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Liver cancer remains one of themost formidable challenges in modernmedicine,

characterized by its high incidence and mortality rate. Emerging evidence

underscores the critical roles of the immune microenvironment in tumor

initiation, development, prognosis, and therapeutic responsiveness. However,

the composition of the immune microenvironment of liver cancer (LC-IME) and

its association with clinicopathological significance remain unelucidated. In this

review, we present the recent developments related to the use of artificial

intelligence (AI) for studying the immune microenvironment of liver cancer,

focusing on the deciphering of complex high-throughput data. Additionally, we

discussed the current challenges of data harmonization and algorithm

interpretability for studying LC-IME.
KEYWORDS

liver cancer, immune microenvironment, artificial intelligence, machine learning,
ScRNA-seq
1 Introduction

Liver cancer poses huge health challenges due to escalating global incidence, notably in

transitional regions like East and Southeast Asia. It currently ranks 6th in cancer incidence

and 3rd in mortality, surpassed only by lung and colorectal cancers (1). Surgery provides

relatively satisfactory outcomes when detected at an early stage, liver transplantation at

early-stage liver cancer patients achieved a 5-year survival of about 70-80.0%. Surgical

resection or tumor ablation can reach a 5-year survival rate of 50% to 70% (2–5). For

patients with locally advanced liver cancer, Trans-arterial Chemoembolization (TACE),

either in combination with other treatments or as a standalone therapy, yields a 5-year

survival rate of 20% to 40% (4, 6).
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Systemic therapy has witnessed significant breakthroughs in

targeted therapy and immune therapy in the past two decades,

which have not only improved survival in advanced patients but

also made some of them suitable for surgical removal. Even so, liver

cancer remains one of the worst-prognosed diseases due to late

diagnosis, drug resistance, and frequent recurrence and metastasis

(7). The chances of survival of the patients with liver cancer at late

stage are low due to the lack of effective drugs, meaning that patients

typically live for only 6 to 20 months after diagnosis (8). This

underscores the urgent need for effective treatments (9).

Liver cancer has several subtypes, including hepatocellular

carcinoma (HCC), bile-duct cancer, hepatoblastoma, and various

liver sarcomas and carcinomas. Among them, HCC is the most

common worldwide, whereas, in some Asian countries, bile-duct

cancer is more common than HCC. This regional variation may

result from different risk factors, such as hepatitis B virus, hepatitis

C virus, fungi, aflatoxin, alcohol, poor diet, and parasitic flatworm

(10, 11). It is still unclear that why some people can live with liver

disease for many years, whereas others develop fatal cancer.

Increasing evidence suggests the alterations of the liver immune

microenvironment play a key role during cancer transformation

and drug resistance. However, the heterogeneity and intricate

molecular dynamics impede a deep understanding of the immune

microenvironment of liver cancer.

In this review, we first provide a brief overview of AI and

describe its common applications in cancer research. We also

illustrated the immunological characteristics of the liver and its

pathological alterations during cancer development. Subsequently,

we explored the latest applications of AI and current challenges

within the context of LC-IME.
2 Applications of AI in cancer research

2.1 AI and machine learning

AI technology involves the development of systems capable of

executing tasks typically requiring human intelligence, such as

reasoning, learning, and problem-solving. It is designed to

replicate cognitive processes like perception, language processing,

and decision-making, these systems draw from a diverse range of

disciplines, including computer science, mathematics, psychology,

and linguistics. AI technology has penetrated all aspects of human

activities (12–15). In the cancer research field, AI is characterized by

the use of machine learning and deep learning algorithms (16),
Abbreviations: CSF1/CSF1R, Colony Stimulating Factor 1/Colony Stimulating

Factor 1 Receptor; PD-L1, programmed death-ligand 1; TIM-3, T cell

immunoglobulin and mucin domain-3; IGF-1, insulin-like growth factor-1;

CCL20, C-C motif ligand 20; IFN-g, interferon-g; NAD+, nicotinamide adenine

dinucleotide; NMN, nicotinamide mononucleotide; ICOS, T-cell co-stimulator;

GM-CSF, colony-stimulating factor; PGE2, prostaglandin E2; TOX, thymocyte

selection associated high mobility group box; CTLA-4, cytotoxic T-lymphocyte

antigen 4; LAG3, lymphocyte activation gene 3.
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which are important in processing and analyzing large-scale

datasets (17–19).

Machine learning (ML), an integral part of artificial intelligence,

encapsulates the autonomous identification of patterns and

formulations within vast datasets (20). By discerning and

extracting significant features from the data, ML can make

accurate predictions and decisions .It fundamentally extracts

patterns and rules from the data and apply them to new data.

The workflow of ML comprises the acquisition, pre-processing,

feature extraction of the data, model training, and evaluation

optimization application of the obtained model. During model

training, parameters are adjusted to minimize the discrepancy

between predicted and actual outcomes, known as ‘error’ or ‘loss,’

which is quantified to direct the optimization process towards

enhanced accuracy. Based on the model training approaches,

there are four different types of ML: supervised (21),

unsupervised (22, 23), semi-supervised (24), and reinforcement

learning (25) (Figure 1).

Deep learning (DL), a subfield of machine learning, employs

artificial neural networks (26) to represent important information

from massive amounts of data. DL comprises an input layer,

multiple hidden layers, and an output layer, each of which

receives the output of the previous layer as input and performs

nonlinear transformations that progressively distill raw data into

meaningful feature abstractions. There are several popular DL

architectures: multilayer perceptron (MLP), convolutional neural

networks (CNNs), recurrent neural networks (RNNs), auto-

encoders (AEs), generative adversarial networks (GANs) and

transformer (Figure 2). These architectures can be used according

to the specificity of the data.
2.2 Application of AI in cancer research

Early cancer detection: By facilitating cancer detection at the

precancer stage, AI allows for early interventions that significantly

prolong the overall survival time of the patients. For example, Klein

et al. used a blood-based multi-cancer early detection (MCED) test

and applied cell-free DNA sequencing, combined with machine

learning, which predicted the origin of cancer signals with high

specificity and accuracy in a variety of cancers (27). Similarly, Stark

et al. constructed machine learning models using Gail model inputs

and personal health data. These models exhibit strong performance

in predicting breast cancer risk and can be used as non-invasive

tools to increase early detection and prevention of breast cancer

(28). Additionally, to develop a machine learning model to predict

the risk of lymph node metastasis in renal carcinoma, Feng et al.

filtered clinical features through LASSO and univariate and

multivariate logistic regression analyses and then used statistically

significant risk factors to build the XGB model. It could distinguish

about 89% of LNM patients when the threshold probability was set

to 54.6%, suggesting a promising application prospect in the

clinic (29).

Machine learning and deep learning emerge as potent tools to

identify biomarkers from intricate datasets (30). For example,

Halner et al. established a random forest-based machine learning
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pipeline, “Decancer,” to analyze liquid biopsies. Decanter enhanced

the sensitivity for detecting stage I cancer from 48% to 90%

regardless of cancer type. Promisingly, DEcancer’s performance

using a 14-43 protein panel is comparable to 1,000 original proteins

(31). To identify metabolomic biomarkers for the diagnosis and

prognosis of gastric cancer, Chen et al. used the LASSO regression

algorithm to build a 10-metabolite GC diagnostic model, which is

validated in an external test set with a sensitivity of 0.905. This

model exhibited superior performance to traditional models that
Frontiers in Immunology 03
utilized clinical parameters and identified two distinct biomarker

panels, enabling early diagnosis and prognosis of cancer (32). Tayob

et al. developed the parametric empirical Bayes algorithm and the

Bayesian screening algorithm to improve the early detection of

cancer, which improved sensitivity to cancer biomarkers (33).

Furthermore, Konstantinos et al. tested the miRNA expression

profiles of Gastrointestinal stromal tumors (GISTs) and applied

machine learning to identify the miRNAs associated with the risk of

GIST development. They found that several miRNAs, with hsa-
FIGURE 1

The overview of machine learning paradigms. Supervised learning: Trains models on a labeled dataset, where the training dataset consists of input
data and corresponding output labels, allowing the model to be able to make accurate predictions on classification and regression tasks. Semi-
supervised learning: Trains the model with a small amount of labeled data and applies the model trained to annotate unlabeled data. Unsupervised
learning: Discovers hidden patterns, structures, or subgroups in the unlabeled data through clustering and dimensionality reduction. It uses datasets
without clear notice of the dependent (response) variable. Unsupervised means that the machine or computer should learn patterns from the data
without referring to any specific response. Unsupervised learning aims to explore the data structure and generate a hypothesis rather than to test
any hypothesis by statistical methods or to construct prediction or classification models on the basis of a set of conditions and a specified response.
Algorithms for unsupervised learning can be subdivided into two categories: (1) clustering algorithms and (2) dimensionality reduction.
Reinforcement learning: Identifies a sequence of actions to increase the probability of achieving a predetermined goal. A RL problem is solved
through a trial-and-error learning process. A RL agent interacts with an environment to maximize the cumulative reward resulting from its actions.
Generally, RL problems are modeled and solved using a Markov Decision Process (MDP), guided by Bellman’s equation. There are four components:
(1) a state that represents the environment at each time step; (2) an action the agent takes at each time step that influences the next state; (3) a
transition probability that provides an estimate for reaching different subsequent states, which reflects the environment in which an agent interacts;
and (4) a reward function, which is the observed feedback given a state-action pair. LR, Logistic Regression; DT, Decision Tree; NB, Naïve Bayes;
SVM, Support Vector Machine; NN, K-nearest Neighbor; Ridge, Ridge Regression; Linear, Linear Regression; LASSO, Least Absolute Shrinkage and
Selection Operator; GMM, Gaussian Mixture Model; DBSCAN, Density-Based Spatial Clustering of Applications with Noise; PCA, Principal
Component Analysis; MDS, Multidimensional Scaling; NMF, Non-negative Matrix Factorization; LLE, Locally Linear embedding; t-SNE, t-Distributed
Stochastic Neighbor Embedding Algorithm; UMAP, Uniform Manifold Approximation and Projection; AEs, Autoencoders.
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miR218-5p as the best, may strongly affect the prognosis of GISTs

and can serve as predictors for their development (34). In short, the

application of AI and machine learning in oncology clinics has

improved diagnostic time and clinical outcomes in various cancers.

Medical imaging: Imaging is at the forefront of clinical care. The

integration of AI into image interpretation helps radiologists

streamline workflow and improve patient care (35). Within

imaging, convolutional neural networks (CNNs) and Deep

Learning (DL) are exceptionally useful in computer vision and

enable machines to see and interpret visual data (36, 37). Al-Masni

et al. developed the ROI-based Convolutional Neural Network “You

Only Look Once (YOLO)” to accurately detect and classify the

masses in mammograms. It achieves an overall accuracy of 96.33%

in detecting the mass location and 85.52% in distinguishing between

benign and malignant lesions (38). Zhao et al. built the deep-

learning-based, fully automated lymph node detection and

segmentation (auto-LNDS) model based on multiparametric

magnetic resonance imaging (mpMRI). The auto-LNDS achieved

a sensitivity, PPV, and FP/vol of 80.0%, 73.5%, and 8.6 in internal

testing and 62.6%, 64.5%, and 8.2 in external testing, respectively,

significantly better than the performance of junior radiologists,

therefore holding great potential for facilitating N-staging in clinical

practice (39). Jin et al. developed a CNN-based algorithm to

Improve the accuracy in Optical Diagnosis of Colorectal Polyps.

It increased the accuracy of novice endoscopists to 85.6% and

significantly reduced the skill-level dependence of endoscopists

and costs (40).

Pathological identification: As the gold standard for confirming

cancer, pathological identification holds paramount significance in

diagnosis, prognosis, and therapeutic strategies. However, the

heterogeneity of tumors poses a big challenge to precise diagnosis

(41, 42). AI has transformed the landscape of cancer pathology by

empowering it with enhanced diagnostic accuracy and streamlined
Frontiers in Immunology 04
decision-making frameworks, leveraging sophisticated histology

image analysis (43). For example, to achieve an AI-based

pathological prediction of the origins of unknown cancers. Lu

et al. build the Tumor Origin Assessment via Deep Learning

(TOAD), a deep-learning-based algorithm that provides a

differential diagnosis for the origin of the primary tumor based

on routinely acquired histology slides (44). In addition, Lee et al.

presented a graph deep neural-network model to analyze the whole-

slide images (45). This model considers histopathological features

from the tumor microenvironment. in gigapixel-sized WSIs in a

semi-supervised manner and was trained to provide interpretable

prognostic biomarkers in patients with kidney, breast, lung, and

uterine cancers.

Treatment: The outcomes of cancer treatment are affected by

several key factors, such as the patient`s health status, cancer

subtype, and stage. Additionally, molecular cancer research has

recently revealed the contribution of genetic mutations to patients`

responses to a specific treatment. The complex interplay of the

above factors in the real world poses a significant challenge for

oncologists in selecting the appropriate treatment regimen for a

specific patient.

In this scenario, AI is inherently a powerful approach to the

integration and aggregation of intricate and multi-dimensional

datasets and providing comprehensive data support for decision-

making (46, 47). For example, Luo et al. proposed a collaborative

filtering method with machine learning. It can identify the most

suitable compounds for patients without genetic data, making it

feasible to predict drug sensitivity and achieve personalized drug

selection in a cost-effective way (48). Abajian et al. used Supervised

Machine Learning with both Logistic Regression (LR) and Random

Forest (RF) algorithms to explore the treatment response to

transarterial chemoembolization for hepatocellular carcinoma.

Both LR and RF models achieved an overall accuracy of 78% and
FIGURE 2

The overview of deep learning paradigms. (A), Deep learning is a subfield of machine learning. It employs artificial neural networks for representation
learning from massive amounts of data. A deep neural network consists of an input layer, multiple hidden layers, and an output layer, each of which
receives the output of the previous layer of neurons as input and performs nonlinear transformation processing, thereby gradually transforming the
raw data into meaningful feature representations. (B), The composition of multilayer perceptron (MLP) is shown as an example of deep learning. The
input layer receives data, where each neuron corresponds to a feature of the input data. The hidden layers perform computations and
transformations on the input data through weighted sums and non-linear activation functions. These processed signals are then conveyed to the
output layer, which generates the final output of the network.
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identified cirrhosis status and relative tumor signal intensity (>27.0)

as the two strongest predictors of treatment response (49). Kong

et al. introduced a NetBio-based machine learning, which accurately

predicted the treatment responses to Immune checkpoint inhibitors

(ICIs) in three different cancer types-melanoma, gastric cancer, and

bladder cancer. This model demonstrated superior performance in

comparison with conventional ICI treatment biomarkers, such as

the expression profiles of ICI targets (50).

Prognosis and management: Understanding the progression and

survival time of patients is essential for cancer management.

Oncologists used to predict patients’ prognoses based on their

experience of understanding patients’ clinical profiles (age, health

status) and tumor characteristics (subtype, stage, and grade).

Nevertheless, this strategy is inherently limited and has a low

predictive capability due to individual variation. AI has exhibited

great promise to deal with these constraints and achieves accurate

prognosis prediction for individual patients (51). Qiu et al. developed

an XGBoost model to help physicians make clinical decisions. It

employed clinicopathological information and predicted the risk of

distant metastasis in patients with rectal cancer (52). Based on LASSO

regression and Pearson correlation coefficients, Cai et al. identified

metastasis-associated genes from different cancer tissues and then used

them to build a CNN-basedmodel, “Multi-Dimensional Convolutional

Neural Network (MDCNN).” It achieved satisfactory prediction

accuracy in bone metastasis, lung metastasis, and liver metastasis

(53). The combination of AI and the Internet of Things (IoT)

technology enables telemedicine and intelligent monitoring functions,

allowing patients to receive scenario-based remote management (54).

Drug Discovery: Drug discovery and development of anti-cancer

drugs is the goal of translational medicine. However, this work is quite

a costly and time-consuming operation. Additionally, although the

advances in muti-omics and clinical trials provide quite meaningful

information, their complexity also imposes a huge obstacle. AI and

computer-aided drug design, along with modern experimental

technical knowledge, has energized data mining for faster drug

design and development in the pharmaceutical industry (55). For

example, AlphaFold2, a deep neural network algorithm,

demonstrates high accuracy in predicting the three-dimensional

structures of proteins, particularly when sequences of multiple

homologs are available. It helps us understand protein function

changes underlying carcinogenesis and improve our approaches to

counter them (56). Meanwhile, low-cost cancer drug repurposing can

be achieved by deep learning approaches, which aid the modeling of

existing drugs for discovering novel drug targets. For example, Zhou

et al. designed a prediction approach called an ensemble of multiple

drug repositioning approaches (EMUDRA). Using EMUDRA, they

predicted and experimentally validated the antibiotic rifabutin as an

anti-cancer drug for triple-negative breast cancer (57).
3 Liver immune microenvironment
and its alterations in cancer

The liver is not only an important metabolic organ but also

possesses significant immune functions, and it contains a vast array
Frontiers in Immunology 05
of immune cells (Table 1). Several factors contribute to the unique

immune functions of the liver. Firstly, the liver is a hematopoietic

organ during embryonic development. Secondly, the flow of portal

venous blood carries components from the gastrointestinal tract

and spleen (58). Thirdly, the liver participates in mucosal immunity

through the biliary system. Due to the liver’s direct exposure to

many antigens from the gastrointestinal tract, it has developed a

unique immune tolerance, which is manifested as intrinsic tolerance

mechanisms in both innate and adaptive immune responses.

Therefore, the liver can protect itself from autoimmune damage

caused by the extensive presentation of gastrointestinal antigens

(59, 60). However, in the context of liver injury and disease, various

liver cells participate in complex pro-inflammatory responses,

which may lead to hepatocyte death and further disease

progression (61).
TABLE 1 Properties of immune cells in the liver.

Cell type Markers Functions in liver

Macrophages F4/80,
CD68
(Kupffer)
CD86 (M1)
CD68,
CD163
(M2)

Engulf pathogens and dead cells, participate in
antigen presentation, and produce various
cytokines to regulate immune responses.

NK Cells CD56,
CD16

Identify and kill cells infected with viruses and
tumor cells.

Dendritic
Cells

CD1a,
CD11c

Maintain immune tolerance and regulate liver-
specific immune responses

cDCs XCR1,
CLEC9A
(cDC1)
CD11b,
CD172a
(cDC2)

Process antigens and present them to T cells,
triggering an immune response against pathogens
or tumor cells (cDC1).
Induce regulatory T cell responses, promote
coordination between humoral and cellular
immunity. Regulate immune responses to
pathogens in the liver and stimulate B cells to
produce antibodies (cDC2).

pDCs B220,
PDCA-1
(mouse)
BDCA-2,
BDCA-
4 (human)

When viruses invade, pDCs rapidly activate and
secrete cytokines such as interferon, activating
other immune cells and initiating an antiviral
immune response.

Neutrophils CD66b,
Ly6G

The first line of defense in acute inflammation,
phagocytosis and killing of
invading microorganisms.

T Cells CD3,
CD4, CD8

Directly kill target cells or secrete cytokines to
clear viral infections, monitor tumor
development, and participate in liver transplant
rejection responses.

CD4+ T IFN-g
(Th1)
IL-4, IL-5,
IL-13
(Th2)
IL-17
(Th17)
CD4

Assist in immune response (activate other
immune cells, promote antibody production),
immune regulation (maintain immune balance,
inhibit inflammatory response), and participate
in liver repair (promote liver cell regeneration,
regulate fibrosis).

(Continued)
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Innate immune system: In the liver, the innate immune system

forms the first line of defense against pathogens, present at birth

and lasts throughout life. Immunity against various pathogens or

malignant cells is provided by different types of immune cells (62).

These cells include neutrophils, natural killer cells, Kupffer cells,

monocytes, dendritic cells, and natural killer T cells (NKT) (63).

Neutrophils, the most abundant group of circulating white blood

cells, constitute the first line of defense in acute inflammation by

phagocytosing and killing invading microorganisms (64). Natural

killer cells Identify and kill cells infected with viruses and tumor

cells (65). They don’t require secondary activation for their cytolytic

activity. Instead, they induce apoptosis in tumor cells by activating

FasL or TRAIL (66, 67). In case of their inactivation or restricted

infiltration to the liver, tumor cells grow rapidly (68, 69). Kupffer

cells are resident macrophages in the liver and constantly in contact

with antigens from the gastrointestinal tract (70–72). Bleriot et al.

identified two distinct populations of Kupffer cells, which share core

molecular characteristics but express different genes and proteins

(73). Additionally, the liver also recruits a large number of

monocytes from peripheral blood and converts them into

macrophages in the liver microenvironment (monocyte-derived

macrophages). Different subtypes of macrophages can be

distinguished with the specific expression of cell markers, such as

CD11b, CCR2, and F4/80 (74–76). M1 macrophages mainly express

CD16 and CD32, etc., and also produce TNFa, nitric oxide (NO),
and reactive oxygen intermediates (ROI) to play antitumor roles,

while M2 macrophages express several surface molecules such as

CD163, Dectin-1, etc., and release interleukins (IL-4 and IL-13) and

glucocorticoids, mainly perform the immunosuppressive pro-

tumor activity (77, 78). Dendritic cells, also known as antigen-

presenting cells, identify affected cells or pathogens and present

them to other immune cells, thus maintaining immune tolerance

and regulating liver-specific immune responses (79). NKT cells are

unconventional T cells that are activated by glycolipid antigens (80,

81). They have both NK cell surface markers and antigen receptor

characteristics of T cells and serve as a bridge between innate and

adaptive immunity (82). The NKT cells that are located in hepatic

sinusoids provide intravascular immune surveillance (83) where

they may mediate proinflammatory effects through type I NKT cell
Frontiers in Immunology 06
subsets or exhibit immunosuppressive functions via type II NKT

cells (84). In short, these immune cells coordinate with each other to

accomplish the innate immune response in three steps: early

inflammation, amplification of the inflammatory signal,

and resolution.

Adaptive immune system: Several subtypes of T cells abundantly

exist in healthy liver, including CD4+ helper T (Th) cells, CD8+

cytotoxic T cells, and regulatory T cells (Tregs) (85). CD4+ T cells are

crucial for preventing tumorigenesis by facilitating the elimination of

malignant cells (86–88). They typically act as initiators of antitumor

responses and correlate with favorable responses to immunotherapy.

CD8+ cytotoxic T cells serve as the primary effector cells of the

cellular immune system, which recognize presented antigens and kill

infected or malignant cells (89). Additionally, a population of CD8+

tissue-resident memory (TRM) cells exist in the liver, functioning as

local immune sentinels (90, 91). Tregs are a subset of CD4+ T cells

with immunosuppressive properties. These cells are crucial for

maintaining homeostasis and immune tolerance (92, 93).

Accumulation of Tregs has been implicated in facilitating immune

evasion and hepatocarcinogenesis (92, 93).

B cells are a group of specialized cells that produce specific

antibodies, participate in antigen presentation, and regulate the

activities of other immune cells (94).

The development of liver cancer is highly related to infection

and inflammation, which foster the unique Immunosuppressive

microenvironment of liver cancer. It is characterized by blunted

anti-tumor immunity, an enrichment of tumor-promoting

immunosuppressive cell types, and impaired innate and adaptive

immunity (95–99). Recently, immune checkpoint inhibitors (ICIs)

have demonstrated promising clinical benefits in HCC, thus

emphasizing the importance of immunotherapy (100). Apart

from ICIs, immunotherapy also encompasses adoptive cell

therapy, oncolytic virotherapy, and cancer vaccine therapy. These

approaches can improve T-cell function and enhance cellular

immunity, thereby leading to the elimination of LC-IME and the

inhibition of tumor growth. To guide the application of

immunotherapy, more efforts are needed to gain a deeper

understanding of LC-IME.
4 The integration of AI and the
immune microenvironment of
liver cancer

In liver cancer, the intricate heterogeneity, consisting of diverse

immune and stromal cells, significantly contributes to metastasis,

relapse, and drug resistance (101–103). The exploration of the

tumor immune microenvironment and complex cellular

interactions can provide crucial insights for developing more

effective, tailored immune-oncology therapies. However, the sheer

volume and complexity of data from single-cell RNA sequencing

(scRNA-seq) and multi-omics pose challenges for direct clinical

application. In addressing these challenges, artificial intelligence

(AI) is increasingly recognized as a potent tool that enhances our

understanding of these large-scale datasets.
TABLE 1 Continued

Cell type Markers Functions in liver

CD8+ T CD8 Have cytotoxic function, participates in adaptive
immune responses, and can recognize and
eliminate cells that are infected with viruses or
have mutations.

NKT CD161,
NK1.1

Secrete cytokines to regulate immune responses,
with anti-tumor and immune
surveillance functions.

Tregs CD4,
CD25,
FoxP3

Maintain liver immune tolerance.

B Cells CD19,
CD20

Produce specific antibodies, participate in antigen
presentation, and regulate the activity of other
immune cells.
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4.1 The integration of AI and omics data

scRNA-seq analysis: scRNA-seq allows researchers to conduct

in-depth analysis of molecular characteristics, such as gene

expression and epigenetic modifications within individual cells,

generating vast amounts of genetic information data (104). The

analysis of these data is crucial for revealing cellular heterogeneity

and functional characteristics (105). With the intervention of AI,

rapid processing and interpretation of massive scRNA-seq data can

be achieved with enhanced data accuracy. AI algorithms can

automatically identify and filter out noise, retaining the true

biological differences between cells and thereby improving data

reliability (106). Additionally, batch effects, a common issue in

scRNA-seq analysis, can be caused by various factors such as

experimental samples, platforms, and library construction

methods. AI technologies can effectively eliminate these batch

effects while preserving biological differences by projecting high-

dimensional data into a low-dimensional cellular embedding space

through an asymmetric autoencoder structure (107). In fact, these

methods not only improve the accuracy of data integration but also

enable online data integration and comparative analysis of new data

with existing data.

By use of different machine learning approaches, cell type

identification models are developed to recognize cell types and

subtypes (108). These models can extract key biological insights to

predict the changes in gene expression levels or even dynamic

changes in gene interaction networks. For example, scRobust, a self-

supervised learning strategy built on the transformer architecture,

has demonstrated effectiveness in cell-type annotation and drug

tolerance detection (109). A deep learning model “Enformer

Celltyping” predicts epigenetic signals across cell types. It

overcomes the limitations of existing machine learning

approaches, which are confined to the cell types they were trained

on (110). Here, we summarized cell-type identification models

in Table 2.

Multi-omics analysis: Complex and dynamic networks of

molecules in LC-IME make a single layer of “omics” unable to

provide deep insights into the underlying mechanisms. Recent

technological advancement in high-throughput measurement of

genome (111, 112), epigenome (113, 114), metabolome (115),

transcriptome (116), and proteome (117) allows comprehensive

multi-omic studies. Multi-omics approaches are pivotal in

identifying new therapeutic targets (118) and predicting patients’

responses to treatments (119). The data from different omics can be

cross-fused and mutually verified, providing a more reliable,

comprehensive, and systematic perspective (120, 121). Through

the integrated analysis of omics data, in-depth biological data that

cannot be obtained by a single omics technology can be uncovered

(122, 123). However, the advantage of multi-omics data integration

comes with the extra complexity deriving from inherently diverse

types of omics datasets, which may pose a challenge to integrateing

the omics data in a biologically meaningful manner (124).

The experimental data generated across diverse laboratories often

cannot be seamlessly amalgamated due to inherent constraints.

Additionally, the inherent heterogeneity of multi-omic datasets,
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stemming from technical, biological, chemical, and physical

sources, poses significant challenges for interpretation (125).

With the continuous development of AI technologies, the

integration of AI and multi-omics has emerged as one powerful

solution to these challenges (126–128). AI has remarkable

capabilities in deciphering complex patterns and extracting

meaningful insights from large and intricate datasets (129–131).

This enables researchers to more systematically analyze the

complexity of biological systems (132), reveal the interactions and

regulatory mechanisms between different molecular layers, and

more accurately identify disease-related molecular markers and

potential drug targets (133, 134). This subsequently contributes to

the development of personalized medicine and precise treatment

plans, improving therapeutic effects and reducing side effects (16,

135, 136).
TABLE 2 Cell-type identification models for scRNA-seq analysis.

Models Paradigm Algorithm

Scmap Unsupervised-Graph based Nearest neighbor

Seurat Unsupervised-Graph based Nearest neighbor

scType Unsupervised-Graph based Nearest neighbor

ScScope Unsupervised-Deep
learning based

Recurrent network

DESC Unsupervised-Deep
learning based

Autoencoder

ScAIDE Unsupervised-Deep
learning based

Autoencoder

scETM Unsupervised-Deep
learning based

Autoencoder

scVI Unsupervised-Deep
learning based

Hierarchical Bayesian

DISC Semi-supervised-Deep
learning based

Autoencoder

ScDCC Semi-supervised-Deep
learning based

Autoencoder

ScLearn Supervised-
Similarity-based

CaSTLe Supervised-General
classifier-based

XGBoost

SCCAF Supervised-General
classifier-based

Logistic regression

ScID Supervised-General
classifier-based

Fisher’s linear
discriminant analysis

ScDeepSort Supervised-Deep
learning based

Weighted GNN

NeuCA Supervised-Deep
learning based

Hierarchical FFNN

ItClust Supervised-Transfer
learning based

SCTL Supervised-Transfer
learning based
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Data-based Integration. This methodology has proven effective

in several studies. Zhang Team merged information from single-

nucleotide polymorphisms (SNPs) and transcriptomic profiles into

a single matrix, which uses a Bayesian integrative model to facilitate

the investigation of their interplay and enable the prediction of

quantitative phenotypes (137). To predict remission rates and

survival outcomes in ovarian cancer, Mankoo and colleagues

integrated the data of copy number alteration, DNA methylation,

microRNA, and gene expression and performed a multivariate Cox-

LASSO analysis (138). Shen et al. proposed the iCluster framework

for glioblastoma subtyping. This framework harmoniously and

integrated, with a common set of latent variables, three distinct

omics data of copy number alteration, gene expression, and DNA

methylation (139).

Model-based Integration. In a model-centric integration

framework, distinct models tailored to individual data

perspectives are initially formulated, subsequently converging

through a fusion process of their respective outputs. For example,

the ATHENA tool (140–142), which is designed for investigating

heritable and environmental network associations, integrates

different omics data of copy number alterations, DNA

methylation, miRNA, and gene expression to uncover correlations

with clinical endpoints. This integration involves constructing

foundational models and neural networks per omics type,

ultimately leading to the construction of an integrated model

(137). Wang’s team used Similarity Network Fusion (SNF) for

cancer subtyping. It begins by creating patient similarity matrices

based on DNA methylation and the expression of mRNA

expression or miRNA and moves to an iterative nonlinear

integration, where the three foundational similarity matrices

converge into a unified matrix (143). To predict drug resistance

in HIV protease mutants, Dr. Ghici and Potter devised an

ensemble-based strategy. It sets up the basic predictive models

with structural characteristics of the HIV protease-drug inhibitor

complex and DNA sequence variations, respectively, and then

orchestrates a majority voting system to enhance the accuracy of

drug resistance prediction (144).
4.2 Current achievements of AI-guided
scRNA-seq for cellular identification in
LC-IME

4.2.1 Neutrophil
Neutrophils play a key role during the initiation of innate

immunity and the shaping of adaptive immunity. Several

subtypes of Tumor-associated neutrophils (TANs) exist with

different functions and markers: the antitumor N1, the protumor

N2, and polymorphonuclear myeloid-derived suppressor cells

(PMN-MDSCs) (145, 146). Tumor cells or other stromal cells in

LC-IME educate TANs polarization towards pro-tumor phenotype

through the secretion of cytokines or chemokines, such as GM-CSF,

IL-6, TGF-b, and E2 PGE2 (147). Furthermore, the elevated

neutrophil-lymphocyte ratio is associated with advanced cancer

stage, aggressive tumor characteristics, as well as recurrence after
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resection but varies with etiology (148). Neutrophil extracellular

traps (NETs), a unique structure produced during neutrophil death,

have been shown to promote HCC metastasis by provoking

inflammatory responses (149–152). However, due to the existence

of high heterogeneity, some subsets of neutrophils have pro-tumor

effects, while others appear to have anti-tumor effects, the overall

influence of neutrophils on cancer therapy remains obscure

(153–155). Zhang's team performed scRNA-seq analysis and

stratified patients into five subtypes, including immune activation,

immune suppression mediated by myeloid or stromal cells, immune

exclusion, and immune residence phenotypes, which were spatially

organized and associated with chemokine networks and genomic

features. Notably, the abundance of tumor-associated neutrophils

(TANs), particularly prominent within the myeloid-cell-dominated

subtype, emerged as a harbinger of an adverse clinical prognosis.

Depletion of TANs in mouse models significantly attenuated tumor

progression, thereby shedding a promising light on therapeutic

targets for innovative immunotherapeutic strategies (156).

Neutrophils also showed resistance to anti-PDL-1 therapy in

HCC via T-cell exhaustion (156). Interestingly, due to shorter

lifespan and less abundance of RNAs, Neutrophils are difficult to

identify by single-cell sequencing. However, application of

optimized workflows (such as no enrichment strategy) (156) or

capture methods (such as the BD Rhapsody platform) (157) made it

possible to identify them. Still, some neutrophils with unique

transcriptomic and functional features are identified in HCC by

scRNA sequencing. Neutrophils expressing MMP8, CD74, SPP1,

etc in HCC are considered tumor-associated neutrophils.

Importantly, Particularly, CD10+ ALPL+ neutrophils hinder anti-

PD-1 therapy by permanently destroying the T-cell (153).

Suggesting that identifying and targeting neutrophils in HCC is

essential for successful clinical outcomes.

4.2.2 Macrophages
Tumor-associated macrophages (TAMs) are one of the most

abundant innate immune cells and are observed at all stages of

tumor progression in the LC-IME (95). According to the difference

of functions in tumor progression, there are the classical M1

subtype and the alternative M2 subtype. The M1 phenotype is

induced by pro-inflammatory cytokines such as IL-1b, IL-6, IL-12,
and tumor necrosis factor-a (TNF-a), whereas the M2 phenotype is

polarized by immunomodulatory molecules such as IL-4, IL-10,

macrophage colony-stimulating factor (M-CSF), and transforming

growth factor-b (TGF-b) (158). TAMs promote liver cancer

progression through various approaches, including angiogenesis,

cancer cell proliferation, immunosuppression, extracellular matrix

remodeling, and drug resistance to therapeutic agents (159). TAMs

express inhibitory immune checkpoint proteins, such as PD-1, PD-

L1, and TIM-3, secret the immunosuppressive cytokine IL-6, and

recruit Tregs (160–162). Furthermore, TAMs are important bridges

between tumor cells and other immune effector cells. M2 TAMs

secrete IGF-1 and CCL20 to recruit Tregs and impair CD8+ T cell

function (163). FasL+CD11b+F4/80+ monocyte-derived

macrophages interact with the activated antigen-specific

Fas+CD8+ T cells and make them undergo apoptosis. The
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elimination of these hepatic macrophages significantly increased the

survival of hepatic T cells (164). Moreover, Osteopontin (OPN), a

pro-metastatic gene, promotes macrophage infiltration and PD-L1

expression in HCC by activating CSF1/CSF1R pathway (165).

Conversely, upon appropriate stimulation, macrophages exhibit

remarkable anti-tumor capabilities, such as phagocytosis of cancer

cells and cytotoxic tumor eradication (159). Therefore,

Macrophage-targeting strategies have the potential to synergize

with current therapeutic tools to improve the outcomes of

patients with liver cancer. Single-cell sequencing has identified

several new subtypes of macrophages in HCC. For instance, there

are two major types of macrophages: C1QA+ and THBS1+

macrophages (166). Among them, THBS1+ macrophages are

myeloid-derived suppressor cells (MDSC)-like cells. However,

C1QA+ are considered TAM-like macrophages, which have

properties of both M1 and M2 macrophages and highly express

APOE, GPNMB, and SLC40A1 (98) and are associated with poor

prognosis of liver cancer. The accumulation of LAIR1+ and TIM3+

TAM macrophages reduced the infiltration of CD8+T cells and was

associated with poor prognosis of HCC patients (167). Similarly, the

abundance of the APOC1+ macrophages was comparatively higher in

HCC tissues, inhibiting APOC1 improves the effects of anti-PD-1

therapy by reshaping M2 macrophages into the M1 macrophages

(168). Considering the key role of macrophages (TAM) in cancer

development, chemical inhibitors are being trialed, such as the

combination of CCR2/CCR5 antagonists (targeting macrophages)

with Nivolumab is currently in phase II clinical trials

(NCT04123379). The complex functions of TAMs have sparked great

interest in developing new therapeutic strategies targeting macrophages.

4.2.3 Dendritic cells
Dendritic cells (DCs), functioning as antigen-presenting cells

(APCs), interact with diverse immune cells and form a vital

mediator between innate and adaptive immunity. There are two

types of DCs, including Conventional DCs (cDCs) and

plasmacytoid DCs (pDCs). The primary responsibility of cDCs

(either cDC1 or cDC2) is antigen presentation, whereas pDCs are

specialized for antiviral and antitumor immunity via the secretion

of type I interferons (169),

In immunosuppressive tumor microenvironment, DC cells can

be functionally reshaped and lose their antitumor functions. Tregs

suppress the expression of HLA-DR and impair the antigen-

presenting function of cDC2 cells (170, 171). DC cells often play

an immunosuppressive role, and the enrichment of tumor-

infiltrating pDCs was correlated with Tregs infiltration as well as

poor prognosis in patients with HCC (172, 173). As the immune

response to immunotherapy largely depends on DC cells, many

strategies have been evaluated for stimulating DC cells in HCC

patients, such as DC vaccines (174), nanodrugs (175, 176), and DC-

derived exosomes (177), some of which have been demonstrated to

activate tumor-specific immunity. Advanced scRNA-seq has

identified the heterogeneous nature of dendritic cells (DC) in

HCC, thus revealing diversity in their functions. These

heterogeneous mature DCs, including CCR7+ LAMP3+ DCs, can

migrate from tumors to lymph nodes, interfering with T cell
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function, including exhausted T cells (TEX) and Tregs cells (98).

They are also found in lung cancer because they also express

immune regulatory markers (Cd274, Pdcd1lg2, and Cd200) and

maturation markers (Cd40, Ccr7, and Il12b); thus, they are named

as mature dendritic cells enriched in immune regulatory molecules

(mregDCs) (178). In the context of ICI treatment, a cellular triad

composed of mregDCs, CXCL13+ helper T (Th) cells, and PD-1hi

progenitor CD8+ T cells is significantly enriched in the HCC

microenvironment. Communication between mregDCs and

CXCL13+ Th cells within these cellular triads helps in the

differentiation of progenitor CD8+ T cells into effector antitumor

CD8+ T cells (179). Similarly, CXCR3+ CD8+ effector memory T

(TEM) cells and HLA-DR+ cDC1 recruited to determine the

responsiveness of HCC to ICI (180).

4.2.4 T cells
CD8+T cells exhibit an exhausted phenotype and are

incapable of halting tumor progression in HCC, and the

enrichment of exhausted CD8+T is negatively correlated with

the response to immunotherapy and prognosis in patients in

patients with HCC (181). It has been demonstrated that

dysfunction of CD8+ T cells occurs within a few hours after they

encounter tumor antigens, even before undergoing cell division T

(182). This rapid divergence of T cell fate prior to cell division

provides us a clue for timely application of immunotherapy.

Additionally, tissue-resident memory CD8+ T (TRM) cells are

also enriched in tumors, especially in HBV-related HCC (183). A

high TRM proportion is associated with better outcomes following

ICI therapy (181, 184).

Under the co-stimulation of activated APCs and different

cytokines, Naïve CD4+ T cells proliferate and differentiate into

different subsets, including Th cells (specifically, Th1, Th2, and

Th17), follicular helper T (Tfh) cells, and Treg cells (185). Among

them, Th1 cells secret IFN-g and IL-2 and promote the anti-tumor

effect of CD8+ T cells (186). Furthermore, Th1 cells facilitate

dendritic cell (DC) maturation through the CD40-CD40L

signaling axis (187). On the other hand, Th17 cells are abundant

in HCC and are associated with unfavorable clinical outcomes

(188). Moreover, Th17 cells contribute to resistance against PD-

L1 therapy by upregulating PD-L1 expression in HCC cells through

the secretion of IL-17A (189). Treg cells are significantly increased

in HCC and are correlated with dysfunction of CD8 T-cells,

reduced clinical benefits of anti-PD-L1 plus anti-VEGFR, and

poor survival (190–192). Given the crucial role of Tregs in

maintaining immune homeostasis and preventing auto-immune

diseases, there is a pressing need for innovative approaches that

precisely target tumor-infiltrating Tregs and spare the physiological

function of Tregs. Currently, little is known about the roles of Th2

and Tfh cells in HCC, which require further investigation. Both

exhausted CD8+T and Treg cells are characterized by upregulated

expression of a series of inhibitory receptors, such as PD-1 and

CTLA-4 (193, 194). In pre-tumoral HCC tissues, monocytes express

higher levels of CD93, which inhibit the infiltration of CD8 T cells

(195). Thus, targeting CD93-expressing monocytes can help

increase the activation and infiltration of the CD8 T cells. Multi-
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omics is commonly used to identify the T-cells in tumors, but

standard AI-based systems for efficiently detecting T-cells in liver

TME are not available. Questions regarding advanced AI

intervention in the detection of T cells in solid tumors, especially

liver cancer, remain unclear.

4.2.5 B cells
Tumor-infiltrating B cells play pivotal roles in tumor immunity,

including antigen presentation, antibody production, and other

functions (196). Their presence is notably a favorable marker for

HCC prognosis (94, 197). Additionally, the presence of intra-

tumoral tertiary lymphoid structures (TLS) is correlated with a

reduced risk of early recurrence in HCC patients after surgical

resection (198). Within TLS, abundant B cells transform into

plasma cells and produce IgG antibodies that effectively combat

tumors (199). However, there are some subtypes of B cells that play

pro-tumor roles in HCC. IgA-producing B cells enhanced the

expression of PD-L1 and exert an inhibitory influence on T-cell

activation (200). Furthermore, regulatory B cells (Bregs), which are

characterized by IL-10 secretion, not only dampen T-cell

responsiveness but also contribute to HCC progression via the

CD40/CD154 signaling axis (201). Given the intricate and diverse

functions exhibited by various B-cell subsets in HCC, further

research endeavors are required to unlock their full potential in

therapeutic strategies. As aforementioned, single-cell sequencing is

commonly used to identify the cellular composition of tumors. The

level of B cells in liver tumors was detected using conventional sc-

seq (202), but AI-guided sc-seq is not generally applied.

4.2.6 NK cells and other innate lymphoid cells
Innate lymphoid cells (ILCs) are a highly heterogeneous family,

which comprise NK cells, ILCs also include ILC1s, ILC2s, and ILC3s.

In the human liver, NK cells constitute a prominent subtype of

lymphocyte, accounting for about 50% of the total intrahepatic

lymphocytes (203). These NK cells can be categorically split into

two distinct subsets: cytotoxic NK cells marked by CD56dimCD16high

expression and immunoregulatory NK cells characterized by

CD56brightCD16low expression (204). Cytokines, such as IL-10 and

TGF-b, induce the exhaustion phenotype of CD11b-/CD27-NK cells

through the upregulation of NKG2A and CD96, respectively. The

blockade of IL-10 or TGF-b pathway can reverse the dysfunction of

NK cells (205, 206). Furthermore, a significant reduction of NAD+ in

NK cells causes their dysfunction. Supplementation with NMN, a

NAD+ precursor, restores the anti-tumor effects of NK cells (207).

Due to its potent cytotoxicity against tumors without dependence on

secondary activation, various innovative NK cell-based therapeutic

strategies have been explored in HCC (208). For example, bispecific

antibodies are designed to bridge the gap between NK cells and tumor

cells (209–211). These antibodies possess dual specificity, enabling

them to simultaneously bind to a tumor-associated antigen on HCC

cells and an activating receptor on NK cells. This interaction triggers

potent antibody-dependent cellular cytotoxicity (ADCC), NK cells

are activated and directed toward the tumor, leading to their direct

killing via the release of cytotoxic granules containing perforin and
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granzymes. Furthermore, adoptive cell transfer (ACT) therapies have

emerged as a promising avenue for NK cell-based treatments. NK

cells are either expanded ex vivo or subsequently modified to enhance

their tumor-targeting and killing capabilities. These modifications

can be achieved through the engineering of chimeric antigen

receptors (CARs) into NK cells (212) or the activating killing-

ability of NK cells with cytokines (213).

Not like the cytolytic NK cells, ILC1s, ILC2s, and ILC3s function

through cytokine secretion. Interestingly, the secretion behaviors of

ILC1s, ILC2s, and ILC3s mirror the functions and characteristics of

CD4+ helper T cell subsets. The three ILC subtypes secrete IFN-g/
TNF-a, IL-4/IL-5/IL-13, and IL-17/IL-22, which are signatures of

characteristics of Th1, Th2, and Th17 cells, respectively (204, 214).

Currently, their roles in liver cancer are still controversial. For

example, ICOS+ILC2a cells were enriched in HCC and associated

with poor prognosis (215). However, in another study, a high ILC2/

ILC1 ratio is associated with enhanced anti-tumor immune responses

and better prognosis (216). Further studies are needed to define the

contribution of these cytokine-secretion ILCs in HCC.
5 Challenges and Future Prospects

In the past several years, a drastic rise in data digitization has

been seen in many sectors, including the medical sector. However, it

comes with challenges, especially in acquiring and scrutinizing

suitable data to solve various complex problems. LC-IME is

highly heterogeneous and complex, and so far, no AI system has

been constructed to identify various cell types and signaling

pathways (217, 218). The cellular composition of the LC-IME is

usually determined by conventional single-cell sequencing; AI

intervention can improve the overall outcome. With enhanced

automation, AI has the power to handle large-scale data because

AI-guided tools can learn from input data and independently draw

conclusions according to the given objectives. On the other hand,

conventional methods require stepwise monitoring and human

input for manual analysis and drawing conclusions. However,

several limitations still exist for freely applying AI in LC-IME.

First, there is a long way to go in building highly accurate AI

algorithms and models that are both explainable and trustworthy.

Further integration of constraints into the models, based on

biological domain knowledge in a principled manner, is necessary

to improve both the accuracy and interpretability of models being

applied to LC-IME. Second, the reliability of most studies is limited

by small sample sizes. Future rigorous, large-scale longitudinal

studies on LC-IME are needed for feature decomposition and to

reduce the large number of variables. Third, research growth in this

area is hindered by the lack of international guidelines or models

that specify where AI is more likely to be useful in monitoring the

integration of large data. There is a need for transparent, accessible,

and curated data sharing. Moreover, interdisciplinary approaches,

supplemented by rigorous co-production and co-design processes

alongside individuals with liver cancer, are key to progress in this

area. These research directions are expected to drive the in-depth
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application of AI technology in LC-IME field, thereby providing

new solutions for precision medicine of liver cancer and

significantly improving treatment outcomes and quality of life

for patients.
6 Conclusion

With the rapid development of high-throughput sequencing

technology and computer science, the amount of large omics data

has increased exponentially, the advantages of multi-omics analysis

have gradually emerged, and the application of artificial intelligence

has become more and more extensive. Overall, this review has

highlighted the potential, current applications, and implementation

framework for integrating AI in the discovery and validation of

biomarkers in HCC. Finally, we briefly explained the current

challenges of multi-omics analysis and artificial intelligence in

order to provide new research ideas for the medical industry and

to promote the development and application of precision medicine.
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