploring novel diagnostic or

prognostic biomarkers for RA and further searching for

therapeutic targets.

In this study, we characterized and analyzed the intercellular

communication of neutrophils in the RA synovium for the first time,

providing a unique perspective for the molecular characterization of

the RA synovial microenvironment. In addition, through the

unprecedented integration of multiple datasets, we identified

compelling diagnostic genes for RA-NETs. We constructed RA

diagnostic models, based on which we further explored their

immune landscapes and clinical relevance. Despite these important

findings, this study has several limitations. First, the initially analyzed

results were based on bioinformatic tools, and although confirmed at

multiple levels, ex vivo and in vivo, sample-to-sample heterogeneity and
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differences should be explored. Second, due to the limited sample size

and lack of prognostically relevant information, clinical trials with

larger sample sizes and more diverse populations would help confirm

the predictive models and improve the generalizability of the results.

Despite our findings on the interactions between neutrophils and

fibroblasts, further experiments are required to validate these

phenomena. In particular, elucidating the processes and mechanisms

by which these hub genes are involved in NET formation in the context

of RA is crucial to characterize the therapeutic potential of NETs

further. Presumably, further evidence and applications suggesting the

relevance of NETs in RA pathogenesis and treatment will emerge.
5 Conclusion

In conclusion, our study emphasized the unique role of

neutrophil-derived NETs in the RA synovial microenvironmental

perspective. Through comprehensive bioinformatic analyses, we

identified key hub genes associated with NETs, leading to the

development of an accurate predictive RA diagnostic model and

revealing a closely related immune infiltration landscape. These

findings provide new insights into the inflammatory and

immunological mechanisms that drive RA and suggest new

directions for developing promising targeted diagnostic tools

for RA.
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