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Organ transplantation is a life-saving intervention that enhances the quality of life

for patients with end-stage organ failure. However, long-term immunosuppressive

therapy is required to prevent allogeneic graft rejection, which inadvertently

elevates the risk of post-transplant malignancies, especially for liver transplant

recipients with a prior history of liver cancer. In response, the emerging field of

transplant oncology integrates principles from oncology and immunology to

improve outcomes for patients at high risk of tumor occurrence or recurrence

following transplantation. Therefore, it is of substantial clinical significance to

develop immunosuppressants that possess both immunosuppressive and

anti-tumor properties. For instance, mTOR inhibitors demonstrate anti-tumor

effects among antimetabolite immunosuppressive drugs, and recent studies

indicate that capecitabine, an antimetabolite chemotherapeutic, may also exhibit

immunosuppressive activity in the clinic for liver transplants suffering from

hepatocellular carcinoma. This review systematically explores potential

immunosuppressants with dual anti-tumor and immunosuppressive effects to

support the management of transplant patients at elevated risk of tumor

occurrence or recurrence.
KEYWORDS

organ transplantation, transplant oncology, immunosuppressant, anti-metabolic drugs,
anti-tumor
1 Introduction

Organ transplantation is the only way to extend the lives of many patients with end-stage

organ failure. In 1963, Starzl et al. performed the first orthotopic liver transplantation,

introducing the concept that primary liver malignancies unresponsive to conventional

techniques, such as subtotal liver resection, should be considered for total hepatectomy and

liver transplantation (1). Although transplant oncology is not a new concept, it has recently
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regained attention with advancements in transplant immunology and

oncology, leading to the formal introduction of the term Transplant

Oncology in 2015 (2). Transplant oncology involves replacing a

cancerous organ with a healthy one and integrates multiple

specialties from transplantation and oncology. It encompasses not

only the surgical procedure but also the comprehensive management

before and after organ transplantation. This multidisciplinary field

relies on four pillars: the evolution of cancer care, the exploration of

disease mechanisms, the elucidation of tumor and transplant

immunology, and the extension of the limits of hepatobiliary cancer

surgery. To date, liver transplantation remains the only solid organ

transplantation that provides curative treatment for malignancies in

selected patients (3).

However, after organ transplantation, cancer risk is one of the

three major causes of death for the patients (4). Understanding of

post-transplant malignancy is inadequate regarding early detection

and lack of established guidelines. The risk factor is most elusive

because of altered dynamics of immunity, host response, and

different clinical presentation. Studies have shown an overall two

to four-fold elevated risk of cancer after the organ transplant. The

mechanisms involved in the oncogenesis are long-term

immunosuppression leading to reduced immune surveillance of

neoplastic cells, and the opportunistic post-transplant infections

especially viral infections because of Epstein-Barr virus, Varicella,

Cytomegalovirus and Human herpesvirus-8, etc. Physicians and

patients face a challenging problem that cancer after an organ

transplant is more biologically aggressive and patients may receive

less aggressive cancer treatment because of comorbidities and the

fear of transplant rejection.

Recurrence of hepatocellular carcinoma (HCC) following liver

transplantation occurs in 6%–18% of patients transplanted for HCC

(5). Recurrence is partially predictable and thus represents not only the

loss of a potential donor resource, but also the added, and problematic

challenge, of managing a presumably accelerated tumor progression in

an immunocompromised host (6, 7). The Israel Penn International

Transplant Tumor Registry, the largest and most comprehensive

registry in the world records non-melanoma skin cancers as the

most prevalent cancer in post organ transplant state. Following is the

list of various cancers associated with the organ transplant: Kaposi

sarcoma, skin (non-melanoma, non-epithelial), non-Hodgkin

lymphoma, liver, anus, vulva, and lip tumors (8).

After organ transplantation, a triple therapy regimen, typically

comprising calcineurin inhibitors (CNIs, such as tacrolimus or

cyclosporine), mycophenolate mofetil (MMF), and glucocorticoids,

is routinely administered for immunosuppression in the clinic (9, 10).

However, experimental and early observational clinical studies have

highlighted the interaction between immunosuppressive therapy

and HCC recurrence (11). Several retrospective studies have

demonstrated an association between CNIs levels and HCC

recurrence. For example, one study found that recurrence was

highest (46%) when high CNIs levels were present alongside other

clinical or histological risk factors (Alpha-fetoprotein > 50ng/mL,

macrovascular invasion, and G3–G4 grading). In patients with the

same non-immunosuppressive risk factors but under low CNI levels,

the recurrence rate was only 15%. These results link intensive

immunosuppression with a high risk of tumor recurrence after
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liver transplantation (12). Therefore, for liver transplant patients

with liver cancer or those at high risk of postoperative tumor

development, it is necessary to introduce novel clinical strategies to

prevent tumor recurrence after transplantation. Additionally,

replacing CNIs with rapamycin drugs in the early postoperative

period to mitigate the risk of tumor recurrence is also being

adopted in clinical practice, this strategy decreases the rate of

tumorigenesis after organ transplantation.

In 2004, Guba et al. proposed the notion that certain reagents with

both anti-tumor and immunosuppressive effects could be used for liver

transplantation in patients at high risk of tumor recurrence, we defined

these agents referred to as anti-cancer immunosuppressants (ACIS)

(13, 14). Additionally, they confirmed rapamycin as an effective ACIS

in clinical settings. In recent years, some novel drugs have emerged as

potential ACIS which may promote the development of transplant

oncology, as shown in Table 1. In this review, we will summarize the

current ACIS identified from experimental and clinical studies

and mechanisms.
2 Mammalian target of rapamycin
inhibitors and derivates

Interestingly, immunosuppression is correlated with tumor

occurrence risk (15), some HCC pathways are also the target of

some immunosuppression agents, such as the mammalian target of

rapamycin (mTOR) inhibitors (mTORi) (16, 17) (Figure 1). Indeed,

activation of the PI3K/AKT/mTOR pathway is common (50%–

60%) in HCC, and is correlated with poor HCC prognosis.

Retrospective studies have documented lower HCC recurrence

and higher posttransplant survival in patients under mTORi

immunosuppression compared to CNIs. In the largest study (n =

2491 HCC patients and 12167 non-HCC patients), sirolimus (SRL)-

based immunosuppression was associated with improved 5-year

survival in those with an HCC indication (18, 19).

In HCC, mTOR promotes protein synthesis by activating S6K1

and inhibiting 4E-BP1, both of which enhance protein translation.

This supports the uncontrolled growth and proliferation of HCC

cells. mTOR controls glucose metabolism, lipid synthesis, and

mitochondrial function (20). In HCC, hyperactivation of mTOR

drives anabolic processes, providing the energy and biomass needed

for rapid tumor growth. mTOR also regulates angiogenesis through

vascular endothelial growth factor (VEGF) production, ensuring an

adequate blood supply for the expanding tumor mass in HCC. Under

normal conditions, mTOR inhibits autophagy, a cellular degradation

process. In HCC, sustained mTOR activation suppresses autophagy,

which may contribute to tumor survival by preventing the clearance

of damaged organelles and proteins (17, 21, 22).
2.1 Sirolimus and Everolimus

While in transplantation, rapamycin binds to FKBP12 and inhibits

mTOR, which blocks T-cell and B-cell activation and proliferation

by preventing the response to IL-2 (23). SRL and Everolimus are both

mTOR inhibitors that share a similar mechanism of action but differ in
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TABLE 1 Classification of immunosuppressants with anti-tumor effects.

Classification The name of the drug Clinical functions Reference

Mammalian target of rapamycin inhibitors
and derivates

Sirolimus Prevent allograft rejection (25)

Everolimus Prevent allograft rejection (24)

Antimetabolites 5-Fluorouracil and Capecitabine Cancer treatment (26–37)

Mycophenolic acid and its derivatives Prevent allograft rejection (38–45)

Cyclophosphamide Cancer treatment
Immunomodulation

(46–51)

6-mercaptopurine and its derivatives Cancer treatment (52–55)

Methotrexate Immunomodulation (56–60)

L-asparaginase Cancer treatment (61–65)

Traditional Chinese herb-derived drugs Icaritin Cancer treatment (66–79)

Artemisinin and Its Derivatives Anti-malarial (80–101)

Berberine Anti-inflammatory (102–113)

Paclitaxel Cancer treatment (114–119)

Oxymatrine Antiviral (120–128)

Fingolimod Hydrochloride Immunomodulation (129–132)

Luteolin Anti-inflammatory (133, 134)

Shikonin Antiviral (135, 136)

Emodin Antidepressant (137, 138)
F
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FIGURE 1

Anti-tumor and anti-rejection mechanisms of rapamycin. Rapamycin binds to FKBP12, forming a complex that inhibits mTOR. In tumor cells, it
suppresses proliferation by downregulating cyclin D1, S6K1, and 4E-BP1, promotes apoptosis by regulating ULK and Bcl-2, and inhibits angiogenesis
by reducing VEGF levels. In immune cells, it inhibits dendritic cell maturation, T cell proliferation, and pro-inflammatory cytokine production while
promoting regulatory T cell induction through modulation of key signaling pathways and transcription factors. S6K1, ribosomal protein S6 kinase 1;
4E-BP1, eukaryotic translation initiation factor 4E-binding protein 1; ULK, Unc-51 like autophagy activating kinase; Bcl-2, B-cell lymphoma 2; CD124,
interleukin-4 receptor subunit alpha; CD132, interleukin-2 receptor subunit gamma; CDK4, cyclin-dependent kinase 4.
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their chemical properties, pharmacokinetics, and clinical applications

(24, 25). Both SRL and Everolimus are used as immunosuppressants to

prevent organ rejection after transplantation, but they have different

pharmacokinetic profiles and clinical applications.
3 Antimetabolites

3.1 5-Fluorouracil and Capecitabine

5-Fluorouracil (5-FU) is a uracil analogue wherein the hydrogen at

the 5-position of uracil is substituted with fluorine. As a quintessential

antimetabolic agent, it has been extensively utilized in clinical oncology

for the treatment of various malignancies. 5-FU itself lacks inherent

biological activity and must be metabolized in vivo to its active forms:

fluorouracil deoxynucleotide (F-dUMP) and fluorouracil triphosphate

nucleoside (FUTP). F-dUMP, structurally analogous to dUMP, inhibits

deoxythymidine synthase, while FUTP is integrated into RNA as

FUMP. In addition to its antitumor properties, 5-FU exhibits

significant immunosuppressive effects, which may facilitate its use in

preventing organ rejection post-transplantation. Prior research has

demonstrated that 5-FU can extend the survival of rat heart

allografts (26). Nonetheless, the potential for serious side effects, such

as bone marrow suppression, constrains the feasibility of its prolonged

use in transplant background.

Capecitabine (CAP), a prodrug of 5-FU, has emerged as a first-

line chemotherapeutic agent for the treatment of malignancies such

as colorectal cancer. Following oral administration, CAP is absorbed

in the gastrointestinal tract and subsequently metabolized into its

intermediary forms: 5’-deoxy-5-fluorocytidine and 5’-deoxy-5-

fluorouridine, through the action of carboxylesterase and cytidine

deaminase, respectively. Ultimately, these intermediates are

converted to 5-FU by thymidylate phosphorylase (TP). The

expression of TP is markedly elevated in cancerous tissues

compared to adjacent normal tissues, leading to a higher

accumulation of 5-FU in tumor cells and enhanced anticancer

efficacy (27). Consequently, the therapeutic effectiveness of CAP is

closely associated with the distribution and expression of TP.

Early research has established that CAP is effective in

preventing acute rejection of canine renal allografts. Although

neurotoxicity has been observed, it can be attenuated by dose

reduction (28, 29). Subsequent studies have demonstrated that, in

addition to its presence in tumor cells, TP is highly expressed in T

cells, whereas its expression in bone marrow tissue remains

minimal. This differential tissue distribution of TP not only

mitigates the myelosuppressive side effects of CAP but also

promotes selective enrichment of 5-FU in T cells, thereby

minimizing its cytotoxic effects. Research has demonstrated that

CAP reduces the proportion of T cells in mice and lowers the levels

of associated proinflammatory factors, including IL-2, TNF-a, and
IL-6, suggesting that CAP primarily exerts its immunosuppressive

effects on compromised T cells (30). Further investigations revealed

that CAP can T cell apoptosis by inhibiting the AKT/SMARCC1/

AP-1 axis through HSP90AB1 (31). Metronomic chemotherapy is

characterized by the frequent administration of conventional

chemotherapy drugs at low doses with no prolonged drug-free
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breaks. Compared to traditional chemotherapy, it not only exerts

direct effects on tumor cells, but also inhibits angiogenesis by

inhibiting the synthesis and release of anti-angiogenic factors

inducing thrombospondin-1, endostatin, angiostatin and pigment

epithelium-derived factor (32). In addition, it minimizes the

cytotoxicity of conventional chemotherapy drugs (33). In a

clinical study examining liver cancer recurrence following liver

transplantation, metronomic CAP achieved comparable efficacy to

sorafenib without causing acute rejection, indicating its potential as

an anti-rejection therapy post-transplantation (34). Zheng et al. has

shown that metronomic CAP administered to recipient rats can

induce T cell ferroptosis by inhibiting the Nrf2/HO-1/GPX4

antioxidant system, thereby mitigating liver allograft rejection

(35). Additionally, they demonstrated that CAP targets

thymidylate synthase (TYMS) inhibition, an enzyme essential for

DNA synthesis and pyrimidine metabolism, thereby suppressing

CD4+ T cell activation and Th1 cell differentiation, effects that

contribute to CAP-mediated inhibition of cardiac allograft rejection

(36). Further studies have confirmed that rapamycin enhances the

protective effects of metronomic CAP, prolonging survival in rat

liver transplantation and murine cardiac allograft models (37). At

present, the immunosuppressive effects of metronomic CAP on

organ transplantation have only been demonstrated in experimental

animal models, highlighting the need for further basic and clinical

research to validate these findings.
3.2 Mycophenolic acid and its derivatives

Mycophenolic acid (MPA), an antibiotic derived from Penicillium

stoloniferum and similar fungal strains, inhibits the proliferation and

function of T and B lymphocytes by targeting inosine monophosphate

dehydrogenase, the rate-limiting enzyme in the de novo synthesis of

guanine nucleotides. Currently, MPA and its derivatives, including

MMF and mycophenolate sodium, are predominantly employed

clinically as immunosuppressants in organ transplantation and for

the treatment of autoimmune diseases such as systemic lupus

erythematosus and rheumatoid arthritis.

Studies have substantiated the anti-tumor effects of MPA and its

derivatives both in vivo and in vitro. Previous research indicates that

MPA effectively inhibits the proliferation of various human and

mouse tumor cell lines in a dose-dependent manner, ranging from

low doses (0.01 mM) to high doses (100 mM) in vitro. Tumor cell

lines exhibit varying degrees of sensitivity to MPA, with human

lymphocytic leukemia cells (Molt-4) demonstrating the highest

susceptibility (IC50 < 0.1 mM). Conversely, not all tumor cell

lines are responsive to MPA; for instance, gastric adenocarcinoma

cells (Hs746T), pancreatic ductal carcinoma cells (PANC-1), and

human HCC cells (HepG2) show resistance to MPA ’s

antiproliferative effects, even after 72 hours of treatment with

concentrations up to 20 mg/mL (38). In alignment with these in

vitro findings, numerous studies have reported that MMF, when

administered either by gavage or intraperitoneal injection, can

inhibit the growth and metastasis of several tumors in tumor-

bearing mice or rats. However, certain tumors, such as mouse colon

adenocarcinoma cells (CT26), liver endothelioma cells (SK-Hep-1),
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and liver adenocarcinoma cells (Hep-3B), exhibit resistance to

MMF when implanted in animal models (39, 40).

Clinical studies have demonstrated that the inclusion of MMF

in standard immunosuppressive regimens is associated with a

significantly reduced risk of developing malignancies (41–43).

Two notable clinical trials have investigated the anti-cancer effects

of MMF. In 2004, Takebe et al. conducted a Phase I clinical trial to

evaluate MMF for the treatment of advanced multiple myeloma.

The study revealed that patients with relapsed and refractory

multiple myeloma tolerated MMF well at doses ranging from 1 to

5 grams per day, and the clinical response correlated positively with

a decrease in intracellular deoxyguanosine triphosphate levels (44).

In another trial, 12 patients with resectable pancreatic ductal

adenocarcinoma were treated with MMF or a placebo for 5 to 15

days prior to surgery. Unfortunately, the MMF-treated group (n =

6) did not exhibit significant anti-tumor effects compared to the

untreated group (n = 6) (45). Consequently, further investigation is

required to fully understand the therapeutic potential of MPA-

based drugs across various malignancies.
3.3 Cyclophosphamide

Cyclophosphamide (CP) is a nitrogen mustard derivative that,

upon hydrolysis by phosphoramidase or phosphatase in the liver or

tumor tissue, is converted into its active form, phosphoramide

mustard. This active metabolite induces cross-linking of DNA by

alkylating guanine bases, leading to the formation of cross-links

between DNA strands or within the same strand, thereby disrupting

the DNA structure. As a cytotoxic chemotherapeutic agent, CP is

utilized clinically for the treatment of various malignancies,

including malignant lymphoma, multiple myeloma, breast cancer,

small cell lung cancer, and ovarian cancer. Additionally, CP serves

as an immunosuppressant in the management of autoimmune

diseases and in preventing organ rejection during transplantation.

In 1963, Berenbaum first demonstrated that a single dose of CP

could extend the survival of skin allografts in mice (46). In 1971,

Starzl et al. reported the application of CP in human organ

transplantation (47). Following this, CP was employed clinically

to prevent rejection in kidney, heart, liver, and other organ

transplants (48–50). However, as an early immunosuppressive

agent, due to its significant toxicities, including bladder toxicity

and gonadotoxicity, CP has been increasingly supplanted by safer

alternatives, such as cyclosporine A (51).
3.4 6-mercaptopurine and its derivatives

6-mercaptopurine (6-MP) is a purine analog that impedes cell

proliferation and induces cell death by interfering with DNA and

RNA synthesis. It is primarily utilized in the clinical management of

leukemia. Given that activated and proliferating lymphocytes

involved in rejection are heavily reliant on purine metabolism, 6-

MP can function as an immunosuppressive agent in organ

transplantation. In 1960, Zukoski demonstrated that 6-MP could

extend the functional survival of renal homografts in canines (52).
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Azathioprine (AZA) is a sustained-release prodrug of 6-MP.

Although AZA and 6-MP exhibit comparable immunosuppressive

activities in vivo, AZA is associated with reduced toxicity at

equivalent immunosuppressive concentrations. Consequently, AZA

is extensively utilized in the treatment of autoimmune diseases and in

the immunosuppressive management of organ transplantation (53).

The first application of AZA for immunosuppression in human

kidney transplantation occurred in 1961 (54). Subsequently, AZA,

in combination with corticosteroids and CNIs, became the

standard regimen for immunosuppressive drug therapy in organ

transplantation (55). However, in recent years, AZA has been

progressively supplanted by MMF, another purine nucleotide

inhibitor, owing to MMF’s superior immunosuppressive efficacy

compared to AZA (55).
3.5 Methotrexate

Methotrexate (MTX) is a folate analog that inhibits

dihydrofolate reductase, thereby preventing the reduction of

dihydrofolate to the physiologically active tetrahydrofolate. This

inhibition disrupts the transfer of one carbon units during the

biosynthesis of purine and pyrimidine nucleotides, ultimately

leading to the inhibition of DNA synthesis. Additionally, MTX

exerts an inhibitory effect on TYMS; however, its effects on RNA

and protein synthesis are relatively weak. Initially developed over 70

years ago as an anti-folate chemotherapy agent, MTX is now widely

utilized as a first-line treatment for autoimmune and inflammatory

diseases such as rheumatoid arthritis, psoriasis, and Crohn’s

disease, etc. (56).

Alexandra et al. demonstrated that the combination of ATG

and MTX can achieve long-term survival of mouse heart allografts

through the induction of immune tolerance (57). In a clinical study,

MTX was utilized as a rescue or adjuvant therapy in both adult and

infant heart transplant recipients. The results indicated that while

one case of grade 3b rejection was not reversed by MTX, the

rejections in all other cases were swiftly reversed following MTX

treatment (58). Subsequently, another study investigating the use of

MTX in conjunction with conventional triple immunosuppressive

therapy for recurrent mild to moderate acute rejection in pediatric

heart transplantation found that the frequency of rejection at two

months post-MTX treatment was significantly reduced compared

to pre-treatment levels (59). However, an additional clinical study

on heart transplantation revealed that patients treated with MTX

experienced a higher rejection rate after MTX reversal than those

who did not receive MTX (60). Therefore, the potential long-term

benefits of MTX for organ transplant recipients warrant

further investigation.
3.6 L-asparaginase

L-asparaginase, an amidohydrolase, is the first enzyme used in

cancer treatment and is widely found in various animals, plants, and

microorganisms, including bacteria, fungi, algae, yeast, and

actinomycetes, but not in humans (61). Clinically, L-asparaginase
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is primarily extracted and isolated from Escherichia coli bacteria for

the treatment of acute lymphoblastic leukemia. This anti-tumor

drug exerts cytotoxic effects by inhibiting intracellular protein

synthesis. Specifically, L-asparaginase catalyzes the hydrolysis of

L-asparagine into L-aspartate and ammonia in the bloodstream.

Normal cells, equipped with asparagine synthetase, can synthesize

L-asparagine, whereas leukemia cells, deficient in asparagine

synthetase, are unable to synthesize sufficient L-asparagine,

leading to impaired protein synthesis and subsequent anti-tumor

effects (62).

Early studies have established the immunosuppressive effects of

L-asparaginase. Following treatment with L-asparaginase, mice

exhibited reduced lymphocyte counts, atrophy of the lymph

nodes, thymus, and spleen, and impaired migration of lymph

node cells to the lymph nodes when injected into recipients of the

same genotype. In vivo experiments have further demonstrated that

L-asparaginase can mitigate skin graft rejection and inhibit the

production of antibodies against sheep red blood cells (63).

Additionally, Rapaport et al. confirmed that L-asparaginase can

prolong the survival of canine renal allografts (64), and Levin et al.

verified its immunosuppressive effects in an inbred rat renal

transplant model (65). However, there are few reports on the

immunosuppressive effects of L-asparaginase and its application

in clinical solid organ transplantation.
4 Traditional Chinese
herb-derived drugs

Traditional Chinese herbs or plant extracts have demonstrated

promising antitumor effects in preclinical studies, while also

showing immunosuppressive properties in organ transplantation

models, suggesting their potential as novel immunosuppressants

with antitumor effects.
4.1 Icaritin

Icaritin (ICT) is an activemonomer extracted and isolated from the

epimedium plant. Due to its potent therapeutic effects against human

malignancies, ICT has entered clinical trials for the treatment of PD-

L1-positive advanced HCC (Phase III, ClinicalTrials, NCT03236649),

HCC (Phase III, ClinicalTrials, NCT03236636), advanced solid tumors

(Phase Ib, completed, ClinicalTrials, NCT02496949), and advanced

breast cancer (Phase I, ClinicalTrials, NCT01278810). The antitumor

mechanisms of ICT include the downregulation of cyclin-dependent

kinase 2 (CDK2) (66–68), inducing cell cycle arrest in HCC,

colon cancer, and prostate cancer. ICT activates NF-related

apoptosis-inducing ligand, Fas-caspase-3/8 (69, 70), inhibits the

phosphorylation of Akt and mTOR (71, 72), activates PTEN/Parkin-

dependent mitochondrial autophagy (73), downregulates Jak-2, p-

Stat3, and p-Akt expression (74), and upregulates p-JNK and p-C-

Jun expression (75, 76), thereby inducing apoptosis in human

glioblastoma, liver cancer, ovarian cancer, and chronic myeloid

leukemia cells. Additionally, ICT suppresses tumor cell glycolysis by

upregulating p53, thereby inhibiting energy metabolism and hindering
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liver cancer growth (77). ICT also modulates the tumor immune

microenvironment by directly binding to MyD88 or IKKa to inhibit

the TLR-MyD88-IKK-NF-kB inflammatory pathway, reducing the

production of inflammatory cytokines such as TNF-a and IL-6 (78).

In organ transplantation, ICT has been reported to extend the survival

time of allogeneic skin grafts by inhibiting T cell activation (79),

indicating its immunosuppressive effects. While ICT is already in

clinical use as an antitumor drug, its immunosuppressive effects in

organ transplantation warrant further investigation.
4.2 Artemisinin and its derivatives

Artemisinin (ART) and its derivatives are natural compounds

extracted from the artemisia annua plant, a member of the

Asteraceae family, which has been traditionally used in Chinese

medicine. They are renowned for their potent antimalarial

properties. In addition to their antimalarial effects, ART and its

derivatives have also demonstrated significant antitumor activity.

Furthermore, in allogeneic transplant animal models, ART and its

derivatives have notably extended graft survival, suggesting

potential immunosuppressive effects.

4.2.1 Artemisinin
The antitumor effects of ART began to receive attention in the

early 1990s (80). ART induces cell cycle arrest in human prostate

cancer, human gallbladder cancer, and human breast cancer cells by

downregulating the expression of cyclin-dependent kinases CDK2

and CDK4 (81–83). ART reduces the expression of p-ERK1/2 and

inhibits the proliferation of human gallbladder cancer cells (82).

Besides its antimalarial and antitumor properties, ART has also

been reported to possess immunosuppressive effects. In rat models

of allogeneic cardiac transplantation, oral administration of ART

reduced the infiltration of effector T cells and the secretion of

inflammatory cytokines, increased the infiltration of regulatory T

cells, and decreased macrophage infiltration in the graft, thereby

significantly extending graft survival (84). Additionally, ART

significantly prolonged the survival time of mouse allogeneic skin

grafts, which is associated with the blockade of the OX40-OX40L

co-stimulatory signaling pathway and reduced IL-6 secretion (85).

4.2.2 Artesunate
Artesunate (ARS) is derived from the esterification of

dihydroartemisinin and succinic anhydride, and it exhibits better

aqueous solubility compared to ART. Multiple clinical studies have

shown that ARS treatment results in a significant inhibition of tumor

growth (86–90). ARS affects signaling pathways and transcription

factors associated with tumor growth, including the inhibition of the

IL-6-JAK-STAT pathway (91), reduction of NF-kB p65 transcriptional

activity (92), activation of p38 MAPK (93), and suppression of the

Wnt/b-catenin pathway (94). ARS inhibits the proliferation of rat

HCC, mouse multiple myeloma, human acute myeloid leukemia, and

rhabdomyosarcoma cells. ARS also suppresses the secretion of VEGF

and its receptor KDR/flk-1, and inhibits microvascular formation in

human ovarian cancer (95). By upregulating intracellular free iron

levels, ARS promotes the accumulation of intracellular lipid peroxides
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and induces ferroptosis in human rhabdomyosarcoma, Burkitt’s

lymphoma, human pancreatic cancer, human cervical cancer, and

human fibrosarcoma cells (93, 96–99). ARS induces oxidative DNA

damage leading to DNA double-strand breaks in human glioblastoma

cells (100). ARS has also been reported to have immunosuppressive

effects. In mouse allogeneic cardiac transplantation models, ARS

significantly reduced the infiltration of inflammatory cells in cardiac

tissue and the proportion of CD4+ CD8+ T cells in the spleen and

lymph nodes, decreased cardiomyocyte apoptosis, and extended graft

survival by reducing the expression of PERK, ATF4, and CHOP to

mitigate ROS production and endoplasmic reticulum stress, and by

inhibiting dendritic cell maturation (101).
4.3 Berberine

Berberine (BBR) is an isoquinoline alkaloid extracted from Coptis

chinensis and Phellodendron amurense, commonly used in the

treatment of bacterial diarrhea (102). Several preclinical studies

have demonstrated BBR’s antitumor properties. BBR induces cell

cycle arrest in human thyroid cancer and glioblastoma cells by

upregulating the expression of CIP1/p21 and Kip1/p27 proteins

and downregulating cyclin-dependent kinases (CDK2, CDK4,

CDK6) (103, 104). It inhibits the activation of transcription factor

AP-1 (105), blocks the nuclear translocation of p50/p65 NF-kB
proteins and their binding to the COX-2 promoter (106), thereby

suppressing the proliferation of human cervical cancer and non-small

cell lung cancer cells. BBR induces apoptosis in human liver cancer

cells by upregulating P53 (107), downregulating CD147 (108),

increasing Bax expression, activating caspases 3 and 9 (109),

promoting AMPK phosphorylation, and inhibiting Akt

phosphorylation (110). Additionally, BBR inhibits the expression of

MMP-2 (111), suppresses the expression of Hypoxia-inducible

factor-1a, Vascular endothelial growth factor, and Pigment

epithelium-derived factor (106), and interacts with vasodilator-

stimulated phosphoprotein (112), thereby reducing microvascular

proliferation and migration in human non-small cell lung cancer and

breast cancer cells. In animal models of solid organ transplantation,

BBR has shown immunosuppressive effects. In a murine cardiac

allograft model, BBR treatment via intraperitoneal injection

significantly extended graft survival through inhibiting the

activation and proliferation of CD4+ and CD8+ T cells and

inducing T cell apoptosis through activation of the mitochondrial

apoptosis pathway (e.g., inducing expression of PCNA, Bcl-2, Bax,

cytochrome c, cleaved-caspase-3, and cleaved-PARP), thus

prolonging the survival of cardiac allografts in mice (113). Due to

its low water solubility and poor oral absorption, BBR has not yet

been applied clinically.
4.4 Paclitaxel

Paclitaxel (PTX) is a diterpenoid alkaloid extracted from the

Pacific yew tree, known for its anti-cancer properties (114). It has

been approved by the U.S. Food and Drug Administration for the

treatment of various cancers, including breast cancer, non-small cell
Frontiers in Immunology 07
lung cancer, and ovarian cancer. PTX exerts its effects by binding to

the b-tubulin subunit of microtubules, preventing their

depolymerization, thereby stabilizing the microtubule structure.

This stabilization inhibits tumor cell proliferation, migration, and

neovascularization, while promoting apoptosis in tumor cells (115,

116). The microtubule stabilization induced by PTX is associated

with the phosphorylation of Bcl-2, which prevents its interaction

with calcineurin and subsequent chelation, thereby allowing the

activation of T-cell nuclear factor and subsequent transcription of

CD95L (117). This is related to alloantigen-induced lymphocyte

activation, suggesting a potential immunosuppressive role for PTX.

Studies have shown that intraperitoneal administration of PTX

significantly prolongs the survival of allografts in rat heart

transplantation models. PTX induces lymphocyte apoptosis,

reducing the activity of cytotoxic T cells and the production of

IL-2, as well as the levels of cytotoxic antibodies after alloantigen re-

exposure (118, 119).
4.5 Oxymatrine

Oxymatrine (OMT) is an alkaloid compound extracted from

the traditional Chinese medicine sophora flavescens. OMT is

utilized for the treatment of chronic hepatitis, chronic bronchitis,

and other conditions. Preclinical studies have demonstrated its anti-

tumor effects. OMT reduces the expression of Cyclin D1, CDK4,

and CDK6 while enhancing P21 expression (120, 121), leading to

cell cycle arrest in human esophageal and gastric cancer cells. It

upregulates p53 and Bax proteins (122), increases caspase-3/

caspase-9 activity (123), and inhibits the expression of PI3K, p-

Akt, p-mTOR, p-p70S6K, and NF-kB (124), inducing apoptosis in

human gallbladder, prostate cancer, and acute leukemia cells. In

addition, OMT decreases the expression levels of VEGF (125), TGF-

b1, and PAI-1 proteins (126), and inhibits tumor micro-vessel

formation, invasion, and metastatic potential in human pancreatic

and colorectal cancers. In a murine cardiac allograft model,

intraperitoneal administration of OMT significantly prolonged

graft survival reduced CD3+ T cell infiltration, increased Treg cell

infiltration, and suppressed the capacity of splenic dendritic cells to

stimulate T cell proliferation, alleviating acute graft rejection (127).

The combination of OMT with rapamycin was more effective than

either treatment alone in inhibiting mTOR and HIF-1a expression

in CD4+ or CD11c+ cells within the graft (128).
4.6 Fingolimod hydrochloride

FTY720, a sphingosine-1-phosphate (S1P) analog derived from

the ascomycete Cordyceps sinensis is a potent immunosuppressant

widely used in clinical settings for the treatment of multiple sclerosis

(129). After phosphorylation, FTY720 binds to S1P receptors to

exert its immunosuppressive effects. The non-phosphorylated form

of FTY720 induces apoptosis, enhances chemotherapy sensitivity,

and inhibits tumor metastasis by suppressing sphingosine kinase 1

and activating protein phosphatase 2A along with various cell death

pathways (130). In the field of organ transplantation, Chiba first
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demonstrated in 1996 that FTY720 could extend the survival of

skin, heart, and kidney allografts in rats and dogs (131). Subsequent

studies have validated FTY720’s anti-rejection effects in other organ

transplantation models, including liver transplants in dogs, and

explored its combination with other immunosuppressive agents

(132). Additionally, other herbal extracts such as Luteolin (133,

134), Shikonin (135, 136) and Emodin (137, 138) have been

reported to exhibit both anti-tumor and immunosuppressive effects.

Although these herbal extracts have demonstrated promising

effects in preclinical studies, the absence of relevant Phase III

clinical trials highlights the challenges in clinical translation. Key

issues requiring further investigation include the standardization

and quality control of the extracts, the analysis of their absorption,

metabolism, and excretion in the human body, and the monitoring

of potential adverse drug reactions.
5 Conclusion and perspectives

In this review, we comprehensively address CAP, an

antimetabolic drug, as a promising candidate for ACIS. Evidence

suggests that metronomic CAP treatment, an emerging anti-tumor

strategy for liver transplant patients with recurrent tumors, can

effectively prevent allograft rejection while simultaneously delaying

tumor progression (34). Metronomic chemotherapy is clinically

advantageous due to its low side effects and suitability for long-term

oral administration, offering substantial benefits to patients (139–

142). Given that drug monotherapy alone is often insufficient to halt

tumor progression or prevent graft rejection in clinical practice,

combination therapies are frequently employed. Therefore, we

propose criteria for identifying potential ACIS agents for clinical

use: agents should effectively inhibit both tumor progression and

allograft rejection, be suitable for oral and long-term

administration, and demonstrate compatibility with other

immunosuppressants to enhance therapeutic efficacy.

In addition, it is worth noting that the use of immune

checkpoint inhibitors (ICIs) in solid organ transplant recipients as

an adjuvant therapy for recurrent HCC may cause a severe

alloimmune injury, even when the drug was introduced years

after transplantation (143). In addition, recipients who

discontinue ICIs days before transplantation also face a high risk

of rejection (144, 145). A safe period between pretransplant ICI

administration and transplant remains to be determined. Therefore,

ICIs should be used with extreme caution in the peri-transplant or

post-transplant.

Allograft rejection and tumor occurrence are two main factors

that hinder the long-term survival of transplants, proposing a novel

strategy to prevent both rejection and tumor will benefit the

patients. Overall, a comprehensive exploration of ACIS warrants

further investigations, and we hope that our review and perspectives

will contribute to advancements in the field of transplant oncology.
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Glossary

HCC Hepatocellular Carcinoma
Frontiers in Immunol
IPITTR Israel Penn International Transplant Tumor Registry
NMSCs Non-melanoma Skin Cancers
CNIs Calcineurin Inhibitors
MMF Mycophenolate Mofetil
ACIS Anti-tumor and Immunosuppressant Compounds
mTOR mammalian target of rapamycin
PI3K Phosphatidylinositol-3-kinase
AKT Akt serine/threonine kinase
SRL Sirolimus
IL-2 Interleukin-2
5-FU 5-Fluorouracil
F-dUMP Fluorouracil Deoxynucleotide
FUTP Fluorouracil Triphosphate Nucleoside
CAP Capecitabine
TP Thymidylate Phosphorylase
TNF-a Tumor Necrosis Factor-alpha
IL-6 Interleukin-6
SMARCC1 SWI/SNF Related, Matrix Associated, Actin Dependent

Regulator of Chromatin, Subfamily C, Member 1
AP-1 Activator Protein 1
HSP90AB1 Heat Shock Protein 90 Alpha Family Class B Member 1
Nrf2 Nuclear Factor Erythroid 2-related Factor 2
HO-1 Hemoxygenase-1
GPX4 Glutathione Peroxidase 4
TYMS Thymidylate Synthase
MPA Mycophenolic Acid
CP Cyclophosphamide
6-MP 6-mercaptopurine
AZA Azathioprine
MTX Methotrexate
ICT Icaritin
PD-L1 Programmed Cell Death Ligand 1
CDK2 Cyclin-Dependent Dinase 2
Jak-2 Janus kinase 2
p-Stat3 phosphorylated Signal Transducer and Activator of

Transcription 3
p-Akt phosphorylated Akt serine/threonine kinase
p-JNK phosphorylated c-Jun N-terminal Kinase
p-C-Jun phosphorylated c-Jun
MyD88 Myeloid Differentiation Primary Response 88
IKKa IkB Kinase a
TLR Toll-Like Receptor
NF-kB Nuclear Factor kappa-light-chain-enhancer of activated

B cells
ART Artemisinin
CDK4 Cyclin-Dependent Dinase 4;p-ERK1/2, phosphorylated

Extracellular Signal-Regulated Kinase 1/2
ogy 13
ARS Artesunate
MAPK Mitogen-Activated Protein Kinase
VEGF Vascular Endothelial Growth Factor
KDR Kinease Domain Receptor
flk-1 Fetal Liver Kinase 1
PERK Protein Kinase RNA-like Endoplasmic Reticulum Kinase
ATF4 Activating Transcription Factor 4
CHOP C/EBP Homologous Protein
ROS Reactive Oxygen Species
BBR Berberine
CIP1/p21 Cyclin-dependent kinase inhibitor 1
Kip1/p27 Cyclin-dependent kinase inhibitor 1B
COX-2 Cyclooxygenase-2
MMP-2 Matrix Metalloproteinase-2
PCNA Proliferating Cell Nuclear Antigen
Bcl-2 B-cell Lymphoma 2
Bax Bcl-2 Associated X Protein
PTX Paclitaxel
OMT Oxymatrine
p-p70S6K phospho-p70 S6 Kinase
TGF-b1 Transforming Growth Factor Beta 1
PAI-1 Plasminogen Activator Inhibitor-1
S1P Sphingosine-1-Phosphate.
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