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Molecular characterization of tumors is essential to identify predictive biomarkers

that inform treatment decisions and improve precision immunotherapy

development and administration. However, challenges such as the

heterogeneity of tumors and patient responses, limited efficacy of current

biomarkers, and the predominant reliance on single-omics data, have hindered

advances in accurately predicting treatment outcomes. Standard therapy

generally applies a “one size fits all” approach, which not only provides

ineffective or limited responses, but also an increased risk of off-target

toxicities and acceleration of resistance mechanisms or adverse effects. As the

development of emerging multi- and spatial-omics platforms continues to

evolve, an effective tumor assessment platform providing utility in a clinical

setting should i) enable high-throughput and robust screening in a variety of

biological matrices, ii) provide in-depth information resolved with single to

subcellular precision, and iii) improve accessibility in economical point-of-care

settings. In this perspective, we explore the application of label-free Raman

spectroscopy as a tumor profiling tool for precision immunotherapy. We

examine how Raman spectroscopy’s non-invasive, label-free approach can

deepen our understanding of intricate inter- and intra-cellular interactions

within the tumor-immune microenvironment. Furthermore, we discuss the

analytical advances in Raman spectroscopy, highlighting its evolution to be

utilized as a single “Raman-omics” approach. Lastly, we highlight the

translational potential of Raman for its integration in clinical practice for safe

and precise patient-centric immunotherapy.
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1 Introduction

The immune system plays a vital role in detecting cancer by

recognizing neoantigens generated by tumor cells that can initiate

immune responses (1). However, tumors have evolved several

strategies to evade immune detection (2). These include

downregulating antigen presentation, which impairs the ability of

immune cells to recognize and attack tumor cells, and expression of

surface protein ligands, such as Programmed Death-Ligand 1 (PD-L1),

that interact with immune checkpoint proteins, such as Programmed

Death Protein 1 (PD-1), on immune cells (3). Tumor-secreted factors

modulate the tumor immune microenvironment through several

mechanisms, including: i) releasing immunosuppressive cytokines

such as IL-2, TGF-b, IL-10, IL-35 and VEGF, which inhibit various

immune cell activities (4); ii) releasing tumor-derived exosomes which

contain immunosuppressive molecules, including TRAIL, Fas-L, PGE-

2, etc (5); and iii) recruiting regulatory immune cells such as regulatory-

T cells, tumor associated macrophages, and myeloid-derived

suppressor cells to the tumor site (6). Epigenetic modulation within

cancer cells can also silence genes related to antigen presentation (7).

To effectively deploy immunotherapy, it is essential to accurately detect

and classify the evasion tactics of cancer cells. Ourmanuscript discusses

how Raman spectroscopy, as a label-free, reliable, and cost-effective

technology, can sense these tactics across the immunological synapse.

Various immunotherapy strategies currently utilized include

immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive

cellular therapies (ACT), cytokines, targeted antibodies including

T cell-engaging bispecifics, and adjuvants & immunostimulants.

Although these approaches have led to improved outcomes for

some patients, their benefits are often limited to a small and

unpredictable segment of cancer patients. This has led to

increased cases of immune-related adverse events (irAEs) (8, 9).

For example, in melanoma, where ICIs are the mainstay treatment,

the overall response rate is only 30-45% for the most common

single-agent anti-PD-1 approach (10). Further, many cancers, such

as pancreatic adenocarcinoma, have unique biologic environments

such as high levels offibrosis, contributing to immune cell resistance

and evasion that render these immunotherapeutic agents

significantly less effective (11, 12). Therefore, accurately assessing

a patient’s tumor microenvironment (TiME) and predicting their

response to immunotherapy are essential for maximizing treatment

effectiveness. An important step towards this is precise biomarker

prediction which helps in establishing more accurate, individualized

profiles to guide immunotherapeutic selection (13, 14). As many

existing biomarker predictive models rely on single-omics data,

which may not capture the complex biological interactions involved

in tumor immunology, their predictive power has been limited (15,

16). Multi-omics approaches that combine genomic (17),

transcriptomic (18), proteomic (19) lipidomic, and metabolomic

data can improve the accuracy of response predictions (20–23). In a

recent study, Kong et al. utilized a machine learning framework that

integrated various -omics data to predict responses to ICIs in

melanoma, gastric cancer, and bladder cancer, demonstrating

superior predictive capabilities compared to traditional

biomarkers. Investigators curated data from more than 700 ICI-

Treated patients ’ samples with clinical outcomes and
Frontiers in Immunology 02
transcriptomic data. Their network-based ML algorithm showed

significantly better performance in predicting ICI treatment

responses in all the above-mentioned types of cancers compared

to existing models, demonstrating network biology as a powerful

means to identify robust biomarkers (16).

Multi-omics technologies have increased our understanding of

the complex inter- and intra- molecular cross-talk between immune

cells and tumor cells within TiME. However, working with large

analytical and statistical datasets generated by single or spatial

technologies presents significant computational hurdles (24). One

major issue is the batch effects caused by using different analytical

techniques employed in -omics data collection (25). These

techniques are costly, time consuming, and require extensive

labeling steps which may require disruption of native biological

environments for the cells of focus (26, 27). Raman spectroscopy

can effectively harmonize all the -omics techniques for analyzing

TiME interplay and its intricate changes under a single platform.

Additionally, a combination of Raman and traditional multi-omics

can also leverage the strengths of both methodologies, including the

high sensitivity, multiplexing capabilities, rapid analysis, and non-

destructive, label-free nature of Raman, alongside the specificity and

extensive data provided by traditional -omics approaches. In the

past decade, label-free Raman spectroscopy has found significant

applications in cancer diagnostics, particularly in cell type

differentiation (28–30) and metabolite characterization (31–33). It

also allows for the identification of biochemical changes within

tumors, enhancing our ability to monitor responses to therapies

more efficiently (34). These studies provide the foundation for

deploying Raman spectroscopy as a platform for immunotherapy

development, administration, and response monitoring.

In this perspective, we discuss the principles and role of Raman

spectroscopy in immunotherapy. In section 2, we describe advances in

nanophotonics which render Raman suitable for non-invasive, label-

free detection of the TiME at the single-cell to few-molecule level. We

also discuss the role of machine learning and artificial intelligence (ML/

AI) in Raman spectral analysis and data interpretation. Section 3

describes the role of Raman spectroscopy in identifying, characterizing,

and analyzing the complex inter- and intra- metabolic and phenotypic

changes occurring within TiME, as well as Raman spectrosocpy’s role

in predicting responses to various immunotherapeutic treatments.

Section 4 outlines the current analytical advancements in Raman

spectroscopy within the field of immunology. Finally, Section 5

explores how Raman spectroscopy can serve as a unifying, multi-

omic technique that stitches genomic, transcriptomic, proteomic, and

metabolomic data, as well as a potentially low-cost tool with

translational potential in clinical settings.
2 Nanophotonic-enhanced
Raman spectroscopy and
AI-enabled interpretation

Raman spectroscopy (RS) is a non-invasive, vibrational

spectroscopic method that examines the composition, structure,

and vibrational energy states of materials (including molecules and
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1520860
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chadokiya et al. 10.3389/fimmu.2024.1520860
cells). In RS, a sample is illuminated with monochromatic light.

When the incident light interacts with molecular vibrations in the

sample, photons can be inelastically scattered and re-emitted with

either lower or higher energy (Figure 1). This energy difference,

known as a Raman shift, provides a distinct molecular “fingerprint”

of the material (35). By analyzing the unique spectral fingerprints of

molecules fundamental in cellular biology, RS can provide detailed

insight into the molecular composition and the structural and

functional makeup of cells and tissues, both in vivo and ex vivo

(36, 37). For example, there are biologically-relevant windows (38,

39) that elucidate biomarkers spanning lipids (40, 41), proteins and

peptides (42, 43), metabolites (44–46) and nucleic acids (47, 48)

(Figure 1). In turn, these markers can demarcate normal and

malignant cells (49, 50) and stratify cancer types (51) or

pathologic grades (52, 53), facilitating potential early diagnosis

and intervention pathways. As a non-destructive optical

technique, Raman spectroscopy can be seamlessly integrated with

other modalities on the same sample, allowing for multi-omic

resolution in a single measurement.

Although Raman spectroscopy is non-invasive and highly

specific in providing molecular and structural information, a

major challenge of spontaneous RS lies in its intrinsically weak

scattering process. Because of the low likelihood of a Raman

scattering event [roughly 1 in 10E6-7 incident photons (54–56)],

complementary strategies have been adopted to address its signal

intensity and enhance sensitivity. The emergence in the fields of
Frontiers in Immunology 03
nanophotonic materials and machine learning models, in

particular, have improved Raman sensitivity and resolution and

to enable deeper spectral interpretation.

One strategy to amplify the signal-to-noise ratio of Raman is

through surface-enhanced Raman scattering (SERS), which uses

optically resonant surfaces or nanoparticles (NPs) to increase the

Raman cross-section (Figure 1). Vast literature has been published

using metallic nanostructures for SERS.When light interacts with these

metallic nanostructures, the electrons in the metal oscillate in

resonating manner, creating an intensified electromagnetic field

known as a plasmon resonance on the surface. This additional field

strength localization intensifies the light interaction that occurs

between molecules, with enhancement coefficients ranging from 104-

108, and as high as 1011 (45–47). The resulting process generates

highly-detailed, vibrational spectra, making it particularly useful in

fields like cancer immunotherapy (48, 49), biochemistry (50, 51),

medical diagnosis (52), and surgical treatments (53). SERS studies

employing colloidal NPs have shown extensive success in cancer

biological interrogation, from Liu et al. exploiting Au/Ag nanostar

geometries to quantify BRAF gene mutations in colorectal cancer with

comparable LOD to qPCR, to Sun et al. leveraging Au nanorods as a

multifunctional agent to identify and induce photothermal ablation of

tumor margins (45, 46). Recent advances in large-area nanoarray

fabrication leveraging self-assembled NP aggregation or

nanolithography have led to the rise and potential of SERS-active

substrates. Zhao et al. designed one such substrate by fabricating
FIGURE 1

A schematic illustration of Raman spectroscopic workflow for analyzing and observing inter and intra cellular interactions within TiME.
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nanoarrays of plasmonic trimers to successfully label adenocarcinoma,

squamous carcinoma and benign tumor samples across fresh lung

tissues (57). These SERS-active devices can yield comparable

enhancements to colloidal NPs, all while improving sample adhesion

and hotspot uniformity and distribution.

Although there is less literature, recent innovations in dielectric-

based substrates for SERS present an advantageous opportunity for

material and biological characterization. Unlike metallic nanostructures,

which exhibit high photothermal effects damaging cells or altering

biomolecular structures, dielectric nanostructures undergo minimal

heat conversion, making them highly suitable for biological

preservation and measurement reliability (58, 59). Advancements in

highly resonant, high quality-factor (Q) metasurfaces have also

overcome conventionally limited electromagnetic field enhancements

(60–62), yielding Raman scattering efficiencies comparable to

plasmonic counterparts (58, 63, 64). In work by Cambiasso et al. and

Romano et al., for example, dielectric nanodimers and photonic crystals

were utilized to demonstrate Raman spectral amplification across b-
carotenal monolayers and Raman analytes with minimal absorption

loss (65, 66). Silicon-based designs, in particular, can further leverage the

device footprint scaling of matured CMOS infrastructure (67). Barkey

et al. demonstrated one such design by pixelating 2D arrays of Si-ellipse

pairs to resolve real-time conformational dynamics of photoswitchable

lipid membranes representative of cell membrane behavior (68). These

large-area fabricated arrays can enable homogenous SERS regions for

rapid spatial profiling all while providing compatibility to assess the

same sample with other modalities.

Enhancing the utility of Raman spectroscopy can be achieved by

incorporating machine learning (ML) and artificial intelligence

(AI), which can extract underlying spectral features linked to

biological and chemical responses. Spectral information from RS

is often feature-rich, but the unprocessed information can be

complex and noisy. As a result, employment of both more

traditional statistical approaches and newer deep learning

algorithms can be utilized to isolate pertinent information from

background and extract insights in an otherwise opaque spectra.

Dimension reduction techniques adopted prior to analysis can

improve feature selection, reduce overfitting, and improve

computational runtime, all while preserving original spectra

information. Linear techniques such as principal component

analysis (PCA) can decompose large feature sets into smaller ones

encapsulating the most significant spectral patterns and

differentiators, while nonlinear reduction methods like t-

distributed stochastic neighbor embeddings (t-SNE) or uniform

manifold approximation (UMAP) can help contextualize the local

and global structural relationship of Raman spectra datasets.

Classification algorithms can further intake the Raman spectra

and provide distinct cell type labeling to predict post-treatment

outcomes in untested samples. Support vector machines (SVMs)

and Random decision forests (RFs) can be used to robustly classify

cancer subtypes as recently demonstrated in brain tissue (69, 70)

and in breast cancer garnering an accuracy of +97% (69, 70).

Advances in multilayer architectures such as convolutional neural

networks (CNN) and residual neural networks (ResNet) have

further increased the predictive capacity of RS, even against high
Frontiers in Immunology 04
inter-patient variability and complex background sources. For

example, in melanoma, where the clinical diagnostic sensitivity

and specificity ranges from 40-80%, the implementation of artificial

neural networks on Raman spectra resulted in an improved

sensitivity and specificity of 85% and 99%, respectively (53). Such

integration of deep learning and the continued advancements in AI

can stand to provide a powerful opportunity to analyze Raman

spectra beyond single cells and across the tissue domain. Further, as

discussed later in the perspective, integration of RS with existing

multi-omics and spatial-omics data, using existing AI models, could

offer a more comprehensive understanding of tumor heterogeneity.
3 Role of Raman spectroscopy in
characterizing tumor-
immune microenvironment

The TiME is a complex and diverse ecosystem containing a

variety of immunosuppressive cells, including tumor cells, cancer-

associated fibroblasts (CAFs), vascular endothelial cells, suppressive

myeloid cells, regulatory T (Treg) cells, and regulatory B cells.

Increasing evidence strongly suggests that TiME plays a significant

role in immune checkpoint inhibitors’ responses, tumor immune

surveillance, and immunological evasion (71, 72). Paidi et al.

showed evidence that label-free Raman spectroscopy can show

TiME compositional changes in response to ICIs. Using CT26

murine colorectal tumor xenografts, they compared tumor

responses with treatment across three doses of anti–CTLA4 and

anti–PD-L1 antibodies each. They determined that ICI exposure

significantly changes the composition of the TiME independent of

conventional cellular, molecular, or proteomic characterizations

(34). This ability to assess multiple biomolecular changes

simultaneously adds significant depth in understanding the TiME

and response to therapies. Figure 2 highlights the multitude of

signals that Raman spectroscopy can provide about the TiME. As

seen, Raman spectroscopy can be used in differentiating various

cancer and immune cell types, including B cells, cytotoxic T cells,

helper T cells, NK cells, and dendritic cells. For instance, Chen et al.

employed Raman spectroscopy to accurately identify various

subsets of immune cells, including T-lymphocytes, dendritic cells,

and natural killer (NK) cells, distinguishing CD56+ NK cells from

CD4+ and CD8+ T cells with specificities reaching 93% and 96%,

respectively. The differentiation between CD4+ and CD8+ T cells

was less effective, yielding a specificity of 68% and a sensitivity of

69%, suggesting that these closely related cell types present more

challenges in their identification (73). Conventional techniques for

immune cell identification and complex classification of the TiME

currently relies on extensive labeling for label-based techniques, due

to the need to both “rule-in” and “rule-out” broad cell surface

markers and utilize multiple labels related to functional behavior

and activation status. The exploration of RS to distinguish cell types

has been provocative, here we highlight several critical cell types

that have been shown to be highly distinguishable by RS (73). While

the Raman spectra of these immune cells may appear quite similar,
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data analysis techniques can reveal the subtle distinctions among

them (73–75). Raman spectra can also provide information about

the activation states of these cells, including macrophage

polarization and T-cell state responses (eg, from activated to

exhausted.) Single-cell Raman analysis can further reveal how

different cell types interact within the TiME. Finally, Raman can

help elucidate tumor heterogeneity and how the spatial structure of

the tumor impacts immune responses, currently a major obstacle

for effective immunotherapy (76). In this section, we will explore the

utility of RS in characterizing, classifying and analyzing different

inter- and intra-molecular interactions between immune cells

within the TiME.
3.1 Macrophages

Macrophages, essential phagocytic and antigen-presenting cells,

exhibit a diverse functional spectrum from immunosuppressive,

tumor-promoting behaviors to highly inflammatory responses.

Their role in the tumor microenvironment is pivotal, as they can

either support tumor control or contribute to autoimmune

toxicities. Conventionally, differential expression levels of surface

polarization markers, such as CD11b, CD80, CD54, CD163 and

CD206, are used to differentiate macrophage phenotypes, however

the transition from inflammatory to immunosuppressive behavior

is highly linked to metabolic switching that can be detected by

Raman spectroscopy. In a study by Naumann et al., distinct features

of monocyte-derived macrophages, including naïve M0, classically
Frontiers in Immunology 05
activated M1, and alternatively activated M2 phenotypes were

detected by analyzing 65 chemically fixed primary human

monocyte-derived macrophages from three donors in

combination with N-FINDR spectral unmixing. The authors

identified polarization-dependent spectral features associated with

the chemical composition of lipids, proteins, and nucleic acids

across macrophage phenotypes. Pro-inflammatory M1

macrophages displayed a significantly higher lipid content

compared to M0 and M2 phenotypes. M2 macrophages exhibited

reduced triacylglycerol content but increased fatty acids. These

spectral distinctions facilitated the development of models for

automated classification of M1 macrophages, achieving a

classification accuracy of 86%, with a sensitivity of 93% and

specificity of 85% (77). In another study by Lu et al., macrophage

response to biomaterial implants was examined to gain insights into

the immune system’s foreign body reaction. Two types of macro-

encapsulation pouches (PVDF and TPU-chronoflex) were

implanted in streptozotocin-induced diabetic rat models for 15

days. Their research demonstrated that label-free Raman

microspectroscopy could effectively identify extracellular matrix

(ECM) components within the fibrotic capsule and distinguish

between pro-inflammatory M1 and anti-inflammatory M2

macrophage activation states. Significant spectral changes in the

nuclei of M1 and M2 macrophages indicated variations in nucleic

acid methylation, a key process in fibrosis progression. Specifically,

increased peak intensities at 857 cm−1 and 879 cm−1 in M2

macrophages were linked to proline, hydroxyproline, tryptophan,

and tyrosine, suggesting that M2 macrophages have lower
FIGURE 2

Use of Raman spectroscopy in immune cell classification and its interaction within tumor-immune microenvironment.
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methylation levels than M1 macrophages (78). Thus, RS plays an

important role in analyzing biochemical changes in lipids, proteins,

and nucleic acids across macrophage phenotypes and identifies

extracellular matrix (ECM) components.
3.2 T-lymphocytes

T cells are important effector cells in the TiME, including

cytotoxic and regulatory subtypes that attack cancers or suppress

immune responses to cancers, respectively. T cell classifications, like

macrophages, generally require multiple labels, such as CD3, CD4,

and CD8, to define subtype in addition to a multitude of co-

stimulatory signals, such as activating ligands or regulating

checkpoints to modulate the degree of amplification for T cell

responses. Authors Pavillon et al. leveraged the non-tissue

destructive nature of RS to monitor live T cell development in

vitro, demonstrating that without directly describing the cell surface

features of these traditional labels, other nuanced molecular

changes related to cell state development and activation had high

correlation with the transition points identified by label-based

assays (29). The sensitivity in this assay also successfully

delineated between activation and differentiation by detecting

differences in the in vitro stimulated cells versus ex vivo activated

T cells that otherwise would have required multiple additional

labeling steps to define naive versus effector cells. Regulatory T
Frontiers in Immunology 06
cells (Tregs) are crucial for maintaining immunological self-

tolerance and have been identified as having an important role in

immunotherapeutic failures. The findings by Pavillon et al.

indicated that Raman could distinguish Treg subpopulations

without altering cell integrity (29) by the detection of intracellular

transcription factor Foxp3, a specific Treg marker. Since Foxp3 is

not detectable in live cells, the authors employed RS to reliably

identify and isolate functional Treg populations. They sorted

conventional T (Tconv) and Treg cells using FACS with Foxp3-

hCD2 surface staining, followed by Raman measurements on the

isolated populations. A ML model was then developed to

differentiate between Tconv and Treg cells, achieving an accuracy

of 78.3% on test data, comparable between models trained on naive

cells and those based on FACS-sorted data (78.25% for FACS vs.

77.9% for naive cells). When they applied confident learning (CL) to

filter out samples with low-probability labels, the model achieved a

remarkable 92% accuracy. Figure 3A illustrates the classification of

human Tconv/Treg using the CL model transformation. Here,

negative bands observed can be linked to specific protein

structures, such as the amide III a-helix (at 1340 cm−1 and 1286

cm−1) and amide I (at 1619 cm−1 and 1669 cm−1. Conversely, the

primary positive bands appear to be associated with DNA/RNA,

indicated by cytosine/uracil rings indicated at 785 cm−1. This

approach also enabled the distinction of human Tconv and Tregs

from PBMCs with similar accuracy despite donor variability.

However, a notable limitation of this method is its throughput;
FIGURE 3

(A) Classification efficacy for human Tconv/Treg cells utilizing a separation vector to detect human Treg cells. Adapted with permission under a
Creative Commons CC-BY License from ref (79). (B) Schematic illustration of NK cells on the OncoImmune probe platform, synthesized with 3D
networks of nickel- nickel oxide nanocubiforms. (C) Representative Raman spectra of NK cells illustrating the presence of several biomolecules
within NK cells. Adapted with permission under a Creative Commons CC-BY License from ref (80). (D) Average Raman spectra for PD-L1 expression
in cancer cells. Adapted with permission under a Creative Commons CC-BY License from ref (81).
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the automated sequential detection system currently processes

approximately 1,000 cells per hour, which is insufficient for

applications requiring millions of cells (79).
3.3 Natural Killer cells

Natural Killer (NK) cells are lymphocytes that play a crucial role

in targeting viruses and cancer cells, particularly cancer stem cells

(CSCs), which are linked to therapeutic resistance and tumor

relapse (82, 83). Ishwar et al. explored the profiling of circulating

NK cells as a diagnostic tool using SERS-driven liquid biopsy. The

authors specifically synthesized an OncoImmune probe platform to

detect metabolic changes in NK cells when they interact with tumor

cells, illustrated in Figure 3B. Raman spectra of tumor-free NK cells

exhibited characteristic bands associated with carbohydrates,

proteins, and lipids, including peaks at 1450 cm−1 (CH

deformation), 1661 cm−1 (amide I), 1555 cm−1 (amide II), and

1337 cm−1 (amide III) (Figure 3C). In contrast, tumor-associated

NK cells showed altered spectral intensities, indicating an active

response to tumor recognition. A decrease in the peak at 520 cm−1

suggested changes in Killer Immunoglobulin Receptor (KIR)

expression due to CSC interaction. PCA revealed distinct

clustering of NK cell signatures associated with breast, lung, and

colon CSCs compared to non-cancer-associated NK cells. Utilizing

machine learning, the study demonstrated that features of NK cell

activity could accurately identify cancer from non-cancer samples

using just 5 μL of peripheral blood, achieving 100% accuracy for

cancer detection and 93% for localization. This research also

highlights the importance of material advances for amplifying the

SERS signal, where hybrid material consisting of nickel and nickel

oxide produced an enhanced and reproducible SERS signal. This

marker-free method generated a detailed NK cell metabolic profile

that could be highly advantageous for cellular diagnostic

applications. Thus, label-free SERS technique can be used for

profiling immune cells and their metabolic changes in difficult to

detect tumors such as small-cell lung cancer, triple-negative breast

cancer, and colorectal adenocarcinoma (80).
3.4 Dendritic cell interactions

Dendritic cells (DCs) play a crucial role in cancer

immunotherapy by interacting with cancer cells and presenting

tumor antigens to T cells. When DCs capture antigens from cancer

cells, their maturation status determines the immune response.

Fully mature DCs effectively present these antigens on major

histocompatibility complex (MHC) molecules, activating both

CD4+ helper and CD8+ cytotoxic T cells. Enhancing DC function

and antigen presentation is a key strategy in developing effective

cancer immunotherapies (84). T cell receptors (TCRs) form an

immunological synapse (IS) with antigen–MHC complexes and co-

stimulatory ligands on dendritic cells (DCs), characterized by a

distinct “bull’s-eye” structure known as the supramolecular

activation cluster (SMAC). Zoladek et al. employed label-free
Frontiers in Immunology 07
confocal Raman micro-spectroscopy (CRMS) to analyze the IS

formed between laminin-treated DCs and T cells in vitro. They

compared Raman spectral images with immunofluorescence

imaging to identify signatures of key macromolecules, including

nucleic acids, lipids, and proteins. Using a 785 nm laser, the study

assessed the impact of laminin treatment on the DC–T cell junction

by capturing images of control and treated DCs stained with

phalloidin. Laminin treatment enhanced actin filament

polarization and improved IS formation at the DC–T cell

interface. The Raman spectra revealed detailed actin distribution

in the IS, with characteristic peaks at 1450 cm−1 (CH deformation),

1661 cm−1 (amide I), 1555 cm−1 (amide II), and 1337 cm−1 (amide

III). A significant band at 1003 cm-1 correlated to histone proteins

present in the nucleus. For both DC and T cells, Raman spectral

images in the 788 cm-1 band exhibit good concordance with the

DAPI image, demonstrating the potential of CRMS for non-

invasive imaging of live immune cell interactions and providing

insights into the dynamics of the immunological synapse (85). This

research plays an important role in designing dendritic cell based

immunotherapies by providing real time data regarding DC-T cell

interactions within TiME.
3.5 Cancer-associated fibroblasts

Cancer-associated fibroblasts (CAFs) are integral to the tumor

microenvironment, often contributing to immunosuppression by

stromal remodeling that protects cancer cells or communication

with multiple immune cells via secreted factors. CAFs undergo

metabolic changes that aid in tumor growth through interactions

with cancer and stromal cells, their inherent plasticity leads to

dynamic shifts in the fibroblast population. This emphasizes the

need for precise evaluation of CAF’s phenotypic and functional

heterogeneity (86). Lipid metabolites released by CAFs not only

facilitate metastasis but also serve as indicators of aggressive cancer

types (87). The accumulation of lipids within the tumor

microenvironment provides fatty acids to nearby tumor cells,

fueling their energy needs. Since obesity is characterized by high

levels of fatty acid, its impact on CAF’s lipid metabolism remains

poorly understood. Yeu et al. investigated this relationship using

Raman spectroscopy as a non-invasive technique to analyze lipid

metabolite changes in CAFs from endometrial cancer (EC) patients

having different BMI. The study focused on Raman spectral regions

associated with lipid biochemical changes (600–1800 cm–1 and

2800–3200 cm–1). Through direct band and ratiometric analyses,

researchers observed slight shifts in the CH2 symmetric stretch of

lipids at 2879 cm–1 and CH3 asymmetric stretching from proteins

at 2932 cm–1 in overweight or obese patient CAFs compared to

non-obese patients. These shifts indicated a higher lipid content and

increased lipid saturation in the obese CAFs and, with the help of

PCA, metabolic phenotypes linked to obesity and cancer

progression were effectively differentiated. The identification of

specific Raman spectral signatures in CAFs offers valuable

insights into the tumor microenvironment’s influence on EC

progression (88).
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3.6 Tumor-immune microenvironment
biomarker prediction

Designing effective studies to evaluate immunotherapeutic

treatment efficacy poses a significant challenge, particularly

regarding immune cell interactions and its characterization. The

interactions within the TiME are intricate and dynamic, and

understanding these interactions are essential towards predicting

immunotherapy response. For instance, in Merkel cell carcinoma

(MCC), research has shown that tumor-associated macrophages

(TAMs) can express immunosuppressive markers that inhibit T-cell

function. TAMs exhibit an immunosuppressive gene profile typical

of monocytic MSDCs and notably express several immune

checkpoint molecules that are potential therapeutic targets, such

as PD-L1 and LILRB receptors (89, 90), which are absent on tumor

cells. A study analyzing 54 tumor samples prior to immunotherapy

revealed that a specific subset of TAMs (characterized by CD163+,

S100A8+, CD14+) preferentially infiltrate tumors with a higher

presence of CD8+ T-cells. Furthermore, a higher density of these

TAMs was linked to resistance against PD-1 blockade therapies

(91). In another study, single-cell RNA sequencing (scRNA-seq)

revealed that a lower immune-cell infiltration (CD8 T-cell, NK cells,

and a complete absence of gd T-cells) was more common in acral

melanoma when compared to non-acral melanoma (92). Tumor

heterogeneity not only affects initial responses but also contributes

to acquired resistance to immunotherapies which takes the form of

immunosuppression and antigen escape. As tumors undergo

immunotherapeutic treatments, they may develop subpopulations

of cells that are resistant to immune-mediated cell death (76). These

cases have been noted in melanoma (93) and breast cancer (94)

studies and highlight the necessity of characterizing immune cell

subsets and their activation states to tailor immunotherapy

approaches effectively.

Raman spectroscopy has shown to be effective in

immunological whole-tumor profiling, with Ou et al. showing the

simultaneous detection of PET and SERS in monitoring the

dynamics of tumor cell compositions in vivo. Currently, PD-L1

expression in TiME is the most important clinical biomarker

assessed prior to immunotherapy use. High levels of PD-L1 have

been associated with better outcomes in various cancers, including

melanoma (95), lung cancer (96), and metastatic renal cell

carcinoma (97). However, due to tumor heterogeneity, the

relationship between PD-L1 expression levels in tissues and

therapeutic responses to anti-PD-1/PD-L1 treatments is not

always consistent (3, 98). This variability can be partially

attributed to the influence of N-linked glycosylation on PD-L1,

which may hinder the binding of commonly used anti-PD-L1

antibodies, thus the rapid glycosylation assessment possible with

RS could enhance the reliability of PD-L1 as a biomarker for

predicting responses to immune checkpoint therapies (99).

Additionally, the expression of PD-L1 in both tumor and

immune cells has been correlated to ICI clinical responses,

making accurate PD-L1 characterization a valuable companion

diagnostic for PD-1/PD-L1 inhibitors.
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To assess PD-L1 expression, Zhou et al. developed an intra-

operative technique using label-free Raman spectroscopy combined

with ML for data analysis and visualizing PD-L1 in glioma cells,

macrophages, CD8+ T cells, and normal cells. They employed

stainless steel and Calcium Fluoride substrates to minimize

background signals. Principal component analysis (PCA) was first

utilized to differentiate Raman spectra between PD-L1G (high PD-

L1 expression in glioma cells) and PD-L1L (Low PD-L1 expression

in glioma cells) subgroups. Random Forest (RF) analysis identified

five significant peaks at 723, 783, 837, 874, and 1437 cm−1. PD-L1G
exhibited stronger intensities at 837, 874, and 1437 cm−1 compared

to PD-L1L, which showed weaker intensities at 724 and 783 cm−1.

Figure 3D represents the average Raman spectra for PD-L1

expression in cancer cells. The peak intensities at 837 cm-1 and

834 cm-1 showed a positive linear correlation with PD-L1 levels.

This is correlated with the increased expression levels of PD-L1 in

glioma cells. The study also explored spectral differences among

PD-L1G, PD-L1T (high PD-L1 expression in T-cell), and PD-L1M
(High PD-L1 expression in macrophage) subgroups, revealing

biological correlations between cell types and their Raman

spectral features. Notably, ganglioside, phosphatidylcholine (PC),

and cytochrome-c contributed to PD-L1T, while sphingomyelin and

oleic acid were linked to PD-L1M. The relationship between spectral

features and biomolecule levels were qualitatively assessed across

different cell types. Multiple ML algorithms—including CLS, HCA,

SVM, and SA—were employed to analyze Raman spectra for model

training and visualize PD-L1 expression in the glioblastoma

immune microenvironment. This method for detecting the PD-L1

biomarker can be extended to other tumor biomarkers or target

cells of interest, enhancing intra-operative diagnostics for surgical

guidance and post-operative immunotherapy (81).
3.7 Predicting response to
immunotherapeutic treatment

The current clinical metrics for prediction and evaluation of

response to anti–CTLA4 and anti–PD-L1 immune checkpoint

inhibitors (ICIs) in the TiME are not very effective (100, 101). PD-L1

score of 0, for example, can still demonstrate response to therapy and

score is not currently utilized as a selection criteria for therapy (102). A

liquid biopsy strategy combining blood count parameters, clinical

characteristics, and serum lactate dehydrogenase predicted the

response of patients without metastatic disease to anti–PD-1 therapy

with about 60% accuracy (103). Studies have also leveraged PD-1/PD-

L1 and CTLA4– targeting antibodies radiolabeled with 89Z for

evaluating the tumor uptake of therapeutics using PET imaging;

however, such measurements are associated with challenges (104).

To address the challenges in predicting immunotherapy responses,

Paidi et al. employed label-free Raman spectroscopy to monitor

compositional changes in the tumor immune microenvironment

(TiME). Using a CT26 murine model of colorectal cancer, tumors

were treated with anti–CTLA-4 or anti–PD-L1 antibodies. Snap-frozen

tumors were thawed, flattened, and positioned between a quartz
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1520860
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chadokiya et al. 10.3389/fimmu.2024.1520860
coverslip and an aluminum block with PBS to prevent dehydration,

with the quartz selected for its low fluorescence interference. The team

utilized a fiber-optic probe connected to a portable Raman system (830

nm diode laser) on a motorized translational stage to gather data. They

collected 7,500 spectra from 25 tumors over a 5-second acquisition

time. Ex vivo Raman mapping conducted three days post-treatment

yielded 7,585 spectra from approximately 300 spatially distinct points

across the tumors. Key Raman peaks identified included 849 cm⁻¹ (C–
O–C skeletal mode of polysaccharides), 1,260 cm⁻¹ (amide III of

proteins), 1,301 cm⁻¹ (lipid and collagen bending), 1,448 cm⁻¹ (lipid
and collagen CH₂ bending), and 1,657 cm⁻¹ (amide I of proteins).

Comparisons between treatment groups revealed subtle yet statistically

significant differences in lipid, nucleic acid, and collagen value,

suggesting that responses to anti–CTLA-4 and anti–PD-L1 therapies

influence TiME composition (34). These findings align with emerging

research on the role of metabolism and the tumor microenvironment

in shaping immune responses. Variations in lipid-based metabolites

between treatments are likely to reflect differential lipid metabolism

within the TiME due to immunotherapy (105). The machine learning

analyses in this study demonstrated high prediction accuracy for

treatment responses, highlighting precise spectral markers for each

therapy. This study demonstrates that label-free Raman spectroscopy

can sensitively detect early biomolecular changes in tumors. This is

advantageous in offering valuable insights for clinical monitoring of

immunotherapy responses in cancer patients.
4 Raman spectroscopy for drug
response and
metabolomic monitoring

The past years have seen breakthrough achievements in

immunotherapeutic interventions including checkpoint inhibitors,

cytokine-based immunotherapy, vaccines, and cell therapy (eg, CAR-

T cell, CAR-NK cell and TIL therapy). However, the response to

immunotherapeutic treatment has been variable among patients, and

only a small percentage of cancer patients benefit from this treatment

depending on the histological type of tumor and other host factors. In

clinical practice, immunohistochemistry (IHC) typically serves as the

initial method for assessing patient biomarkers. However, this

approach has several limitations, including variability in assay results,

ambiguous positivity thresholds, and instances where patients with low

expression levels still show therapeutic benefits. It is also heavily

dependent on the pathologist’s judgment and experience (106). For

patients suffering from cancer, imaging techniques like FDG-PET scans

enhance understanding of metabolic changes during immunotherapy

(107). Furthermore, radiolabeling checkpoint inhibitors with

radioactive isotopes like 89Z allows for PET imaging to track the

biodistribution of these inhibitors (108). Despite their utility, these

methods often come with challenges related to cost, time, and the need

for specialized personnel (109). As shown by some recent studies,

researchers can leverage Raman spectroscopy to assess responses to

immunotherapeutic drugs while simultaneously examining cancer cell

differentiation (69), drug uptake within cells (110), and patterns of

cancer metastasis (111, 112).
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For drug response monitoring, techniques like colorimetric

analysis, fluoroimmunoassay, ELISA, and radioimmunoassays are

employed, each with distinct advantages and limitations. For

instance, the complexity of ELISA protocols often involves multiple

incubation and washing steps, making them time-consuming (113).

This is especially challenging when working with large sample sizes.

Furthermore, the reagents used are costly and can have lot-to-lot

variability (114). In immunological studies, researchers commonly use

techniques like flow cytometry, ELISA, and confocal microscopy to

study the activation, polarization, and plasticity of immune cells along

with their cytokine profiles. However, these methods often require the

fixation of cells with paraformaldehyde (PFA), the addition of chemical

dyes for labeling, and fluorescent tagging with antibodies—either

conjugated or unconjugated. Such procedures can be invasive, costly,

time consuming and may disrupt biological processes. One notable

advancement for label-free drug screening is the Thermostable Raman

Interaction Profiling (TRIP) method developed by Altangerel et al.

(115). TRIP enables efficient screening of protein-ligand binding at low

concentrations and doses under physiologically relevant conditions, as

illustrated in Figure 4A. TRIP has been successfully applied to eight

different protein-ligand systems which demonstrates excellent

reproducibility in Raman measurements. The technique requires

only a small 10 μL droplet of protein solution on a gold-coated glass

slide which dissipates heat from the excitation laser while blocking

fluorescent interference. Key applications of TRIP include time-

dependent protein-drug binding using 2,4-dinitrophenol (DNP) with

transthyretin (TTR), static protein-drug binding involving the

streptavidin-biotin complex, and antigen-antibody binding detection

with protein A and various antibodies, including those targeting the

SARS-CoV-2 spike protein. TRIP is advantageous because of its cost-

effectiveness and rapid detection capabilities. This eliminates the need

for extensive sample preparation. Future enhancements could enable

high-throughput drug screening and real-time monitoring of drug-

target interactions, potentially improving drug development processes

for complex immunotherapeutic interventions (115).

Single-cell RNA sequencing and other profiling methods allow

researchers to study cells in detail, but these techniques destroy the

cells during the several processing steps (116). On the other hand,

Raman microscopy can analyze the vibrational energy of proteins

and metabolites without damaging the cells, achieving a very fine

resolution. However, it doesn’t provide genetic information.

Raman2RNA (R2R) is a new method that can predict single-cell

expression profiles in living cells using label-free hyperspectral

Raman images (Figure 4B). Either by combining Raman data

with single-molecule fluorescence in situ hybridization or using

advanced machine learning techniques. This kind of approach

performed much better than traditional brightfield imaging, with

cosine similarities of R2R > 0.85 compared to brightfield < 0.15.

When reprogramming mouse fibroblasts into induced pluripotent

stem cells, R2R effectively predicted the expression profiles of

different cell states. Additionally, while tracking mouse embryonic

stem cell differentiation, R2R identified early signs of lineage

divergence and development paths (116).

Fluorescence-Activated Cell Sorting (FACS) has been a

cornerstone for immunophenotyping and the detailed analysis of

immune cell interactions. While FACS bridges the gap between
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genetic, cellular and population analyses, its reliance on fluorescent

probes can interfere with cell metabolism and introduce reliability

issues (117) and spectral spillovers (118, 119). Staining the cells with

fluorescent dyes also impart cytotoxicity (120), alter the behavior of

cells being analyzed (121), and breakdown of dyes which can result

in reliability issues. It also limits its application in in vivo cell

therapies such as stem cell therapy (122) and CAR-T cells (123). In

contrast, Raman-Activated Cell Sorting (RACS) presents an

exciting alternative. It allows for label-free immunophenotyping

by measuring the emitted molecular vibrations of cells as illustrated
Frontiers in Immunology 10
in Figure 4C. RACS integrates multiple technologies to obtain

single-cell Raman spectra using different cell-isolation techniques.

These methods include operating in a flow environment with

microfluidic systems, utilizing Raman tweezers for cellular

analysis in solution, and employing Raman Activated Cell

Ejection (RACE) for surface-based applications In a study by Wu

et al. (124) they developed a novel approach using SERS combined

with microfluidic technology to observe real-time interactions

between cancer cells and the immune system. This platform is

fully automated and integrates optofluidic systems which allows for
FIGURE 4

Advanced Raman spectroscopy based techniques for immunotherapy. (A) Schematic illustration of Thermostable Raman Interaction Profiling (TRIP)
for personalized drug screening. (B) Raman spectroscopy based single-cell RNA sequencing for providing high spatial single-cell analysis. (C) Raman
activated cell sorting (RACS) for label-free cell sorting.
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effective monitoring of these intercellular communications. This

integrated system offers several key benefits. Firstly, it facilitates

direct on-chip communication between cells. This helps to maintain

the bioactivity and concentration of proteins released during

interactions, thus closely mimicking the in vivo conditions.

Secondly, a quantitative SERS immunoassay was employed to

evaluate how various drugs influence the secretion patterns of

cancer cells and the functionality of immune cells by utilizing an

SERS-enhanced 3D barcode immunoassay. Moreover, this

automated system significantly minimizes human error and

simplifies operational complexity, enhances the reliability of

results in drug screening and immunotherapy research.

Amongst most critical applications to date, Raman spectroscopy

can probe tumor metabolism in the TiME (125, 126) as growing

evidence suggests that the metabolic state of the TiME plays a crucial

role in the success of cancer immunotherapy. The TiME can

significantly influence the energy consumption and metabolic

reprogramming of immune cells, often causing them to become

tolerogenic and less effective at eliminating cancer cells.

Understanding these metabolic interactions is key to improving

immunotherapy outcomes. Unlike mass spectrometry-based single-

cell metabolomics, which requires destructive sample preparation

(127), label-free Raman spectroscopy can analyze metabolites in

living cells and tissues in a non-invasive manner. This makes it well-

suited for in vivo investigations of tumor metabolism. Recent studies

have utilized Raman confocal microscopy combined with ML

algorithms to analyze the activation of immune cells such as T cells,

B cells, and monocytes (28). For example, Chaudhary et al. employed

Raman micro-spectroscopy to identify activated immune cells. Their

study included both cell lines and primary cells consisting of purified

subgroups of monocytes and lymphocytes, as well as mixed

populations of peripheral blood mononuclear cells (PBMCs), all

obtained from healthy donors. ML models were designed for cell

differentiation and evaluated against flow cytometry data. Spectral

signatures of T-cell, B-cell and monocytes before and after activation

were also determined using high performance classification models,

including spectral fitting to identify spectral biomarkers (28).

Importantly, these analyses were conducted alongside traditional

methods like flow cytometry and ELISA in both in vitro and ex vivo

models. The findings indicate that immune cells exhibit unique spectral

profiles in response to different stimuli, highlighting the critical roles of

both cell type and specific activating signals in shaping their responses.

For instance, upon activation, T cells may undergo significant changes

in lipid metabolism and protein synthesis, while monocytes might

show alterations in cytoskeletal dynamics. These biochemical shifts

vary among different immune cell types and are indicative of the

complex signaling pathways that govern their activation and

differentiation. By examining these spectral changes through Raman

spectroscopy, researchers can gain valuable insights into the

mechanisms driving immune responses (28). This understanding

could pave the way for developing targeted therapeutic strategies

aimed at effectively modulating immune function. For example, if

specific spectral signatures are associated with effective T cell activation

against tumors, therapies could be designed to enhance these pathways

for improved cancer treatment outcomes.
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5 Integrating Raman spectroscopy
with -omics approaches and progress
towards clinical use

The “one-size-fits-all” model in immunotherapy often fails to

account for individual variations in genetics, environment, and

lifestyle, limiting the effectiveness of immunotherapy for many

patients (128). Multi-omic approaches that synthesize divergent

tumor features such as genomics, transcriptomics, proteomics and

metabolomics have significantly advanced the detailed description

of heterogeneous tumors and facilitated better understanding of

immunotherapy responses (129–131). Integrating multi-

dimensional data from various -omics layers remains a significant

challenge, and translating these data into precise drug selection for

clinical applications has yet to be realized. Additionally, the high

costs and labor-intensive nature of genomics, transcriptomics,

proteomics, lipidomics, and metabolomics studies require

sophisticated analytical and statistical methods. Consequently,

these factors have limited the longitudinal capture of events

across clinical studies (104, 105). Raman spectroscopy presents a

crucial opportunity to harmonize these -omics into a single

phenotypic, “Raman-omic” technique. Figure 5A illustrates the

role of Raman spectroscopy in multi-omics approaches in

immunotherapy, to delineate patient heterogeneity, reduce time

for analysis, reduce cost associated with those analyses, and

harmonize data for better ML/AI analysis by reducing

heterogenous data incompatibility. In this section we discuss how

Raman spectroscopy can be used to complement and augment

genomics, transcriptomics, proteomics, and metabolomics

in immunotherapy.
5.1 Raman spectroscopy in genomics
and transcriptomics

Detecting specific DNA sequences and identifying single-

nucleotide polymorphisms (SNPs) are vital for cancer diagnostics

and in predicting immunotherapy treatment outcome (134). Next-

generation sequencing (NGS) highlights the potential of somatic

DNAmarkers as both independent indicators and novel therapeutic

targets (135, 136). Raman spectroscopy has significant potential for

studying genomic and transcriptomic alterations. In particular,

changes in the vibrational modes of DNA and RNA, including

miRNA, can indicate mutations or epigenetic modifications

relevant to cancer. Studies have indicated that the activation state

of T cells is primarily linked to alterations within DNA rather than

proteins (137–139). Chromosomal DNA degradation of activated

mature T cells when stimulated via the CD3/T cell receptor complex

experience rapid apoptosis. This DNA degradation plays a crucial

role in eliminating autoreactive T cells in the thymus (140, 141). In a

study by Lee et al., they focused on the Raman spectral analysis of

activated mature CD8⁺ T cells and their DNA changes during

apoptosis. They noted a decrease in Raman spectral intensities

related to DNA, specifically at 768, 1071, and 1463 cm⁻¹. These
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intensity reductions likely reflect the breakdown of the DNA’s ring

structure, signaling its disintegration during apoptosis. Notably,

significant changes were observed in the O-P-O region of the DNA

backbone (around 780 to 800 cm⁻¹) and in PO₂ (around 1053 to

1087 cm⁻¹). This suggests a correlation with internucleosomal DNA
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cleavage progression. The differences in Raman spectra between

resting and activated mature CD8⁺ T cells were analyzed using PCA

which revealed a clear discrimination of DNA from activated T cells

compared to resting T cells. Thus, this study infers that the

decreased Raman intensities in activated mature CD8⁺ T cell
FIGURE 5

(A) Schematic representation of utility of Raman spectroscopy in multi-omics study. When incident light strikes the cells of interest, it generates
individual fingerprint Raman spectra. This provides information regarding molecular and chemical composition within cells. Raman spectroscopic
data analysis and interpretation using various ML/AI techniques can provide insights for genomics, proteomics, transcriptomics and metabolomics.
(B) Schematic representation of label-free miRNA identification, using Titanium ions to induce silver nanoparticle “hotspots” to identify RNA
sequences of homopolymeric bases and to locate the peak position of each base in the Raman spectrum. Adapted with permission under a Creative
Commons CC-BY License from ref (48). (C) 1) Raman spectra obtained for 8 different degradation studies of therapeutic monoclonal antibodies was
validated against conventional size-exclusion chromatography and peptide mapping. 2) represents the PCA analysis of RS, which can clearly
demarcate samples from different degradation clusters (pH 3, oxidation, 5000 kLux·h and 1000 kLux·h) from the control group to allow rapid
analysis for therapeutic quality control (132). (D) Raman spectra of the DMEM culture medium recorded at various Days in vitro (DIV). The red and
green lines in the spectra highlight peaks that show increasing and decreasing intensities, respectively. Adapted with permission under a Creative
Commons CC-BY License from reference (133).
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DNA are indicative of apoptosis, highlighting the utility of label-free

Raman spectroscopy as a tool for assessing the activation status of

these immune cell (142).

In parallel, Li et al. developed a unique detection method for

capturing SERS signal from unlabeled RNA without hampering its

structural integrity. They utilized titanium ions as an aggregating

agent along with silver nanoparticles. This formed electromagnetic

“hot-spots” for non-destructive and label-free single molecule

detection of miRNA molecules. Unlike traditional metal cation

aggregators (like Al³⁺ and Mg²⁺), the acidic titanium ions helped

stabilize RNA molecules. The researchers conducted SERS analysis

on homopolymeric sequences of the four RNA bases (A, G, C, and

U) and examined the secondary hairpin structure (Figure 5B). The

ribose peak at 959 cm⁻¹ was used for normalization, revealing

distinct peak positions for each base: A at 731 cm⁻¹, G at 665 cm⁻¹,
C at 789 cm⁻¹, and U at 795 cm⁻¹. To check the robustness of their

system, they designed RNA sequences of IL10 and 1HP3 which

contained the same bases but in a different sequential manner. A

peak at 1446 cm⁻¹ corresponded to U vibrations in AU base pairs,

while increases in peak intensities at 1314 cm⁻¹ (G in GC pairs) and

1635 cm⁻¹ (C in GC pairs) indicated complementary pairing. This

label-free detection method for miRNA demonstrated a high signal-

to-noise ratio with remarkable sensitivity while preserving the

original structure of miRNA. This research reduces the analysis

cost of miRNA characterization as well as supporting the

development of miRNA therapeutics in the future (48).
5.2 Raman spectroscopy in proteomics
and peptidomics

In the context of cancer diagnosis and new therapeutic

development, proteomics plays a valuable role for identifying

biomarkers. By analyzing proteins expressed in cancerous tissues

compared to healthy tissues, researchers can discern proteins that

are uniquely or differentially expressed in either state. Label-free

Raman spectroscopy can characterize proteins and their

conformational states, providing insights into their roles in

cancer. Uzunbajakava et al. demonstrated the first successful use

of nonresonant Raman imaging to analyze protein distribution in

cells. This study compared Raman images of two cell types:

peripheral blood lymphocytes (PBLs) and lens epithelial cells

(LECs). The Raman images revealed distinct differences in protein

distribution within the nuclei of PBLs and LECs, with clear

contrasts in protein intensity visible in the PBL nucleus (near

3000 cm⁻¹) (143). Raman scattering can also be utilized to study

the a and b-sheets conformations and changes in proteins. Rygula

et al. explored the secondary structures of 26 different proteins

(including hemoglobin (Hb), cytochrome c, peroxidase, albumin,

collagens, lectins, glucose oxidase, proteinase, ubiquitin, and heme

protein) using Raman spectroscopy by analyzing their Amide I and

III vibrations, which reveal the ratios of a-helices and b-sheets
(144). This research suggests that proteoforms may each have their

own vibrational fingerprint. Therefore, even when specific binders

are unavailable to discern, eg, post-translationally-modified
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proteins, Raman can prove specific information about

modifications or changes in secondary or tertiary structure.

Peptidomics can also benefit from Raman spectroscopy. For

example Raman spectroscopy can help in understanding the roles of

specific peptides involved in tumor cell signaling and immune

responses (145). Raman spectroscopy has also emerged as a

promising tool for detecting post-translational modifications

(PTMs) and assessing degradation in monoclonal antibody

(mAb) therapeutics (132). These modifications, which occur after

protein synthesis, can significantly impact the structure and

properties of antibodies, leading to issues like aggregation and

fragmentation. PTMs are classified based on the modified amino

acids or the enzymes involved, with common modifications

including phosphorylation, glycation, acylation, alkylation,

glycosylation, deamidation, and oxidation. This is particularly

important in mABs, where structural changes can result in

unwanted immune reactions (146), decreased effectiveness (147),

and material loss during production (148). Monoclonal antibodies

are especially vulnerable to aggregation and fragmentation due to

various processing conditions with soluble mAB aggregates posing a

significant risk for triggering unwanted immune responses (149). A

label-free and high throughput Raman spectroscopy can aid in

identifying these PTMs in real-time. Due to rapid spectral data

collection, little to no sample preparation, and without any

interference due to water, Raman spectroscopy emerges as an

outstanding candidate for real-time Process Analytical

Technology analysis in biotherapeutic production (150). For

instance, McAvan et al. studied the effectiveness of label-free RS

in detecting PTMs in IgG4 mAbs under various degradation

conditions, such as changes in pH (3 and 10), temperature (4, 40,

and 50°C), light stresses (1000 and 5000 kLux·h), and agitation. By

integrating principal component analysis (PCA) with RS and

circular dichroism (CD) spectroscopy, they differentiated mABs

based on their PTMs and degradation states. Figure 5C–1

represents Raman spectra which were obtained for 8 different

degradation data. Notably, spectral peaks at 1666 cm⁻¹ and 532

cm⁻¹ remained stable which indicates that b-sheet and disulfide

bonds were largely unaffected by these conditions. However,

significant changes were observed in the amide III region (1312

to 1334 cm⁻¹), suggesting alterations in the protein’s tertiary

structure linked to the degradation conditions. Additionally, RS

detected shifts at 885, 1121, and 1450 cm⁻¹ associated with

tryptophan and other molecular components, showing that both

tryptophan and C−H vibrations increased in wavenumber with

larger aggregates. Conversely, the C−N backbone exhibited a

decrease in wavenumber as aggregation increased. This research

highlights the potential of RS for monitoring PTMs in mAb which

were subjected to various forced degradation conditions. The PCA

analysis revealed that the data with identical conditions group

together. This indicated that the data is consistent and

reproducible. Notably, the samples that form distinct clusters

apart from the control group include those subjected to oxidation,

pH 3, and light exposure at 5000 kLux·h and 1000 kLux·h which is

represented in Figure 5C–2 (132). Furthermore, Zhang et al. used a

label-free RS approach along with SVM and PCA model for
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quantitative prediction of protein aggregation in Antibody Drug

Conjugates. Additionally, they have also investigated the impact of

temperature and humidity (40°C/75% RH/1 month) on aggregation

of proteins that mimics long-term storage conditions (151). These

studies suggest that label-free Raman spectroscopy can be used to

monitor real-time PTMs during biotherapeutic production.
5.3 Raman spectroscopy in metabolomics

Immunometabolomics has become a vital area of study by

providing detailed insights into the metabolic interactions within

the TiME. The transfer of metabolites between cancer cells and

nearby immune cells can shape immune responses, indicating that

these metabolic exchanges are key to both immune surveillance and

evasion. Research is focused on understanding the vital

contribution of metabolic communication between these cells,

particularly how tumor metabolism contributes to immune

evasion and resistance to immunotherapy (152). Tumor

metabolism leads to the buildup of metabolites such as lipids,

carbohydrates etc. that regulate immune responses within the

TiME (153). These metabolites not only serve as signals but also

interfere with the development of immune cells such as CAFs, T-

cells and macrophages (154–156). There is an urgent need for new

techniques that allow for single-cell metabolic interaction analysis

in a quick and cost-effective way. To overcome these hurdles,

researchers have utilized Raman spectroscopy for understanding

these intricate immune-cell metabolic cross talks. For example,

Shalabaeva et al. used a time-resolved method for metabolite

tracking in cell culture using label-free SERS, allowing

simultaneous analysis of multiple molecules without any sample

processing. The method used Ag nanostructures integrated in cell

culture medium in a four day study involving NIH/3T3 cells, with

Raman spectra collected from media. The analysis of specific peaks

revealed temporal changes in metabolic components such as L-

tyrosine, L-tryptophan, glycine, L-phenylalanine, L-histidine, and

proteins from fetal bovine serum (FBS), as seen in Figure 5D. The

observed trends for L-tyrosine and its degradation products-

acetoacetate and fumarate signified the consumption of L-tyrosine

and simultaneously the production of its breakdown products. The

decreasing intensity of certain peaks likely indicates exhaustion of

these cell medium components over time. This method was also

applied to analyze LPS-driven differentiation of Raw 264.7

macrophage cells. Analysis of the Raman spectra collected over a

24hr period reflected macrophage transition from quiescent to an

activated pro-inflammatory state. This research indicates that label-

free SERS could identify different metabolites at various time points,

thereby providing insights into the immune cell states (133).

In cancer metabolomics, lipid metabolism plays a crucial role in

cancer development, progression and also influences tumor growth

mechanisms, including support for metastasis, ferroptosis-mediated

cell death, and interactions between tumor and immune cells (157).

Abnormal lipid levels and disrupted metabolic pathways contribute

to cancer growth, metastasis, and treatment resistance. As Raman

vibrational peaks are exceptionally sensitive for observing lipid
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content, Raman spectroscopy is increasingly applied for lipidomic

analysis across a wide range of cancers (157–159). Lipid droplets

(LDs) are dynamic organelles primarily involved in lipid storage

and metabolism, and dictating cellular energy balance and

signaling. Their significance in cancer biology has garnered

attention, particularly regarding resistance to chemotherapy, their

interactions with immune cells within the TiME, and implications

for immunotherapy (160). It was found that a significantly higher

quantity of lipid droplets was present in high-grade glioblastoma

and colorectal cancer when compared with low-grade cancers and

normal tissues (161). Ben et al. utilized Multiplex coherent anti-

Stokes Raman scattering (MCARS), a label-free technique, to detect

lipid droplets in colon cancer cell lines expressing the neurotrophin

receptor TrkB. The overexpression of TrkB subsequently activates

the PI3K/Akt signaling pathway and phosphorylation of Akt (P-

Akt), leading to lipid droplet formation in cells. The MCARS

technique focused on the 2500–3200 cm−1 spectral range, where

the CH2 (2850 cm−1) and CH3 (2930 cm−1) vibrational signatures

are primarily associated with lipid and protein contents

respectively. MCARS images of cells generated from signal

integration of CH2 stretching modes allowed researchers to

discriminate between lipid accumulation in the endoplasmic

reticulum and the formation of cytoplasmic lipid droplets. This

approach tracked the changes in lipid metabolism in both TrkB

high-expressing HT29 cells and low-expressing HEK293 cells

following treatment with brain-derived neurotrophic factor

(BDNF), demonstrating that BDNF-induced TrkB activation leads

to lipid droplet formation in HT29 cells. Thus, with MCARS along

with data processing, researchers were able to a) detect cancerous

cells, b) assess the tumor progression, and c) predict the resistivity

of cancer cells by analyzing the content of cytoplasmic lipid

droplets (162).
5.4 Translational potential of Raman
spectroscopy in cancer diagnosis
and treatment

Raman spectroscopy is increasingly recognized for its clinical

utility in cancer diagnosis and therapy (163, 164). One notable

application of label-free Raman spectroscopy is intraoperative

margin assessment of brain tumors, particularly glioblastomas.

Studies have shown that Raman spectroscopy can differentiate

between tumor and healthy brain tissue in real-time during

surgical procedures, potentially improving surgical outcomes by

ensuring complete tumor resection while preserving surrounding

healthy tissue. Jermyn et al. utilized a handheld Raman

spectroscopy probe, without any labeling, for real-time detection

of cancer cells in human brain tissue during surgery. This technique

achieved a sensitivity of 93% and specificity of 91%, effectively

distinguishing between normal brain tissue, dense cancer, and

cancer-invaded areas. The probe illuminated a 0.5-mm tissue

area, sampling up to 1 mm deep in just 0.2 seconds, integrating

seamlessly into neurosurgical workflows. The spectra covered a

range of shifts from 381 to 1653 cm−1. The Raman spectra revealed
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distinct differences in lipid bands and nucleic acid content between

cancerous and normal tissues. Specifically, variations at 700 cm−1

and 1142 cm−1 indicated changes in cholesterol and phospholipids,

while increased bands from 1540 to 1645 cm−1 suggested higher

nucleic acid levels in cancerous tissues. With ML analysis, they were

able to classify the samples with an overall accuracy of 92% (107).

This portable Raman technology enhances intraoperative decision-

making by providing quick, reliable identification of invasive

cancer, minimizing residual tumor volume and improving patient

survival outcomes. Raman spectroscopy has also now been used for

real time cancer cell differentiation and diagnosis in oral cancer

(165, 166), gastric cancer (167), and skin cancer (168).

Furthermore, Raman spectroscopy is gaining momentum as a

non-invasive diagnostic tool in oncology-based clinical trials

(Table 1). In a recent clinical investigation by Wang et al., serum

samples from 729 patients diagnosed with either prostate cancer

(PC) or benign prostatic hyperplasia (BPH) were analyzed. The
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researchers utilized SERS combined with an AI model based on

convolutional neural networks (CNN) for diagnostic purposes.

Their findings indicate an accuracy of ~85% for distinguishing

between PC and BPHBy integrating patient age and prostate-

specific antigen (PSA) levels into their multimodal CNN

approach, the classification accuracy improved significantly to

over 88% (169). Encouraged by these results, the researchers have

initiated a clinical trial to explore this diagnostic technique,

registered under NCT05854940 (170).

In another example, label-free RS has been used for diagnosis and

staging of diffuse large B-cell lymphoma (DLBCL) and chronic

lymphocytic leukemia (CLL) (171, 172). Label-free Raman

spectroscopy (RS) has emerged as a valuable tool for diagnosing and

staging diffuse large B-cell lymphoma (DLBCL) and chronic

lymphocytic leukemia (CLL). In a study conducted by Chen et al.

(2022), label-free SERS spectra were obtained from 47 healthy controls

and 53 DLBCL patients. AgNPs was used as a substrate for SERS
TABLE 1 Current clinical trials of Raman spectroscopy for cancer diagnosis and treatment.

Sr.
no

NCT
number Study title Conditions Interventions Brief summary

1 NCT04162431 DOLPHIN-VIVO:
Diagnosis Of LymPHoma
IN Vivo (Ex Vivo Phase)

Lymphoma; Head and
Neck Cancer

Combined FNA/Raman
spectroscopy
needle probe

Study for the use of Raman spectroscopy for non-invasive
analysis of lymph node tissue (x-vivo and in-vivo) for
providing immediate diagnostic results without laboratory
delays. It aims to streamline the biopsy process by
integrating fine needle aspiration during routine
procedures, maintaining clinical standards.

2 NCT05010369 DOLPHIN-VIVO:
Diagnosis of LymPHoma
in Vivo (In Vivo Phase)

3 NCT06384924 Raman Spectroscopy and
Skin Cancer

Skin Cancer; Basal Cell
Carcinoma; Squamous

Cell Carcinoma

Handheld Raman
Spectroscopy probe

Retrospective trial investigating the effectiveness of
Raman Spectroscopy in assessing skin cancer tumor size
and spread using a handheld probe that gently contacts
the skin with laser light. This method aims to enhance
diagnostic accuracy and efficiency.

4 NCT06394050 Label-free Raman
Spectroscopy for
Discrimination Between
Breast Cancer Tumor and
Adjacent Tissues After
Neoadjuvant Treatment

Breast cancer Label-free Raman
spectroscopy

based diagnosis

This trial aims to utilize label-free Raman spectroscopy to
distinguish between cancerous cells and adjacent tissues
in breast cancer patients’ post-treatment.

5 NCT04817449 Spectroscopy in
Ovarian Cancer

Ovarian Cancer;
Ovarian Neoplasms

Raman spectroscopy This trial investigates the utility of label-free RS for early
detection of ovarian cancer, by analyzing blood plasma
(from ovarian cancer patients) and fibrotic tissue (post-
chemotherapy) with label-free RS to identify
active cancer.

6 NCT04869618 Validation of an Artificial
Intelligence System Based
on Raman Spectroscopy
for Diagnosis of Gastric
Premalignant Lesions and
Early Gastric Cancer

Gastric Intestinal
Metaplasia;

Gastric Cancer

AI and Raman
spectroscopy-based

device
(SPECTRA IMDx)

Study for using Raman spectroscopy based artificial
intelligence system (SPECTRA IMDx) for early detection
and treatment of gastric premalignant lesions and early
gastric cancer (EGC).

7 NCT05854940 Multicenter, Prospective
Clinical Study of the
Serum Raman
Spectroscopy Intelligent
System for the Diagnosis of
Prostate Cancer

Prostate Cancer Serum Raman
spectroscopy intelligent

diagnostic system

Trial for validating the effectiveness of RS at screening
prostate cancer by detecting prostate-specific antigen
(PSA)focusing on early prostate cancer diagnosis.

8 NCT05995990 Raman Spectroscopy for
Liver Tumours Following
Liver Surgery

Colorectal
Cancer Metastatic

Raman Spectrometry Trial utilizing both RS and multivariate spectral analysis
to develop a quick and reliable method for evaluating
tissue sections for residual tumors in liver samples
after surgery.
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analysis. Their analysis revealed that DLBCL samples exhibited higher

spectral intensities at 725, 1093, 1329, 1371, and 1444 cm⁻¹, indicating
the presence of biomolecules such as hypoxanthine, adenine, thymine,

collagen, and phospholipids. While lower intensities were observed at

493, 636, 888, 1003, 1133, 1580, and 1652 cm⁻¹ which relate to

ergothioneine, uric acid, tyrosine, lactose, phenylalanine, acetoacetate,

amide I, and alpha-helix. They also found distinct spectral variations

between early-stage (I and II) and late-stage (III and IV) DLBCL. To

analyze the complex SERS data effectively, multivariate techniques were

employed. The k-nearest neighbors (kNN) model demonstrated better

results in both diagnosing and staging DLBCL with an accuracy of

87.3%, sensitivity of 0.921 and specificity rates of 0.809 for diagnosis

(171). In another patient-centric study, Bai et al. explored the potential

of RS to create a blood test for the noninvasive detection of DLBCL and

CLL through biomarker analysis. They examined blood plasma

samples from 33 DLBCL patients, 39 CLL patients, and 30 healthy

individuals. Their analysis revealed that the intensity at 1445 cm⁻¹,
associated with collagen and lipids, was notably higher in DLBCL

samples. Conversely, the intensity at 1655 cm⁻¹, linked to proteins and
alpha-helix structures decreased in CLL samples while increasing in

DLBCL samples. By combining RS with orthogonal partial least

squares discriminant analysis (OPLS-DA), the researchers were able

to differentiate the blood plasma of CLL and DLBCL patients from that

of healthy donors. This integrated approach achieved sensitivity rates of

92.86% for CLL and 80% for DLBCL along with specificity rates of

100% and 92.31%, respectively (172). To further this research, various

ongoing clinical trials are investigating both ex vivo and in vivo

diagnostic methods for lymphoma detection. These trials highlight

the current clinical need in cancer diagnostic approaches, especially in

cancer immunotherapy. With the advancement of ML and AI

technology, integrating RS in biomarker prediction as a diagnostic

tool can be crucial for a personalized approach in immunotherapy.

This will help solve many current limitations which are present in

immunotherapeutic treatment.
6 Future directions in label-free assays
to develop personalized
therapeutic approaches

Label-free Raman spectroscopy in cancer diagnosis and

immunotherapy is poised to revolutionize the landscape of

oncological care. As a non-invasive diagnostic tool, label-free

Raman offers advantages in terms specificity and throughput,

enabling the detection of molecular signatures associated with

various cancers directly from biofluids such as blood, urine, and

saliva (173), distinguishing various tissue types, and detecting

pathological alterations across a multitude of diseases. Preclinical,

translational, and clinical in vivo applications have significantly

enhanced Raman spectroscopy’s role in bridging crucial knowledge

gaps, especially in the complex analysis of whole-tissue to accurately

describe tumor microenvironments. However, several challenges

persist in utilizing Raman spectroscopy as a standalone multi-omic

test or as a complementary tool to existing multi-omics. Achieving
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the ambitious goal of entirely label-free assays that are low-cost and

high-throughput is essential for accelerating clinical patient studies.

One important step to advancing Raman application for cancers

is increasing utilization of formalin-fixed paraffin-embedded (FFPE)

specimens, where currently-described studies predominantly

concentrate on fresh or frozen tissue samples. FFPE is the

conventional method used for the preservation and storage of

tissue, especially tumor sampling that is a very small size such as in

melanoma or biopsies of metastatic tissues. Due to the dominant

vibrational signal native in paraffin, deconvoluting the relatively weak

signature of the tissue spectra from paraffin spectra remains a

persistent challenge. Robust suppression of the background signal

from the paraffin, either through chemical dewaxing demonstrated by

Ning et al. and Gaifulina et al (174, 175), digital processing as shown

by Tfayli et al. and Ibrahim et al. (176, 177), or vibrational mode-

suppressing SERS devices as shown by Kurouski et al. (178), can

greatly increase the possible patient data banks available to process

and construct the necessary library for the integration of Raman into

multi-omic studies. A notable study by Lewis et al. exemplifies this

potential by utilizing label-free Raman spectroscopy to compare

findings with immunohistochemistry (IHC). They generated

Raman spectral maps from FFPE colonic tissues obtained from

healthy individuals and used principal components analysis (PCA)

to validate their findings against several IHC markers. Their results

demonstrated the ability to differentiate mucin based on glycosylation

patterns, identify nuclear regions through DNA content analysis, and

categorize various tissues according to their amino acid compositions.

Their results confirm excellent correlation between the IHC markers

and label-free RS. This assures that label-free RS could be utilized in

detecting compositional changes, thus eliminating the use of

expensive antibodies (179). Ability to access the wealth of banked

and stored FFPE could facilitate the next leap in biologic study by

greatly expanding available specimens.

A second step for widespread adoption of RS in clinical care,

particularly at point of care sites, is efficient sample pre-processing

and data post-processing. Clinical integration of sample

preprocessing techniques prior would greatly facilitate Raman

analysis by eliminating unwanted background and noise.

Common sample preparation materials and ubiquitously-present

chemical molecules can often obscure and influence relevant

functional group vibrational signals. Strategic suppression of non-

relevant chemical groups or biological bands either chemically

(180) or through Raman-active platforms (181) can greatly

improve functional group targeting and better map them to

observable biomarker differences. Additional construction of a

global spectra library would further assist in signal deconvolution

and aid in standardization across samples. Timely tumor profiling

will also require rapid integration at subcellular resolution over the

entire tissue sample. As such, utilization of higher-throughput

Raman systems enabling line- or image-based spectral collection

pathways can greatly improve spectral acquisition throughput and

capacity. Higher collection bandwidth can aid in the population of a

data bank derived from historical samples.

Further advancements in Raman-based tumor investigations

necessitate continuous enhancements in the technical performance
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of spectral acquisition and the resolution of signals. While current

SERS devices strategically drive enhancements at the incident light

source, signal intensity can further be amplified by additional

consideration of enhancements in the scattering wavelength regime.

Design of doubly resonant platforms, with the second broader

resonance directing Raman scattered light towards the detector, can

yield increased spectra intensity and sensitivity. Further, multi-

resonant platforms accounting for polarization dependency can

enable sample filtering by polarizability. Careful considerations will

need to address spectral fidelity associated with fabrication

imperfections and hotspot intensities variations across regions.

Finally, as tumors and the TiME are most faithfully depicted as a

three-dimensional ecosystem, future SERS designs should extend

applicability to include all three degrees of spatial freedom.

Although confocal RS has been utilized as a 3D molecular

contrasting tool (180, 182), similar applications have not yet been

applied in SERS-based tumor studies. Potential adoption of

suspended or resonantly stratified NPs could provide z-stacking

capabilities, while maintaining high-sensitivity. Similarly,

considerations will need to be taken to address hotspot uniformity

and off-focus signal contributions.

The field of AI and machine learning in Raman spectroscopy data

analysis has revolutionized the way we approach real-time data

interpretation, particularly in single-cell and multi-omics studies.

These LLM models have shown remarkable potential in integrating

diverse data types, allowing researchers to simultaneously characterize

different cellular processes. However, the journey from laboratory

research to clinical application of Raman spectroscopy to

immunotherapy principles faces several hurdles. One significant

challenge lies in the data acquisition process, which often lacks

standardization. Researchers employ varying methods for sample

preparation, instrument operation, and data labeling. This leads to

inconsistencies across different studies. To address this, the scientific

community could benefit from establishing a global, public database for

Raman spectroscopy data. This repository would not only store data

from laboratories worldwide but also implement standardized

normalization and preprocessing techniques, paving the way for

more robust AI and ML method development. Another pressing

issue is the "black box" nature of many AI models. While these

algorithms excel at producing results, the opacity of their decision-

making processes can be a stumbling block for clinical adoption.

Healthcare professionals understandably hesitate to rely on tools they

cannot fully comprehend or explain. Therefore, enhancing the

transparency and interpretability of these models is crucial for their

acceptance in medical settings. Looking ahead, the field of

immunotherapy applications using Raman spectroscopy and AI has

several promising fields for growth. Multi-center studies should be

prioritized to improve data consistency and reliability, as current

research often relies on single-center data. Additionally, the

development of semi-supervised or unsupervised machine learning

models could unlock new possibilities beyond current applications.

These advanced models could potentially uncover hidden correlations

between various omics data sets, opening doors for innovative

hypothesis testing, drug discovery, and personalized medicine

approaches in immunotherapy (35). By addressing these challenges

and exploring new frontiers, the integration of AI, Raman
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spectroscopy, and immunotherapy holds promise for advancing our

understanding of cellular processes and improving patient outcomes.

These technical advancements are crucial not only for studying

therapeutic responses and discovering biomarkers but also for achieving

precision immunotherapeutics. Accurate intraoperative diagnosis for

complete tumor resection is essential for improving prognosis and

determining optimal surgical approaches in multi-modal care

settings.Raman spectroscopy has demonstrated the ability to

distinguish malignant tissue from healthy tissue in real-time that can

facilitate margin assessment and in vivo pathologic classification (183,

184). For example, one recent study applied label-free visible resonance

Raman spectroscopy to enhance the precision of tumor boundary

identification during glioma surgeries, with remarkable sensitivity,

specificity, and accuracy rates reaching 100%, 96.3%, and 99.6%,

respectively (185). Looking ahead, the integration of label-free Raman

spectroscopy into surgical practice holds significant promise for

improving cancer surgery outcomes. As this technology matures, it is

expected to facilitate real-time assessments of tumor margins during

surgical procedures. This will aid surgeons in achieving complete tumor

resections. The development of portable Raman analytical techniques

and advanced algorithms for data analysis will further enhance the utility

of in-situ applications. This will make label-free Raman spectroscopy an

invaluable tool in the future landscape of oncological surgery.
7 Conclusion

Label-free Raman spectroscopy could transform cancer

diagnosis and immunotherapy by offering a non-invasive, high-

throughput method for detecting molecular signatures in biofluids

and tissue specimens. The studies outlined here highlight the

myriad of challenges in multifaceted profiling of complex and

heterogeneous tumors that can be addressed with technical

innovations in Raman spectroscopy to transcend traditional

single-omic strategies. The analytical advancements in Raman

technologies, encompassing enhanced spectral isolation and

refined data processing capabilities, establish it as a crucial

instrument for elucidating the intricate mechanisms by which

tumors circumvent immune detection—a critical stride towards

precision medicine. Coupled with machine learning for real-time

data analysis, these techniques position Raman technology as a

disruptive tool throughout the continuum of oncological

intervention.As techniques for suppressing background signals

improve and as the construction of global spectral libraries

advances, the accuracy and efficiency of Raman spectroscopy in

clinical settings will be enhanced. The potential integration of

Raman spectroscopy with existing multi-omics platforms could

harmonize diverse datasets, facilitating a more comprehensive

characterization of tumors and better predictive biomarker

identification. Moreover, the potential for real-time tumor

boundary identification during surgeries positions Raman

technology at the forefront of precision immunotherapeutics. The

ongoing development of portable systems and sophisticated data

analysis algorithms promises to further embed label-free Raman

spectroscopy within surgical practice, ultimately improving patient

outcomes through more precise and informed interventions. By
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enabling timely, personalized, and precise immunotherapy

strategies, this technology could ultimately transform the

landscape of oncological care, reducing reliance on a “one size fits

all” treatment paradigm and enhancing patient outcomes.
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