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Ferroptosis is a novel form of cell death characterized by unlimited accumulation

of iron-dependent lipid peroxides. It is often accompanied by disease, and the

relationship between ferroptosis of immune cells and immune regulation has

been attracting increasing attention. Initially, it was found in cancer research that

the inhibition of regulatory T cell (Treg) ferroptosis and the promotion of CD8+ T

cell ferroptosis jointly promoted the formation of an immune-tolerant

environment in tumors. T-cell ferroptosis has subsequently been found to

have immunoregulatory effects in other diseases. As an autoimmune disease

characterized by immune imbalance, T-cell ferroptosis has attracted attention

for its potential in regulating immune balance in lupus nephritis. This article

reviews the metabolic processes within different T-cell subsets in lupus nephritis

(LN), including T follicular helper (TFH) cells, T helper (Th)17 cells, Th1 cells, Th2

cells, and Treg cells, and reveals that these cellular metabolisms not only facilitate

the formation of a T-cell immune imbalance but are also closely associated with

the occurrence of ferroptosis. Consequently, we hypothesize that targeting the

metabolic pathways of ferroptosis could become a novel research direction for

effectively treating the immune imbalance in lupus nephritis by altering T-cell

differentiation and the incidence of ferroptosis.
KEYWORDS
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1 Introduction

The key mechanism of ferroptosis involves the upregulation of lipid peroxidation

pathways driven by iron, reactive oxygen species (ROS), and polyunsaturated fatty acids

(PUFAs), coupled with the downregulation of antioxidant mechanisms, primarily

selenium-dependent glutathione peroxidase 4 (GPX4) (1). Increasing evidence suggests
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that modulating metabolic targets involved in T-cell ferroptosis can

alter immune imbalances. Initially, this regulatory mechanism

attracted attention in the context of tumor immunomodulation.

Ferroptosis in Treg cells is often suppressed by upregulated

antioxidant mechanisms, which contribute to tumor immune

evasion (2). However, ferroptosis in CD8+ T cells is frequently

promoted by increased lipid synthesis, thereby reducing their

capacity for immune recognition and killing of tumor cells (3).

Notably, altering T-cell ferroptosis-related metabolic targets, such

as promoting ferroptosis in Treg cells or inhibiting ferroptosis in

CD8+ T cells, has been shown to improve cancer prognosis.

Therefore, given that T-cell ferroptosis is a promising disease

immunoregulatory mechanism, its potential therapeutic role in

other diseases has also garnered significant interest (4).

Systemic lupus erythematosus (SLE) is characterized by

immune tolerance disorders and hyperactivity of immunological

reactivity, leading to immune imbalance (5). LN is a common

complication and cause of death in SLE patients (6). Recent studies

have shown that T-cell immune imbalance is the key pathogenesis

of LN (7, 8). Specifically, upregulated effector T (Teff) cells

contribute to kidney injury through the formation of a

proinflammatory environment and the promotion of fibrosis (9).

By assisting in humoral immunity, TFH cells produce more

pathogenic antibodies, exacerbating autoimmune inflammation

(10). Additionally, the downregulation of Treg cells in LN fails to

maintain immune tolerance, allowing the adaptive immune system

to no longer protect self-antigens while recognizing and eliminating

pathogens and accelerating kidney injury (11). Although T-cell

immune imbalance is crucial in LN, little is known regarding its

regulation. Therefore, research on the mechanisms by which T-cell

ferroptosis regulates T-cell immune imbalance in the LN has

attracted significant attention.

In this review, we first described the unique manifestations of

immune imbalances among various T-cell subsets in LNs. We

highlighted that metabolic alterations in T cells within the LN not

only promote the aberrant differentiation of T cells, leading to

immune dysregulation but also variably augment the occurrence of

ferroptosis across different T-cell subsets. Similarly, we revisited the

current understanding of how the regulation of metabolic targets

related to ferroptosis in these T-cell subsets could modulate

immune imbalances in LN. We emphasized the potential of

metabolic enzymes and molecules associated with ferroptosis as

future therapeutic targets for treating immune imbalances in LN.
2 The mechanism of Ferroptosis

The continuous accumulation of unstable iron, increase of ROS,

and supply of PUFAs in cells, coupled with weakened antioxidant

mechanisms, lead to an unlimited increase in lipid ROS in cells,

which is the key factor that induces ferroptosis (1). Among them,

weakened antioxidant mechanisms are closely related to glutathione

metabolism and the GPX4 enzyme. Therefore, abnormal

metabolism in cells is often the key to identifying ferroptosis. In

addition, many studies have shown that mitochondria usually
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exhibit atrophic and dense morphology during ferroptosis, which

is also key evidence for verifying the occurrence of ferroptosis (12).

A deeper understanding of metabolic changes in ferroptosis is

highly important for identifying the occurrence of T-cell

ferroptosis in diseases (Figure 1).
2.1 Accumulation of cellular iron

Once iron enters the bloodstream from different sources in the

human body, it must undergo absorption, use, storage, and

excretion by cells. Cellular iron absorption involves the uptake of

transferrin-bound iron (TBI) into the cell via traditional transferrin

receptor 1 (TfR-1, also known as CD71) (13), as well as the uptake

of nontransferrin-bound free iron (NTBI), mostly by liver cells (14).

Upon entering the cytoplasm, TBI and NTBI are transiently held in

the cytoplasm’s “labile iron pool” (LIP) in an unstable ferrous state.

Iron in the LIP is then weakly attached and carried to the

mitochondria for use. Iron inside mitochondria is a crucial

component for the production of heme and Fe-S clusters, which

are involved in a variety of cellular metabolic processes (15, 16). The

majority of unutilized iron is stored inside the cell as ferritin (17).

Excess iron is specifically linked to ferritin by the iron chaperones

poly r(C)-binding protein (PCBP) 1 and PCBP 2 (18, 19) and then

transported out of the cell exclusively by ferroportin (FPN)-1 (20).

Furthermore, the iron content in the unstable iron pool inside the

cell is carefully regulated by iron regulators and iron regulatory

proteins. These proteins control the release and storage of iron in

the cell to prevent it from exceeding 5% of the total iron content and

maintain a balanced iron level within the cell (17, 21, 22).

Disruption of iron metabolism may result in the aberrant buildup

of iron inside the cell, which can lead to ferroptosis. Studies have

shown that the process of autophagy, which involves the breakdown

of ferritin (a protein that stores iron), may lead to the build-up of

unstable iron in cells and facilitate ferroptosis (23–25). Disruption

of the main receptor TfR1, which is responsible for cellular iron

absorption, has been shown to successfully prevent ferroptosis (26).

Facilitating the elimination of iron from inside cells has been

scientifically shown to successfully prevent iron-induced cell

death (27, 28).
2.2 ROS accumulation

ROS represent a collective term for oxygen-containing radicals

and peroxides associated with oxygen metabolism in living

organisms. ROS are characterized by unpaired electrons,

rendering them highly chemically reactive. When they encounter

nonradical species abundantly present in the body, they initiate

electron-snatching chain reactions (29).

The ROS generated by the Fenton reaction are considered the

primary source of ROS in ferroptosis. In LIP, divalent iron reacts

with cytoplasmic hydrogen peroxide (H2O2) via the Fenton

reaction, producing trivalent iron, OH−, and highly reactive

hydroxyl radicals (OH•) (30, 31). OH• subsequently engages in
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electron-snatching chain reactions with cellular lipids, leading to

the generation of toxic lipid ROS [also called lipid peroxides, LPOs

or phospholipid hydroperoxide (PLOOH)].

Furthermore, numerous studies have shown that mitochondrial

ROS (mtROS) (32) and nicotinamide adenine dinucleotide

(phosphate) (NAD(P)H) oxidase (NOX)-derived ROS are

significant electron predators involved in the generation of lipid

ROS (33–35). Therefore, in addition to intracellular iron

accumulation, the accumulation of ROS from multiple sources

within cells, which are critical triggers for lipid ROS production,

represents the second major factor in ferroptosis.
2.3 The occurrence of lipid peroxidation

Many studies have shown that PUFAs in the phospholipids of

endoplasmic reticulum (ER) membranes, primarily arachidonic

acid (AA) and adrenic acid (AdA), are key lipid substrates for the

occurrence of lipid peroxidation (36–39). Acyl-CoA synthetase

long-chain family member 4 (ACSL4) promotes the synthesis of
Frontiers in Immunology 03
PUFAs (40), whereas lysophosphatidylcholine acyltransferase 3

(LPCAT3) facilitates the esterification of PUFAs and their

integration into membrane phospholipids (41).

PUFAs and ROS undergo a process of lipid peroxidation that

involves both enzymatic and nonenzymatic stages. The enzymatic

stage refers to the process by which PUFAs, under the action of

lipoxygenases (LOXs), react with ROS to form lipid ROS (36, 42).

Arachidonate lipoxygenase 15 (ALOX15) has been identified as the

key enzyme in the enzymatic peroxidation of PUFAs (42–44). In

addition, arachidonate lipoxygenase 12 (ALOX12) (45) and

cytochrome P450 enzymes (CYPs) (46) have also been found to

induce lipid peroxidation. The nonenzymatic stage occurs when

intracellular iron accumulates, leading to Fenton reactions between

intracellular ROS and membrane-bound PUFAs, thereby initiating

lipid autoxidation (31, 47). This nonenzymatic lipid peroxidation

plays a dominant role in the accumulation of lipid ROS during

ferroptosis (42). Current research still debates the sequence of the

enzymatic and nonenzymatic stages, but many studies support that

once the enzymatically produced lipid ROS reach a critical

threshold, they can trigger nonenzymatic lipid peroxidation (31,
FIGURE 1

The core mechanisms of ferroptosis: The accumulation of labile iron, ROS, and PUFAs in cells contributes to the onset of ferroptosis. TBI and NTBI
enter the cell and are temporarily stored in an “iron pool”. Subsequently, labile iron from the “iron pool” initiates a Fenton reaction that produces an
abundance of ROS, leading to an increase in intracellular ROS. Under the effect of LOXs, intracellular ROS first undergoes enzymatic lipid
peroxidation with PUFAs, generating lipid ROS. Once a critical threshold is reached, intracellular ROS directly triggers non-enzymatic lipid
autoxidation with membrane-bound PUFAs, resulting in a large amount of lipid ROS. Furthermore, the weakening of the xCT-GPX4 antioxidant
system promotes ferroptosis. Cystine is transported into the cell via System xCT, participating in the synthesis of reduced GSH. Then, reduced GSH
acts on GPX4 to reduce lipid ROS to lipid alcohols, thereby inhibiting the production of lipid ROS. ROS, Reactive Oxygen Species; PUFAs,
Polyunsaturated Fatty Acids; TBI, Transferrin-bound Iron; NTBI, Non-Transferrin-Bound Iron; TFR, Transferrin Receptors; Non-Transferrin Receptors,
ZIP8, ZIP14; LOXs, Lipoxygenases; GSH, glutathione.
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47). Ultimately, lipid ROS first accumulate in the ER membrane and

then in the cell membrane (38). Ferroptosis, a form of regulated cell

death, occurs when the cell’s capacity to repair membrane damage is

overwhelmed, leading to cell demise (42).
2.4 Antioxidant mechanisms

The strengthening of iron-dependent lipid peroxidation and the

weakening of the antioxidant system are the third significant

triggers for ferroptosis. Recent studies in cancer cells have

demonstrated that altering the intracellular redox state can induce

ferroptosis (48). Therefore, when an oxidative‒reductive imbalance

occurs within a cell, vigilant monitoring of the potential induction

of ferroptosis is essential.

2.4.1 The xCT- GPX4 antioxidant system
In general, the xCT-GPX4 system is considered the primary

antioxidant mechanism against ferroptosis. Its key components

include cystine/glutamate antiporter solute carrier family 7

member 11 (SLC7A11), which is also known as xCT, and GPX4.

Most cells initially take up cysteine (Cys) via xCT. Subsequently,

cysteine is converted to cystine through the action of the reducing

agent glutathione (GSH) or thioredoxin reductase 1 (TXNRD1),

and it participates in GSH synthesis (47, 49). In mammals,

TXNRD1 belongs to the thioredoxin reductase (TrxR) family and

is also a selenoprotein. The Trx reductive system to which TXNRD1

belongs, along with the GSH reduction system, collaboratively

eliminates ROS in vivo, maintaining the cellular redox balance

(50). Through the action of GPX4, synthesized GSH subsequently

reduces lipid ROS to lipid alcohols, thereby inhibiting ferroptosis

(51–53). Therefore, the xCT-GPX4 system is a necessary

antioxidant mechanism that directly targets the inhibition of lipid

ROS generation. Studies have shown that GPX4 knockout cells

exhibit high accumulation of ROS and lipid peroxidation products,

providing further evidence for this mechanism (54). Notably, Gpx4,

as a selenoprotein, requires the presence of selenium for its

antioxidative function (51, 55).

Conversely, inhibition of the xCT‒GPX4 system can induce

ferroptosis. On the basis of this mechanism, various ferroptosis

inducers (FINs), such as buthionine sulfoximine (BSO) and erastin,

have been developed and have garnered widespread attention in

cancer therapy research (56–58). Notably, recent studies have

suggested that ras-selective lethal 3 (RSL3), as a type of FINs,

may act as an inhibitor of TXNRD1, not only GPX4. First, RSL3

increases ROS levels by inhibiting the TrX system, promoting the

generation of lipid ROS. Second, it enhances the accumulation of

lipid ROS by inhibiting GPX4, thereby increasing susceptibility to

ferroptosis through a dual mechanism (53, 59). Furthermore, recent

research has revealed a significant association between the

anticancer mechanism of the tumor suppressor gene P53 and the

inhibition of xCT-GPX4-induced ferroptosis. In contrast to FINs,

P53 achieves its anticancer effects through the dual regulation of

peroxidation and weakening antiperoxidation mechanisms. P53

downregulates SLC7A11 expression, directly inhibiting the xCT-
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GPX4 antioxidant system. However, P53 downregulation of

SLC7A11 leads to the release of ALOX12 bound to it, promoting

membrane lipid peroxidation and accelerating ferroptosis (45, 60).

In summary, weakening of the xCT-GPX4 system, a critical

intracellular antioxidant mechanism, is essential for inducing

ferroptosis, and this mechanism holds promise for targeting

various pathogenic cells in the treatment of various diseases.

In LN, there is a significant increase in oxidative stress due to

the presence of autoantibodies, immune complexes, and cytokines

such as interferon-a (61, 62). This oxidative stress leads to the

depletion of antioxidants, including GPX4, making kidney cells

more vulnerable to damage and death (61, 63). Lipidomic analyses

of kidneys confirm excessive lipid peroxidation consistent with

ferroptosis in LN (64). Ferroptosis, driven by GPX4 inhibition or

dysfunction, is increasingly recognized as a mechanism of kidney

cell death in LN (65, 66). This process exacerbates inflammation

and tissue injury in the renal microenvironment (65, 67). The low

expression of GPX4 in these kidneys correlates with tubular

damage, highlighting its protective role against ferroptosis-

induced injury (68).

Beyond its role in ferroptosis, GPX4 also influences immune cell

function, particularly in regulating B cells and neutrophil, which are

central to LN pathogenesis. Research indicates that LN is associated

with attenuated expression of SLC7A11, this disrupts the

antioxidant system, further reducing GPX4 activity and

significantly enhances ferroptosis in B cells and reduces their

proliferation (69). Research has found that in LN, GPX4

mechanisms involve autoantibodies and interferon-a in serum,

which promote neutrophil ferroptosis by enhancing cAMP

response element modulator (CREM)a binding to the GPX4

promoter (70). This binding reduces GPX4 expression and leads

to an increase in autoantigens produced by neutrophil ferroptosis

(70). Given the critical role of GPX4 in ferroptosis, further

investigation into GPX4-mediated T cell ferroptosis and its

regulation would be of great significance for understanding and

potentially treating LN.

2.4.2 The non xCT- GPX4 antioxidant systems
In addition to GPX4, ferroptosis suppressor protein 1 (FSP1,

also known as AIFM2) and coenzyme Q10 (CoQ10, also referred to

as ubiquinone) constitute the second major antioxidant system in

ferroptosis. Unlike the xCT-GPX4 system, which combats oxidation

by reducing already generated lipid ROS, the FSP1-CoQ10 system

functions as an antioxidant by reducing the generation of lipid ROS,

as described in the following mechanism. FSP1 utilizes NAD(P)H to

reduce CoQ10 to its reduced form, Coenzyme Q10H2 (CoQ10H2,

also known as ubiquinol), thereby consuming ROS and reducing

the generation of lipid ROS (71, 72).

Dihydroorotate dehydrogenase (DHODH) shares a similar

function with FSP1, as it can also reduce ubiquinone to

ubiquinol, forming an antiferroptotic mechanism similar to that

of the FSP1-CoQ10-CoQ10H2 system, known as the DHODH-

CoQ10H2 system, to inhibit ferroptosis (73). The distinction

between these two systems lies in their subcellular localization;

FSP1 is primarily distributed throughout the plasma membrane and
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other nonmitochondrial membranes, whereas DHODH is mainly

localized within the mitochondria (73). However, both systems

work in coordination with their respective xCT-GPX4 systems to

counteract the occurrence of lipid peroxides (74).

In the case of the GTP cyclohydrolase-1 (GCH1)

-tetrahydrobiopterin (BH4) pathway, GCH1 is a critical enzyme

in BH4 biosynthesis, and both play essential roles in ferroptotic

antioxidant mechanisms. BH4 can promote the synthesis of CoQ10,

indirectly counteracting oxidative stress through the FSP1-CoQ10

system (75). Cells overexpressing GCH1 were found to possess two

polyunsaturated fatty acyl chains, a structural feature that

significantly protects against the depletion of PUFAs in

ferroptosis, serving as a physical defense mechanism against

ferroptosis (76).

NAD(P)H:quinone oxidoreductase 1 (NQO1), an NAD(P)H-

dependent quinone reductase similar to FSP1, can synergistically

promote the conversion of ubiquinone to ubiquinol, inhibiting

oxidation (77, 78). However, NQO1 is substrate dependent, and

depending on the substrate, it may either promote or reduce ROS

generation, suggesting that the inhibitory effect of NQO1 on

oxidation may be unstable (79).

Therefore, as mentioned above, the FSP1-CoQ10 system clearly

plays a crucial role in the antioxidant mechanism of ferroptosis by

collaborating with multiple antioxidant systems, and this system

holds significant research prospects.

2.4.3 Other antioxidant systems
In the crucial xCT-GPX4 antioxidant system, Cys not only

participates in the classic xCT-GPX4 pathway of antioxidation but

also promotes the synthesis of sulfane sulfur (S°), thereby enhancing

the antioxidative mechanism (80). Cys serves as the primary source

of intracellular elemental sulfur (S (0)) and contributes to the

biosynthesis of hydrogen sulfide, hydrogen polysulfides, and

polysulfides, among other S° species (81). Among these, hydrogen

sulfide, in particular, is a potent ROS scavenger capable of reducing

lipid ROS generation to inhibit ferroptosis (80).

Furthermore, some mechanisms counteract ferroptosis by

inhibiting the synthesis of lipid ROS. A previous study revealed

that the gene encoding the phospholipid transporter SLC47A1 can

be activated by the transcription factor peroxisome proliferator-

activated receptor a (PPARA). And the activated PPARA-SLC47A1

pathway inhibits the production of esterified PUFAs, namely,

cholesterol esters (CEs), to prevent lipid peroxidation in

ferroptosis (82). Additionally, LOXs, a critical driver of lipid ROS

formation, can be targeted to prevent ferroptosis. For example,

research has shown that inhibiting ALOX15 in cancer-associated

fibroblasts (CAFs) can block lipid ROS production, thereby

suppressing ferroptosis (83).
2.5 Mammalian target of rapamycin

The mTOR pathway is a central regulator of cell growth,

autophagy, and metabolism, comprising two distinct complexes:

mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2)
Frontiers in Immunology 05
(84).While mTORC2 is not well understood, mTORC1 has become a

central regulator of cell metabolism, proliferation, differentiation,

autophagy, and immune responses (85). The compositional

differences between mTORC1 and mTORC2 influence their

sensitivity to rapamycin, rapamycin have shown therapeutic

potential, though combination therapies may be required to

overcome resistanc (86). The phosphoinositide 3-kinase (PI3K)/

protein kinase B (PKB, also called Akt)/mTOR (PAM) signaling

pathway is activated by immune stimulation and is tightly regulated

at multiple levels to prevent uncontrolled cellular proliferation (87).

phosphatase and tensin homolog (PTEN), as a lipid phosphatase,

dephosphorylates phosphatidylinositol-3,4,5–trisphosphate (PIP3)

back to phosphatidylinositol-4,5-bisphosphate (PIP2), negatively

regulating AKT signaling (87). Additionally, the tuberous sclerosis

complex (TSC) acts as a negative regulator of mTORC1 by inhibiting

ras homolog enriched in the brain (Rheb), a GTPase that activates

mTORC1 (88, 89). adenosine 5’-monophosphate-activated protein

kinase (AMPK) is activated due to low ATP levels, it inhibits

mTORC1 both directly through phosphorylation and indirectly by

activating the TSC (90, 91). Feedback loops within the pathway also

ensure that mTORC1 activation suppresses upstream signaling to

prevent excessive cell growth and maintain metabolic balance (87).

In LN, hyperactivation of mTOR signaling has been linked to

glomerular damage, mesangial proliferation, and immune cell

dysregulation (92). Recent studies show that cordyceps proteins

(CP) modulate the mTOR pathway in LN, significantly reducing

interleukin-6 (IL-6) and interleukin-1b (IL-1b) levels (93).

Pharmacological inhibition of mTOR, such as with rapamycin,

mycophenolate, etc., has demonstrated renoprotective effects in

LN, underscoring its therapeutic potential (92, 94, 95). Research

has also found that magniferin (MG) and Astragali Radix

downregulate the mTOR pathway, thereby restoring T cell

imbalance in LN (67, 96). These compounds may offer

therapeutic potential by modulating the immune response and

reducing inflammation in LN through their effects on

mTOR signaling.

In LN, the activated T-cell receptor (TCR) regulates multiple

metabolic pathways through mTOR, enabling T cells to undergo

metabolic reprogramming from fatty acid oxidation and pyruvate

oxidation metabolic patterns to glycolysis and glutaminolysis (97–99).

During this process, changes associated with ferroptosis metabolism,

such as increased lipid synthesis and ROS production (100),

accumulation of labile iron (101), and weakened glutathione

metabolism (102), occur within T cells (103, 104). Therefore,

targeting the mTOR pathway in LN may not only help restore T

cell balance but also reduce ferroptosis in T cells, providing a potential

therapeutic strategy for managing LN (102).
2.6 NAD(P)H

NAD(P)H can serve as a biomarker for determining sensitivity

to ferroptosis (105). The pentose phosphate pathway is the primary

source of NAD(P)H, NAD(P)H plays a crucial role in ferroptosis

regulation by providing reducing equivalents for antioxidant
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defense mechanisms (106). For instance, NAD(P)H provides

hydrogen ions to convert cystine into cysteine, potentially

influencing GSH production and promoting the xCT-GPX4

antioxidant system, which inhibits ferroptosis (107, 108). NAD(P)

H functions through the FSP1-CoQ10-NAD(P)H pathway,

alongside GPX4 and glutathione, to prevent phospholipid

peroxidation (72). The study reveals that the mechanism of NAD

(P)H in ferroptosis involves the membrane-associated RING-CH-

type finger 6 (MARCHF6) E3 ubiquitin ligase in the

transmembrane endoplasmic reticulum interacts with NAD(P)H

through its C-terminal region, enhancing its activity and reducing

ferroptosis (109). However, NAD(P)H can also induce ferroptosis.

Electrons from NAD(P)H are transferred to oxygen by

oxidoreductases, generating hydrogen peroxide, which then reacts

with iron in the Fenton reaction, promoting ferroptosis (110).

Therefore, NAD(P)H, as a key double-edged regulator of

ferroptosis, plays a crucial role by supporting antioxidant defense

mechanisms to suppress ferroptosis while also contributing to its

occurrence through the generation of reactive oxygen species.

NAD(P)H-mediated ROS contributes to the immune imbalance

observed in LN. Superoxide production, driven by NOX, is elevated

in LN, contributing to the occurrence of ferroptosis (111). However,

ROS from NOX are also involved in efferocytosis, enhancing the

removal of dead cells and decreasing antigen production by

influencing pH levels and proteolysis in efferosomes (112).

Additionally, recent studies have demonstrated that NOX plays a
Frontiers in Immunology 06
role in SLE immunomodulation through its activity in the myeloid

compartment and its selective inhibition of TLR7 signaling in B

cells (113).
3 The role of T-cell ferroptosis in
immune regulation

3.1 T-cell ferroptosis and immune
regulation in cancer

The immune regulatory mechanism associated with metabolic

goals related to T-cell ferroptosis has attracted early interest in the

area of tumor research (Figure 2). Inducing ferroptosis in CD8+ T

cells is a vital tactic used by tumor cells to evade immune

surveillance since it is the primary mechanism by which these

cells are eliminated (114). CD8+ T cytotoxic (Tc) cells can be

classified into many subtypes, such as Tc1, Tc2, Tc9, Tc17, and

Tc22 cells. The Tc1 fraction is recognized as the conventional

cytotoxic T lymphocyte (CTL) fraction and functions as the main

effector subtype of CD8+ T cells (115). Furthermore, studies have

shown that activated CD8+ T lymphocytes are highly susceptible to

ferroptosis when they are present in the tumor microenvironment

(TME) (116). Research has shown that upregulation of the fatty acid

receptor CD36 on CTL results in increased production of PUFAs

inside the cells. This, in turn, facilitates the ferroptosis of CTL
FIGURE 2

Immune regulation of T cell ferroptosis in cancer: (A) Mechanisms of T Cell Ferroptosis in Promoting Tumor Growth: In the tumor
microenvironment, upregulation of Gpx4 in CD4+ Treg cells inhibits ferroptosis, leading to an increase in CD4+ Treg cells. Upregulation of the
CD36 receptor on the surface of CD8+ CTL enhance intracellular PUFAs synthesis, promoting ferroptosis and resulting in a decrease in CD8+ CTL.
Suppression of FRGs in CD4+ Th cells can promote ferroptosis, leading to a reduction in CD4+ Th cells. Thus, T cell immune imbalance regulated
by ferroptosis contributes to tumor development. (B) Mechanisms by Which T Cell Ferroptosis Suppresses Tumor Growth: Downregulating Gpx4 in
Treg cells can promote ferroptosis, increasing the number of CD4+ Treg cells. Blocking the CD36 receptor on CTL can inhibit ferroptosis, leading to
an increase in CTL. Tc9 can suppress PUFAs synthesis through the IL-9-STAT3-fatty acid oxidation pathway, avoiding ferroptosis. After the
suppression of FRGs in Th cells is lifted, it can promote an increase in Th cells. By reversing the T cell immune imbalance in the tumor environment,
tumor development can be inhibited.
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(3, 117). By blocking CD36 or suppressing CD8+ T cell ferroptosis,

it is possible to effectively restore their antitumor function.

Additionally, recent research has revealed the role of ferroptosis

in other CD8+ T cell subsets in tumor immune regulation. Among

the CD8+ effector T-cell subsets, Tc9 cells are characterized by IL-9

secretion (118). Although significantly fewer in number than CTL,

they possess a tumor-killing capability per cell comparable to that of

individual CTL (118). Notably, unlike CTL, Tc9 cells in the TME

can upregulate fatty acid oxidation through the IL-9-STAT3-fatty

acid oxidation pathway, reducing the accumulation of PUFAs and

preventing ferroptosis (119). Given that Tc9 cells are less prone to

ferroptosis in the TME than are CTL and have a higher survival

rate, adoptive replenishment of Tc9 cells is expected to be a new

therapeutic target for treating tumors.

In addition to enhancing the cytotoxic impact of CD8+ effector

T cells, CD4+ Th cells also stimulate B cells and other effector cells

to exhibit antitumor effects (120–122). Research has shown that in

the gastric cancer TME, inhibiting the expression of ferroptosis-

related genes (FRGs) in CD4+ Th cells weaken their activation,

which is associated with poor tumor prognosis (123). Conversely,

relieving the suppression of FRGs enhances the activation of CD4+

T cells in GC patients, improving the outcomes of immunotherapy.

Therefore, ferroptosis in CD4+ Th cells is closely linked to immune

imbalance, but the specific regulatory mechanisms require further

investigation for clarification.

Furthermore, the high infiltration of Treg cells in cancer

patients often indicates a low survival rate, as Treg cells play a

key role in tumor immune evasion by helping tumor cells withstand

antitumor immune responses (124). Several studies have shown

that Treg cells in tumors exhibit increased GPX4, which is positively

correlated with Treg cell survival (2, 125). Moreover, Treg cells

lacking Gpx4 can not only induce ferroptosis in Tregs but also

enhance the antitumor effect of Th17 cells through increased IL-1b,
both of which are mechanisms that inhibit tumor progression (2).

However, if lipid peroxides are further neutralized or iron chelators

are used, Treg cells can regain their protumor survival state of high

infiltration (2). Therefore, targeting Treg cell GPX4 or promoting

ferroptosis in Treg cells could be key to improving tumor

immunotolerance (Figure 2).
3.2 T-cell ferroptosis and immune
regulation in other diseases

In recent years, the immune regulation of T-cell ferroptosis has

also garnered attention in other diseases. Studies have shown that in

autoimmune encephalomyelitis, inhibiting GPX4 promotes an

excess of pathogenic T cells (126). Therefore, enhancing the xCT‒

GPX4 axis or inhibiting other metabolic pathways that cause lipid

peroxidation in pathogenic T cells could be a new therapeutic

direction to improve the prognosis of patients with autoimmune

diseases. Research has shown that during external pathogen

infection, the xCT‒GPX4 antioxidant system helps to suppress

the occurrence of ferroptosis in effector CD8+ and CD4+ T cells,

promoting their expansion and enabling them to mount an immune

response against pathogen invasion (4). Studies have also shown
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that by inhibiting mitochondrial ROS accumulation and promoting

GPX4 effects, ferroptosis in memory CD4+ T cells can be

suppressed, thereby contributing to long-term viral immune

protection (127). In summary, metabolism related to T-cell

ferroptosis and its key enzymes are critical targets for regulating

immune balance in diseases and warrant further study.
4 Ferroptosis and T-cell immune
imbalance in LN

LN is characterized by immune imbalance as an autoimmune

disease. In LN, there is often an immune imbalance characterized by

the upregulation of TFH cells, Teff cells and CD8+ effector T cells,

along with the downregulation of Treg cells (128, 129). Inducing

ferroptosis in B cells has been shown to reduce plasma cell

formation and antibody production, greatly improving the

prognosis of SLE (130). The cell debris produced by neutrophil

ferroptosis is a stable source of autoantigens in SLE, and inhibiting

neutrophil ferroptosis helps to alleviate SLE (70). However, recent

studies provide a direct challenge to the concept that NETs promote

autoimmunity and target organ injury in SLE (131).

T-cell ferroptosis also plays an immunoregulatory role has

garnered significant attention. Research in LN patients has shown

that iron accumulation within T cells promotes gene transcription by

driving DNA hydroxymethylation and demethylation, thereby

facilitating CD4+ T cell activation, which exacerbates lupus

manifestations (132). Targeting excessive iron uptake in T cells

could improve outcomes in SLE patients (133). Moreover, an in

vitro study revealed that the maturation of peripheral T cells is

closely related to T-cell ferroptosis (134). Research has shown that T-

cell GPX4 deficiency can induce ferroptosis and inhibit T-cell

proliferation (4). In the LN, to fulfill their corresponding effector

functions, various differentiated T-cell subsets need to utilize all

reprogrammedmetabolic pathways to varying degrees (11, 135, 136).

And the distinct metabolic pathway preferences of different T-cell

subsets lead to changes in ferroptosis-related metabolism within

their respective cells (137). Therefore, ferroptosis-related metabolism

regulate abnormalities in the activation, development, maturation

and differentiation of T cells in the LN (Figure 3).

Below, we discuss the connection between immune imbalance

and ferroptosis-related metabolism in different T-cell subsets in the

LN, including TFH, Treg, CD8+ T and Teff cells, and summarize

the potential immunoregulatory mechanisms of T-cell ferroptosis

in the LN.
4.1 TFH cell

Upon activation, naïve T cells differentiate into Teff in the LN,

which are promptly dispatched to sites of inflammation to mount

an immune response, whereas differentiated TFH cells remain

within the lymph nodes or lymphoid follicles, specifically the

germinal centers (GCs) (138). The characteristic phenotype of

TFH cells includes the expression of C-X-C chemokine receptor

type 5 (CXCR5), induced T cell costimulator (ICOS), programmed
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cell death protein 1 (PD-1), B-cell lymphoma 6 (Bcl-6), and

interleukin-21 (IL-21), which are integral to regulating the

differentiation of TFH cells and the formation of GCs (139). The

interaction between CXCR5 and its ligand C-X-C chemokine ligand

13 (CXCL13) facilitates the migration of TFH cells to GCs and

promotes sustained activation of B cells within GCs (140). BCL-6 is

the master transcription factor for TFH cells, leading to the

differentiation of naïve T cells into TFH cells. Moreover, BCL-6

plays a crucial role in activating and differentiating B cells and

forming GCs by regulating various target genes involved in antigen-

triggered calcium signaling within TFH cells (141). Upon binding to
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its receptor on TFH cells, the cytokine IL-21 upregulates the

expression of BCL-6, CXCR5, and ICOS through the janus kinase

(JAK)- signal transducer and activator of transcription (STAT) axis,

indirectly promoting the migration of TFH cells and the production

of pathogenic antibodies (139). Studies have shown that targeting

the autocrine cytokine IL-21 in the TFH cells of mouse models of

SLE can help suppress the proliferation and development of TFH

and Th17 cells, providing a treatment for SLE (142). Therefore, the

upregulation of TFH cells in the LN, through high expression of the

aforementioned phenotypes, can promote the migration of TFH

cells to GCs and foster sustained reciprocal stimulation between
FIGURE 3

Immune Imbalance and Ferroptosis in Lupus Nephritis: (A) Non-T cell Immune Imbalance and Ferroptosis in Lupus Nephritis. Neutrophil ferroptosis
induces the formation of NETs, which promotes the production of a large number of pathogenic antigens. These antigens stimulate B cells to
activate into plasma cells and secrete antibodies, and the deposition of antibody-antigen complexes in the kidney leads to the onset of lupus
nephritis. B cell ferroptosis has been found to suppress B cells, thereby inhibiting the occurrence of lupus nephritis. (B) T cell Immune Imbalance and
Ferroptosis in Lupus Nephritis. Following the deposition of antibody-antigen complexes in the kidney, T cells in the kidney are promoted to become
activated and differentiated, ultimately secreting various inflammatory factors that advance renal inflammation. Ferroptosis regulates the state of T
cell immune imbalance by participating in the maturation, activation, and differentiation processes of T cells. NETs, neutrophil extracellular traps;
NETosis, The process of NET formation.
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TFH cells and B cells within GCs (142–144). And the upregulation

of TFH cells is a significant factor in the production of pathogenic

antibodies in LN and accelerates the progression to end-stage renal

disease in patients with LN (145).

Iron is an important element in promoting the normal

differentiation of T cells and maintaining normal metabolism

(146). Recent studies have shown that miR-21 overexpression in

CD4+T cells promote iron accumulation by inhibiting 3-

hydroxybutyrate dehydrogenase 2 (BDH2) in lupus-susceptible

mice. Cellular iron accumulation can promote BCL6 gene

hydroxymethylation by enhancing Fe2+-dependent TET enzyme

activity in TFH cells, thereby promoting TFH cell differentiation

(147). Given that the accumulation of intracellular iron not only is

crucial for TFH cell differentiation but can also induce ferroptosis,

whether the balance between these two factors can be modulated to

improve TFH cell immune imbalance has attracted increasing

attention (148).

Upon TCR activation, there is a marked increase in intracellular

ROS within T cells, which is primarily mediated by the mTOR

pathway, which represents the predominant source of ROS (149).

Studies have revealed that activated TFH cells contribute to elevated

ROS levels not only through intrinsic TCR signaling but also through

sustained interaction with B cells in GCs, thereby increasing ROS

production (99, 150). Furthermore, these activated TFH cells

accumulate lipid peroxides, and mitochondrial alterations are

consistent with a ferroptosis phenotype (150). Advanced

investigations have shown that specific deletion of GPX4 in mouse

T cells accelerates the depletion of TFH cells and attenuates the TFH-

B-cell interaction within GCs, leading to reduced production of

pathogenic antibodies. Conversely, selenium supplementation has

been found to reverse this trend (150). Thus, the selenium-GPX4-

ferroptosis axis is a central regulator of TFH cell immune

homeostasis. However, whether this axis can modulate immune

imbalances caused by increased TFH cells in the LN remains to be

confirmed by further research (Figure 4).

So far, clinical studies highlight the potential of targeting TFH

cells for LN treatment. Recent clinical studies have shown that a

CXCR5-directed antibody promotes the depletion of TFH cells in

SLE, demonstrating its clinical potential for treating autoimmune

diseases (151). Furthermore, follicular regulatory T (TFR) cells

localize to the GC where TFH cells reside by expressing CXCR5

and FoxP3 and regulate their function (152). A clinical study found

that PD-1 on TFR cells promotes hypermethylation in the CNS2

region of the FoxP3 gene, leading to reduced FoxP3 expression and

impaired suppressive function (153). However, IL-2 supplementation

therapy can restore this lost regulatory function in vitro (153).

Notably, recent clinical studies have demonstrated the potential of

low-dose IL-2 therapy in restoring TFR-TFH regulation in vivo (154).
4.2 Treg cell

The primary function of Treg cells is to inhibit hyperactive

pathogenic immune responses to maintain immune homeostasis.

They exert their immunosuppressive effects by directly or indirectly

targeting T cells and B cells, with the expression of Forkhead Box
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Protein 3 (FOXP3) being essential for sustaining immune tolerance

(136). Studies in LN have identified deficiencies in both the number

and function of Treg cells (155, 156). Treg cells highly express

CD25, and IL-2 can bind to the IL-2 receptor (IL-2R) subunit

CD25, which is also known as IL-2Ra (157). IL-2 stimulation is

crucial for the maintenance of Treg cells and for the differentiation

of CD4+ T cells into specific effector T cell subsets following

antigen-mediated activation (158).

The metabolic environment in LN following Naïve T cell

activation has been found to be detrimental to Treg cell survival,

resulting in the downregulation of Treg cells (156). These changes

are closely associated with ferroptosis-related pathways, suggesting

that modulating ferroptosis could potentially enhance Treg cell

survival and help restore immune balance (128). For instance, the

survival and differentiation of Treg cells rely more on fatty acid

oxidation and oxidative phosphorylation for energy production,

necessitating a metabolic environment in Tregs that generates less

lipid ROS (159). Furthermore, research has found that the high

expression of thioredoxin-1 in human Treg cells counteracts the

oxidizing effects of ROS, resulting in a low ROS environment that

favors Treg cell survival (160). Therefore, inhibiting ferroptosis in

Tregs appears to be conducive to the metabolic environment

required for their proliferation and differentiation. Recent studies

in SLE have shown that blocking the cell surface protein CD71 to

reduce intracellular iron accumulation and inhibit ferroptosis

promotes Treg proliferation (133). In cancer-related research,

upregulation of GPX4 has been identified as a key mechanism to

inhibit ferroptosis in Treg cells and promote their survival (2, 161).

Hence, in LN, enhancing GPX4 activity or suppressing the

metabolic processes that lead to lipid ROS production in Treg

cells could likely be a critical mechanism to promote Treg

proliferation and differentiation, representing an important target

for improving LN prognosis.

A prospective study found that vitamin D treatment, currently

used in LN therapy, is beneficial for increasing Treg cells in SLE

patients (162). In SLE patients, Treg cell dysfunction has been found

to result from a persistent decrease in Foxp3 expression in Tregs,

mediated by the involvement of the OX40L/OX40 axis (163). In a

recent Phase I trial, infusion of umbilical cord-derived mesenchymal

stromal cells (MSCs) led to an increase in Treg cells in SLE patients,

showing effectiveness in treating lupus (164, 165). Since CD25 is the

high-affinity subunit of IL-2R, low-dose IL-2 preferentially expands

Treg cells, while higher doses further stimulate effector T cells and NK

cells (158). Phase II clinical trials have confirmed that low-dose IL-2 is

beneficial for active SLE by upregulating Treg cells (166, 167). These

researchs demonstrate the potential of Treg cell therapies for

treating LN.
4.3 CD4+ Teff cell

In LN, an increased immune imbalance involving Teff cells,

including Th17, Th1, and Th2 cells, is an important factor that

promotes inflammatory immune responses (168). Among these

factors, the significant increase in Th17 cells is a crucial pathogenic

mechanism in the renal damage experienced by LN patients (169).
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The differentiation of Th17 cells in the LN requires the cytokines IL-6

and transforming growth factor b (TGFb), which activate the lineage-
defining transcription factor receptor–related orphan nuclear

receptor gt (RORgt) through the JAK-STAT pathway (170–172).
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Furthermore, the cytokine interleukin-23 (IL-23) is vital for the

expansion and survival of pathogenic Th17 cells in LN by

activating the STAT-3 pathway (173). Inflammatory cytokines

secreted by Th17 cells, such as interleukin-17A (IL-17A),
FIGURE 4

Immunological Regulation of Ferroptotic TFH Cells in Lupus Nephritis: (A) TFH Cells in Lupus Nephritis. In the context of lupus nephritis, the
interaction between TFH and B cells, along with TCR stimulation activation, leads to a significant increase in ROS within TFH cells. Concurrently,
there is an increase in Fe uptake within TFH cells. This not only promotes TFH cell differentiation and proliferation but also ferroptosis. However, the
overall effect of ferroptosis is less than that of promoting differentiation and proliferation, resulting in a large number of TFH cells contributing to the
progression of lupus nephritis. (B, C) Regulation of TFH Cell Immune Imbalance in Lupus Nephritis via the Selenium-GPX4-Ferroptosis Axis. By
downregulating GPX4, ferroptosis can be promoted, making its effect greater than that of promoting differentiation and proliferation, leading to a
reduction in TFH cells. Conversely, by increasing selenium to upregulate GPX4 activity, ferroptosis can be inhibited, thus diminishing its effect
compared to differentiation and proliferation, resulting in an increase in TFH cells.
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interleukin-17F (IL-17F), and interleukin-22 (IL-22), are key factors

that drive the progression of autoimmune kidney diseases (174).

Several studies have shown that the Th17/IL-17 axis significantly

contributes to structural and functional renal damage in lupus

nephritis by fostering proinflammatory environments and

activating profibrotic pathways through cytokine secretion (175, 176).

In healthy organisms, Th1 cells secrete interleukin-12 (IL-12)

and interferon-gamma (IFN-g) to exert cellular immunity to prevent

bacterial and viral invasion (177). Th2 cells secrete interleukin-4 (IL-

4), IL-6, and interleukin-4 (IL-10) to perform humoral immunity

against helminths and other extracellular microbes (177). Research

has shown that IFN-g secreted by Th1 cells inhibits Th2-related

functions, whereas IL-4 and IL-10 secreted by Th2 cells suppress

Th1-related functions (178, 179). In LN, an increasing body of

research has demonstrated that a Th1 differentiation advantage,

which enhances cellular immune attack on healthy tissue cells, is

involved in the progression of LN (180, 181). Moreover,

inflammatory cytokines secreted by Th1 cells promote the

formation of an inflammatory environment in the LN (182–184).

Specifically, autocrine interleukin-12 (IL-12) from Th1 cells can

promote self-differentiation of Th1 cells and, together with T-bet

and the transcription factors STAT4 and STAT1, drive the

production of the major inflammatory cytokine IFN-g in lupus

nephritis (185).

Research has revealed that in mammals, there are two types of

mTOR protein complexes: mTORC1 and mTORC2 (186).

mTORC1 promotes the differentiation of Th1 cells and Th17

cells, whereas mTORC2 mediates the differentiation of Th2 cells

(187). In lupus patients, studies have shown that inhibiting the

mTORC1 pathway contributes to disease outcome (92, 188).

Therefore, the mTORC1 pathway is crucial for the pathogenesis

of LN, and it promotes the formation of an immune imbalance

characterized by the upregulation of Th17 cells and a Th1 cell

differentiation advantage in LN. In LN, since the mTOR protein

complex pathway is closely related to cellular metabolism, it affects

various Teff cells, including the synthesis of PUFAs, ROS

production, and other ferroptosis-related metabolic changes

(189, 190). Thus, whether ferroptosis can regulate the Teff

immune imbalance through ferroptosis metabolic targets is

worth investigating.

In LN, the hyperactivated PI3K/Akt/mTOR pathway mediates

high glycolytic metabolism and an elevated glutaminolysis pattern,

which promotes the hyperactivity of synthetic metabolic processes

such as protein, lipid, and carbohydrate metabolism within cells,

fostering the differentiation and proliferation of Teff cells (128, 133).

Studies have shown that the glucose transporter 1 (Glut1) is

expressed on Teff cells, which can further increase the glycolytic

metabolism of Teff cells (191). Further research revealed that

calcium/calmodulin-dependent protein kinase IV (CaMK4)

promotes the glycolytic process in Th17 cells by stimulating the

Akt/mTORC1 pathway and upregulating Glut1 (192). Additionally,

studies have shown that the mTOR pathway promotes the

expression of hypoxia-inducible Factor 1a (HIF1a) in Th17 cells,

enhancing glycolysis (193). Compared with other Teff cells, Th17

cells present high glycolytic metabolism, which significantly

promotes iron death-related metabolic changes, such as increased
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ROS production and increased synthesis of PUFAs, which are

positively correlated with the differentiation trends of each Teff

cell type.

An in vitro study revealed that glutaminolysis is crucial for Th17

inflammatory diseases such as LN. Owing to the different

dependencies of Teff cells on the glutaminolysis pathway,

glutaminolysis promotes the differentiation of Th17 cells but

constrains the differentiation of Th1 cells and CTLs (194). The

glutaminolysis induced by mTOR leads to changes in the

accumulation of ROS in Teff cells (191). Initially, the breakdown

of glutamine in Teff cells yields glutamate. Glutamate can

subsequently increase the synthesis of GSH to inhibit the

production of ROS (195). Moreover, glutamate can be further

metabolized to produce a-ketoglutarate (a-KG). a-KG can

promote ROS generation through the tricarboxylic acid cycle to

enhance the mTOR-mediated metabolic pathway, and it can also

alter chromatin accessibility by affecting histone methylation,

thereby promoting cell differentiation (196). Therefore, the

differentiation of various Teff cells promoted by glutaminolysis is

positively correlated with the accumulation of ROS within

these cells.

In summary, the differentiation trends of Teff cells are positively

correlated with the accumulation of ROS and PUFAs within these

cells. The antioxidant gene nuclear factor erythroid 2-related factor

2 (NRF2) can significantly inhibit the differentiation of Th17 cells in

LN by suppressing ROS, thereby improving prognosis, which also

confirms this point (197). Notably, these metabolic processes not

only promote the differentiation and proliferation of Teff cells but

also facilitate the occurrence of ferroptosis. Moreover, recent studies

have shown that the expression of the transferrin receptor CD71 on

the surface of Teff cells in SLE is significantly increased, with

noticeable accumulation of intracellular iron (133). Past research

has indicated that different Teff cells have varying levels of labile

iron stores, which may lead to inconsistent regulation of ferroptosis

among these cells (198). Notably, recent studies have shown that

activated CD4+ Teff cells do not exhibit the characteristic changes

in lipid ROS deposition associated with ferroptosis as much as TFH

cells do, which may be related to TFH cells having more sources of

ROS (148, 150). Similarly, since Th17 cells accumulate more ROS

and PUFAs than other Teff cells do, promoting an increase in lipid

ROS or inhibiting antioxidant mechanisms seems to be more

conducive to the occurrence of ferroptosis in Th17 cells.

Promoting Th17 cell ferroptosis is a promising therapeutic

direction for LN and warrants further investigation.

Studies have found that in SLE patients, CaMK4 inhibits the

transcription of IL-17A and IL-17F through dual mechanisms, by

suppressing the activation of CREMa and the AKT/mTOR

pathway, thereby indirectly inhibiting Th17 differentiation (199).

After 6 months of vitamin D supplementation in SLE patients, it not

only has favorable clinical effects on SLE, but also produces

beneficial immunological effects by promoting a decrease in Th1

and Th17 cells in these patients (162, 200). Ustekinumab is a

monoclonal antibody targeting the shared p40 subunit of IL-12

and IL-23 (201). IL-12 promotes the differentiation of Th1 cells and

the secretion of IFN-g, while the IL-23/Th17 axis plays a key role in
the development of lupus (202). After ustekinumab treatment in
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SLE patients, a significant reduction in the IFN-g response was

observed, but no modulation of Th17-related genes was detected

(202). Currently, the potential of Teff cell-driven treatment

strategies for LN is significant, but many aspects remain

unexplored and require further investigation.
4.4 CD8+ T cell

In LN, an increase in CD8+ T cells suggest a poor prognosis

(203, 204). Studies have shown that in patients with juvenile-onset

SLE, there is a significant increase in total CD8+ T cells and naïve

CD8+ T cells, whereas effector memory CD8+ T cells are decreased

(205). A clinical study indicated that the expansion of CD8+

memory T cells was associated with a poor prognosis for patients

with LN (206). In LN, classic CD8+ effector T cells, namely, CTL,

have been found to have defects in their cytotoxic function. This not

only promotes autoimmune hyperactivity but also facilitates the

invasion of pathogens (207). Moreover, the potential effects of other

nonclassical CD8+ effector T cell subpopulations in the LN are

beginning to receive attention (208–210). For example,

subpopulations with effects similar to those of Treg cells have

been identified, and increasing their numbers may become a new

treatment method for LN (208, 211). Research has also revealed that

effector CD8+ T cells characterized by high expression of granzyme

K (GzmK) and low expression of granzyme B (GzmB) and perforin

have relatively weak cytotoxic effects, driving the development of

LN inflammation through the secretion of cytokines (207, 212, 213).

Therefore, molecules that regulate the immune balance of CD8+ T

cell subpopulations and related signaling pathways are potential

therapeutic targets for LN.

The mTORC1 pathway affects the response of CD8+ effector T

cells, whereas mTORC2 activity regulates memory CD8+ T cells

(214). Therefore, metabolic processes within CD8+ T cells in the LN

promote ferroptosis caused by the accumulation of lipid ROS and

enhance cell differentiation. Studies have shown that Gpx4 is a major

factor for the survival of peripheral CD8+ T cells in the TME and that

ferroptosis induced by GPX4 deficiency can limit the expansion of

CD8+ T cells (4). Research has also demonstrated different

sensitivities to ferroptosis among CD8+ T cell subpopulations

(119). Thus, metabolic targets of ferroptosis, such as GPX4, are

likely key in regulating the proportions of different CD8+ T cell

subpopulations and suppressing the expansion of pathogenic CD8+

T cells in the LN. However, the regulatory mechanisms of ferroptosis

in various subpopulations of CD8+ T cells in the LN are still under

exploration and hold great promise.

In clinical studies of SLE patients, IFN-g produced by CD8+ T

cells is a key factor in enhancing indoleamine 2,3-dioxygenase

(IDO) activity, which promotes the therapeutic effect of allogeneic

MSCs in lupus (215). CD8+ T cells are the primary producers of

IFN-g in LN (216). Notably, the monoclonal antibody AMG 811,

which targets IFN-g, has demonstrated limited and transient effects

in LN patients (217). Currently, the effects of mTOR inhibitors on

CD8+ T cells have been identified in other diseases. For instance,

Everolimus, an mTOR inhibitor, has been shown to significantly

reduce the abundance and proliferation of CD8+ CD28- effector
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memory T (TEM) cell in post-kidney transplant patients, thereby

decreasing the progression of inflammation (218, 219). Given the

importance of mTOR in CD8+ T cells, clinical research on its role in

CD8+ T cells remain lacking.
5 Targeted ferroptosis in the
treatment of LN

5.1 Feasibility of targeting ferroptosis in
LN patients

Targeting ferroptosis in LN could offer a novel and more precise

approach compared to traditional therapies. One potential strategy

involves the use of ferroptosis inhibitors, such as ferrostatin-1 and

liproxstatin-1, which are known to prevent lipid peroxidation by

inhibiting the enzyme system responsible for ferroptosis (220, 221).

These inhibitors have been shown to attenuate kidney damage and

experimental models of SLE, suggesting their potential for clinical

application (70).

Another promising approach is the modulation of iron

metabolism. Iron chelators, such as deferasirox, have been used in

various diseases to reduce iron overload and prevent ferroptosis

(222, 223). In the context of LN, iron chelation may help decrease

iron overload, thereby reducing ferroptosis-associated kidney injury

(68, 224, 225). Additionally, agents such as Erastin, sulfasalazine

(SSZ), and BSO inhibit the xCT-GPX4 system (226), while allosteric

GPX4 activators promote the xCT-GPX4 system (227). Extensive

research in diseases like cancer has demonstrated the effectiveness

of these approaches (226). Regulating the GPX4 pathways could

provide another avenue for therapeutic intervention LN (228, 229).
5.2 Potential side effects and
safety considerations

While targeting ferroptosis offers exciting therapeutic potential,

there are several important considerations regarding safety and

potential side effects. Ferroptosis inhibitors and iron chelators,

although effective in preclinical studies, may have off-target effects

that need to be carefully evaluated in clinical trials (230). For

instance, ferroptosis inhibitors may interfere with the normal

functioning of oxidative stress pathways, which play a critical role

in cellular defense against pathogens and cancer (231). Inhibition of

ferroptosis may impair the ability of immune cells to respond to

infections or tumorigenic cells, potentially increasing susceptibility

to infections or promoting tumorigenesis (232).

In addition, iron chelation may lead to iron deficiency, which

can impair cellular functions, particularly in rapidly dividing cells

such as those involved in immune responses and erythropoiesis

(233–235). Chronic iron depletion may also result in adverse effects

on other organs, including the heart and liver, leading to organ

dysfunction (236, 237).

Therefore, a balanced approach to targeting ferroptosis in LN is

essential. Therapeutic strategies should aim to specifically modulate

ferroptosis in the kidney and immune cells without affecting other
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critical physiological processes. Careful monitoring of iron levels,

ROS generation, and immune function will be necessary to avoid

unwanted side effects (238).
5.3 Current state of
therapeutic development

Currently, the development of ferroptosis-targeted therapies for

LN is in its early stages, with most studies being conducted in

preclinical models. However, several promising strategies are being

explored, and early-phase clinical trials are underway. For instance,

liproxstatin-1 have shown efficacy in treating autoimmune diseases

models, including LN (70). Iron chelators are being evaluated for

their ability to reduce albuminuria in LN, but their effects and

potential side effects related to ferroptosis and iron metabolism have

not yet been fully explored (225).

Furthermore, understanding the immune regulatory role of

ferroptosis in LN is critical for optimizing therapeutic strategies.

Ferroptosis has been shown to influence the activation and

differentiation of immune cells, such as T cells and B cell, which

are central to the pathogenesis of LN (130, 147). By modulating

ferroptosis in these immune cells, it may be possible to not only

mitigate kidney injury but also restore immune tolerance and

reduce autoimmunity (133).
6 Conclusions

Lupus nephritis often manifests as an immune imbalance

characterized by the upregulation of Teff cells and CD8+ effector

T cells, alongside the downregulation of Treg cells, which is related

to the abnormal differentiation of various T cells. We further

discovered that the cellular metabolism that induces T-cell

differentiation in LNs also leads to the accumulation of lipid ROS

within each T-cell subset. We found that Treg cell differentiation in

the LN is restricted, whereas the intracellular accumulation of lipid

ROS promotes ferroptosis. The differentiation of Teff cells in LN

and the accumulation of intracellular lipid ROS both exhibit varying

degrees of promotion, with a positive correlation observed between

these enhancements. Among these, TFH cells have a greater source

of ROS, leading to greater accumulation of lipid ROS in activated

TFH cells, followed by Th17 cells, with other Teff cells accumulating

even less.

Given the close relationship between T-cell ferroptosis

metabolic targets and the generation of lipid ROS, we have

summarized the potential mechanisms of immunoregulation by

ferroptosis metabolic targets in LN. We found that reducing the

accumulation of lipid ROS in Treg cells can promote Teff

differentiation and inhibit Teff ferroptosis, whereas enhancing the

accumulation of lipid ROS in Teff cells can significantly promote

Teff ferroptosis, an effect greater than its ability to promote Teff

differentiation. Notably, we emphasize the central regulatory role of

the selenium-GPX4-ferroptosis axis in the immune dysregulation of

TFH cells.
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Ferroptosis also plays a role in other autoimmune diseases,

including rheumatoid arthritis (RA) and multiple sclerosis (MS),

though the mechanisms differ from those in LN. In RA, iron

accumulation in synovial fibroblasts and macrophages contributes

to the inflammatory environment within the joints (239). Excess

iron promotes ROS production, leading to oxidative stress, which

damages joint tissues and accelerates disease progression (240).

However, RA primarily involves joint inflammation and does not

feature the same degree of systemic immune cell dysfunction as in

LN (241). In MS, oligodendrocytes is the cells responsible for the

formation of myelin sheaths in the central nervous system (242).

Iron accumulation in oligodendrocytes contributes to cell death

through ferroptosis, impairing myelin regeneration and promoting

neurodegeneration (243). While ferroptosis is implicated in the

pathogenesis of MS, the disease is more focused on central nervous

system damage rather than systemic immune dysfunction. In

diseases such as autoimmune thyroiditis, inflammatory bowel

disease (IBD), and myasthenia gravis (MG), ferroptosis-related

metabolism influences immune cell activation and inflammation

(244). Compared to LN, where ferroptosis directly contributes to

immune dysfunction and kidney damage, the role of ferroptosis in

these conditions is less directly reported.

Ferroptosis in LN has already garnered significant attention from

researchers. On one hand, ferroptosis in renal cells during

inflammation promotes tissue damage and triggers regional

inflammatory responses (68, 245). On the other hand, immune cells,

particularly T cells, contribute to persistent inflammation by

continuously releasing inflammatory cytokines and phagocytosing

healthy renal cells, underscoring their pivotal role in sustaining

inflammatory processes in LN (246, 247). Ferroptosis in immune

cells has been found to contribute throughout the process (248, 249).

Neutrophils ferroptosis contributing to the generation of autoantigens

(70). And inducing ferroptosis in B cells has been identified as an

optimal strategy to reduce sustained antibody production (130).

Although there is no direct evidence linking ferroptosis in T cells to

LN, changes in ferroptosis-related metabolic pathways in T cells—

including ROS, PUFAs, iron, GPX4, and GSH (100–102)—mediated

through the mTOR pathway indirectly suggest a critical role for T-cell

ferroptosis in regulating T-cell imbalance in LN (250).

Currently, various novel ferroptosis modulators, such as

mitochondrial-targeted nanodrug systems (251), have been used to

induce or block ferroptosis. However, the treatment of ferroptosis in

LN is still mainly at the animal experiment or limited case study stage.

More clinical trials are needed in the future to verify their safety and

efficacy. Based on the current understanding of ferroptosis-related

metabolic changes in T cells, we propose that ferroptosis-targeted

drugs, by modulating ROS, PUFAs, iron, GPX4, GSH, etc., could be

more beneficial for targeting T cells. Additionally, since ferroptosis

manifests differently in each T cell type, determining the appropriate

dose and adjusting drug combinations for inhibiting or promoting

ferroptosis in appropriate T cell subset will be a key focus for future

research. Currently, there is still much to explore regarding T cell

ferroptosis treatment in LN, which warrants further attention.

In summary, research on the role of T-cell ferroptosis in

immune regulation within the LN is still in its early stages. A
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better understanding of this potential immune regulatory

mechanism from the perspective of ferroptosis metabolism will

undoubtedly lead to novel therapeutic concepts. Not only could this

involve mitigating LN-induced tissue damage by inhibiting the

differentiation and survival of Teff cells, but it could also enhance

immune tolerance by increasing the number of Treg cells, allowing

for a more targeted approach to treating LN. Targeting additional

metabolic aspects of T-cell ferroptosis may represent a promising

future direction for the treatment of immune imbalance in LN.
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