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CAR-T cell therapy:
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expanded applications from
cancer to autoimmunity
Yaojie Kong, Jingyao Li, Xueyao Zhao, Yanwei Wu*

and Liang Chen*

School of Medicine, Shanghai University, Shanghai, China
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a

groundbreaking approach in cancer treatment, particularly for hematologic

malignancies. However, the application of CAR-T cell therapy in solid tumors

remains challenging. This review summarized the development of CAR-T

technologies, emphasized the challenges and solutions in CAR-T cell therapy

for solid tumors. Also, key innovations were discussed including specialized CAR-

T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M

cells. Besides, CAR-based cell therapy have extended its reach beyond oncology

to autoimmune disorders. We reviewed preclinical experiments and clinical trials

involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune

diseases. By highlighting these cutting-edge developments, this review

underscores the transformative potential of CAR technologies in clinical practice.
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1 Introduction

Cancer has long been a very threatening chronic disease. Conventional therapies,

despite some relief, have notable limitations and adverse impacts on patients’ immune

systems and overall health. In recent years, CAR-T cell therapy has revolutionized cancer

treatment by offering personalized treatment based on the specific type of cancer and the

patient’s requirements. The CAR-T cell therapy process begins with the extraction and

isolation of T cells from the patient. These T cells are then genetically engineered to express

the CAR, which are then able to recognize and bind to tumor antigens. After in vitro

expansion of the CAR-T cells, the CAR-T cells are infused back into the patient (Figure 1).

CAR-T cell therapy has unique advantages over conventional therapies, including its

highly personalized and tailored nature. This customization involves analyzing the patient’s

tumor to identify specific tumor-associated antigens (TAAs). Based on this analysis, the

patient’s T cells are collected and genetically engineered to express CARs that specifically
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target these TAAs on the cancer cells. This precise targeting ensures

that the therapy is specifically designed for the individual’s cancer,

resulting in remarkable therapeutic efficacy (1). Furthermore, CAR-T

cell therapy has shown enhanced effectiveness in addressing cancer

types that are challenging to treat with more traditional cancer

therapies, particularly hematological malignancies such as

lymphomas, multiple myeloma, chronic lymphocytic leukemia and

B-cell acute lymphoblastic leukemia (1).

CAR-T cell therapy has shown success in treating hematological

tumors, but it still faces challenges in solid tumors treatment, such as

therapeutic efficacy and safety. In response to these issues, studies

continue to improve the design of CAR-T cells. Recent advancements

in CAR-T technology have addressed some of the critical limitations

of earlier generations. For instance, the development of the fourth-

generation CAR-T cells has integrated inducible cytokine expression

to enhance the recruitment and activation of innate immune cells and

overcome the immunosuppressive tumor microenvironment, thus

providingmore robust and sustained anti-tumor responses compared

to existing therapies. Moreover, the introduction of dual CARs and

tandem CARs that can target multiple antigens simultaneously has

improved the therapy’s effectiveness in overcoming tumor antigen

escape, a common mechanism of resistance.

Beyond the realm of oncology, CAR-T cell therapy has shown

tremendous potential for the treatment of autoimmune diseases.

Currently, autoimmune conditions are predominantly managed
Frontiers in Immunology 02
using a wide array of immunosuppressive agents and blocking

antibodies, which control the symptoms of the disease but often fall

short of achieving a cure. Recent advancements highlight the potential

of CAR-T cell therapy for treating autoimmune disorders like multiple

sclerosis (MS) and systemic lupus erythematosus (SLE), opening the

prelude of CAR-based cell therapy on the field of autoimmune diseases.

In summary, CAR-T cell therapy stands at the forefront of

cancer treatment innovation, offering superior efficacy and specific

advantages over traditional therapies. Continued research and

development aim to expand its applicability and improve its

outcomes, bringing new hope for patients with both hematologic

and solid malignancies, as well as autoimmune diseases.
2 CAR structure

The foundation of CAR-T cell therapy lies in the architecture of

the genetically engineered CARs. CARs are modified synthetic

antigen receptors with four key structural elements: the

extracellular antigen recognition domain, which encompasses a

single-chain variable fragment (ScFv) and a hinge region; a

transmembrane domain (TMD); and an intracellular T-cell

activation domain (Figure 2). Below, we describe the roles of each

of these domains and their engineering for CAR-T cell therapy in

greater depth.
FIGURE 1

Schematic of CAR-T cell therapy process. Peripheral blood mononuclear cells (PBMCs) are extracted from the patient’s blood. T cells are then
concentrated, isolated, and activated. These activated T cells (TCRab+) are transduced with a recombinant lentivirus to express the chimeric antigen
receptor (CAR). The CAR T cells (TCRab+) are subsequently expanded and multiplied in vitro. Finally, the amplified CAR T cells are infused back into
the patient’s bloodstream to target and eliminate cancer cells.
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2.1 The antigen recognition domain

The antigen recognition domain consists of an ScFv formed by

linking the variable heavy chain (VH) and light chain (VL) of a

monoclonal antibody through a linker. The primary function of the

antigen recognition domain is the specific recognition of TAAs

present on the surface of target cells, which subsequently facilitates

the activation of the T cell bearing the CAR (2, 3).

Importantly, the recognition of target cells by CAR-T cell rely

strongly on the high affinity of the ScFv component for the TAA

(4–6). Therefore, the selection of appropriate ScFvs is crucial for

antigen targeting. Initially, it is important to select an antibody with

high affinity for the TAA and to determine its VH and VL sequences.

Subsequently, CARs targeting the antigen can be constructed using

ScFv sequences, after which in vitro cytotoxicity assays can be used to

screen for CARs with cytotoxic functionality (5).

However, it is important to note that the affinity of the ScFv for

the target antigen and its efficacy for CAR-T are not necessarily

linearly correlated. In fact, excessive affinity can cause toxicity, as

the CAR-T cells attack normal cells with low antigen density as well

as the target tumor tissues, ultimately leading to damage to healthy

tissue. Rather, researchers have found that the use of low-affinity

ScFvs allows optimal CAR function (4–6). The ability to

appropriately reduce the affinity of ScFvs to mitigate CAR-T cell

therapy-induced tumor-associated toxicity has led researchers to

speculate that there is an “affinity threshold” for CARs. This

threshold represents the optimal balance where the ScFvs can

effectively target tumor cells without attacking normal tissues

with lower antigen density. Current research is actively exploring

this concept by attempting to engineer ScFvs with affinities that fall

within this ideal range. Scientists are using various screening and

optimization techniques to fine-tune the affinity of ScFvs, ensuring

they are strong enough to bind to tumor antigens while avoiding

off-target effects on normal cells. This ongoing work aims to

enhance the safety and efficacy of CAR-T cell therapies (5).

Almost all CAR constructs use ScFvs derived from monoclonal

antibodies. However, the low folding stability of VH and VL could lead

to aggregation or misfolding of ScFv, which may weaken the target
Frontiers in Immunology 03
effect and lead to exhaustion of CAR-T cells. To overcome these

problems caused by conventional scFv, Xie et al. developed convenient

and structurally stable CAR-T cell antigen-binding domains. This

study designed a high-affinity binding protein (called “binder”)

replacing typical ScFv to target tumor antigens. This binder CAR-T

cells showed a stronger solid tumor treatment effect, providing a

potential therapeutic benefit for CAR T cell therapy (7).
2.2 Hinge region

The hinge region connects the ScFv to the transmembrane

structural domain. The hinge functions to enhance the flexibility of

the ScFv, overcoming steric hindrance and facilitating the binding

of the CAR to target antigens (8).

In the early, the hinge region is mainly derived from variants of

immunoglobulin G (IgG), such as IgG1 and IgG4; therefore, one

drawback to the use of these hinge regions is their potential

interactions with the Fcg receptor. Such interactions can lead to

CAR-T cell depletion and ultimately adversely affect the durability

of the therapy (4, 9). As an alternative, hinge regions from CD28

and CD8a have been adopted. In CD19 CAR-T cells, investigations

have revealed that CD8a outperforms CD28 as a hinge region

because CD8a stimulates a lower level of cytokine release and

activation-induced cell death than CD28 (10). Moving forward,

further optimization of hinge regions, including exploring other

potential alternatives or modifications to CD8a, could enhance the

safety and effectiveness of CAR-T therapies.
2.3 The transmembrane domain (TMD)

The TMD represents the intermediary section of the CAR,

comprising a hydrophobic a-helix that spans the cellular

membrane and connects the extracellular and intracellular

domains. Its roles involve tethering the CAR to the cell

membrane and transmitting activating signals to the intracellular

domain (4, 11).
FIGURE 2

The structure of chimeric antigen receptor (CAR). The CAR contains an ectodomain, usually a single-chain variable fragment (scFv) from an antibody,
comprising a variable heavy chain region (VH) and a variable light chain region (VL), which is responsible for recognizing the antigen. The
transmembrane domain anchors the CAR to the T cell membrane. The endodomain includes signaling elements such as the CD3z chain, which
contains ITAMs, and the costimulatory domain (CM), which enhances T cell activation, proliferation, and persistence.
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Historically, typical sources of TMDs have included CD3z,
CD8a, CD28, and ICOS. However, the CD3z transmembrane

structural domain is being abandoned because CARs containing

this domain can form homodimers or heterodimers with the T-cell

receptor (TCR), leading to strong T-cell activation in the absence of

appropriate ligand binding. This uncontrolled activation can result

in excessive immune responses, causing inflammation and potential

damage to healthy tissues, making it a significant safety concern in

CAR-T cell therapy. Conversely, CD8a and CD28 have become

more frequently employed in clinical applications. Several

investigations have revealed that the use of the CD8a TMD in

CD19 CAR-T cells can attenuate the cell death caused by T-cell

activation, and the CD8a TMD exhibits improved tolerability

compared to that of CD28. In addition, the ICOS TMD has

demonstrated superior efficacy and sustained antitumor activity

compared to that of CD8 (10).

The TMD has attracted less attention in terms of structural

innovations than other CAR domains. Nonetheless, researchers have

shown that manipulating the length of the TMD can decrease CAR-T

cell proliferation without compromising CAR-T cell antitumor

capabilities. This characteristic offers more durable management of

inflammatory cytokines and mitigation of the inflammation

associated with the therapy (12). Furthermore, a recently

introduced engineered TMD referred to as a programmable

membrane protein (proMP) was reported to modulate the

functionality of CAR receptors. As an entirely novel sequence,

proMPs can form transmembrane homodimers, resulting in the

generation of proCAR constructs. Compared to native CARs,

ProCAR-T cells offer a more predictable functional range in vivo

and significantly reduced release of inflammatory cytokines (13).

Consequently, further research is warranted to explore the role and

optimization of TMDs in enhancing this therapy.
2.4 The costimulatory domain

The costimulatory domain, situated within the T-cell activation

region, is pivotal for T-cell activation because it facilitates dual

activation through costimulatory molecules and intracellular

signaling. This dual activation is essential as it involves two key

pathways: the first pathway provides the primary signal through the

TCR for antigen recognition, while the second pathway, mediated

by costimulatory molecules, enhances the T-cell’s response and

promotes survival, proliferation, and cytokine production. Both

pathways are necessary to ensure a robust and sustained immune

response, preventing premature T-cell exhaustion and maximizing

the effectiveness of CAR-T cell therapy (14, 15).

The most common costimulatory structural domains are CD28

and 4-1BB. CARs incorporating the CD28 costimulatory structural

domain stimulate the differentiation of T cells into effector memory

T cells and foster aerobic glycolysis. On the other hand, CARs

containing the 4-1BB costimulatory structural domain drive the

differentiation of T cells into central memory T cells, facilitating

mitochondrial production, enhancing respiration, and promoting

fatty acid oxidation (16, 17). Notably, CD28 exhibits faster and
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more robust signaling activity, while 4-1BB has a slower and more

gradual profile that extends the lifespan of T cells and sustains their

anticancer effects (16, 17). Furthermore, the CD28 family comprises

additional costimulatory structural domains, such as ICOS, while

the tumor necrosis factor receptor family includes OX40 and CD27.

These additional costimulatory domains have been explored in

various preclinical and clinical studies. For instance, ICOS has

been tested and shown to enhance T-cell function and survival,

suggesting its potential to improve CAR-T cell efficacy. Similarly,

OX40 and CD27 have been investigated for their roles in enhancing

T-cell proliferation and longevity. Incorporating these domains into

CAR designs could further optimize the therapeutic outcomes of

CAR-T cell therapy, though ongoing research is needed to fully

understand their benefits and any associated risks (18).

Moreover, in recent years, the development of the pioneering in

vivo gene delivery system approach, in which CAR genes are

directly delivered and expressed within the patient’s body, has

offered significant time and cost advantages over traditional

manufacturing procedures for CAR-T cell production. Unlike

conventional ex vivo methods that require T cells to be extracted,

modified in the lab, and then reinfused into the patient, this in vivo

system streamlines the process by modifying T cells directly within

the body, reducing both production time and associated cost (19).

For example, CD3-targeted lentiviral vectors (CD3-LVs) can

achieve selective gene transfer into T cells specifically, thereby

enabling in vivo gene delivery and T-cell expansion and allowing

direct generation of CAR-T cells within the patient (20, 21). As a

result, this approach has the potential to greatly simplify and

accelerate the CAR-T therapy process, making it more accessible

and scalable, and opening new possibilities for treating a broader

range of diseases.
3 Development of CAR-T cell therapy

CAR-T cell therapy has shown encouraging results for tumor

treatment. However, several limitations and safety concerns,

including low persistence and the potential for inflammatory

reactions, have emerged as critical considerations. Extensive

research has been performed to improve the therapeutic efficacy

and safety of this therapy, particularly with respect to novel

approaches to CAR design. As noted above, Since the initial

development of CARs in 1989, the antigen recognition domains

of CARs have predominantly comprised variable antibody regions

or their derived fragments, such as ScFvs. The transmembrane

region has undergone minimal change. Nevertheless, the

introduction of innovative costimulatory domains within CARs

has been recognized as a crucial advancement (22). Based on efforts

to engineer the intracellular domains of CARs, the development of

CAR-T cells can be categorized into five distinct generations

(Figure 3). It’s important to note that CAR-T cells from multiple

generations are currently in use, each offering unique advantages

despite their different limitations. Progression to newer generations

does not render the earlier versions obsolete but rather expands the

options available for different therapeutic needs.
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3.1 First-generation CAR-T cells

CARs of this generation consist of an ScFv, a hinge region, a

transmembrane domain, and an intracellular signaling domain,

such as CD3-z or FcgRI, that act as major transducers of TCR

signaling and induce signaling cascades. The immunoreceptor

tyrosine-based activation motif (ITAM) region of CD3z has been

the most popular intracellular signaling domain due to the presence

of three ITAMs in CD3z rather than one ITAM in FceRI (23, 24),
although CAR-T cells containing the 4-1BB signaling domain

demonstrate significantly better antitumor activity and persistence

than those with CD3z (25). Leveraging the CD3z signaling domain,

CAR-T cells of this generation trigger T-cell activation, resulting in

cytotoxicity and cytokine secretion (e.g., IL-2) independent of

human leukocyte antigen (HLA). Consequently, tumor cells are

effectively eliminated by these CAR-T cells (26).

Nevertheless, CAR-T cells of this generation have several

limitations. First, they do not produce sufficient IL-2 to support

their long-term proliferation and sustain their cytotoxic activity

against cancer cells, so exogenous IL-2 must be used to achieve

effective tumor cell eradication (9). Second, the intracellular

domains of CAR-T cells are deficient in costimulatory signals that

are necessary for robust T-cell activation, limiting the efficacy of T-

cell activation. Third, although these CAR-T cells exhibit

conventional T-cell cytotoxicity, their proliferation is transient,

and they secrete limited amounts of cytokines, ultimately leading

to T-cell apoptosis and an inability to proliferate and survive long-

term in vivo, greatly limiting their antitumor efficacy (27, 28).
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Due to these limitations, CAR-T cells of this generation failed to

achieve the expected efficacy in clinical applications. This failure

propelled the development of second-generation CAR-T cell

therapies aiming to enhance overall treatment efficacy by

extending the in vivo persistence of CAR-T cells and augmenting

their cytotoxic capabilities.
3.2 Second-generation CAR-T cells

The major advance of second-generation CAR-T cells over the

first-generation therapies is the incorporation of a costimulatory

domain, predominantly CD28 or 4-1BB, linked with CD3-z
(14, 29). This modification allows T cells to receive both antibody

stimulation signals and costimulatory signals (14), promoting IL-2

synthesis and facilitating T-cell activation. Second-generation CAR-T

cells have been further optimized to address issues concerning T-cell

proliferation, survival, cytotoxicity, and persistence (29–32).

Second-generation CAR-T cells featuring CD3z and

costimulatory structural domains have been extensively utilized in

clinical practice, with CAR-T cell products containing 4-1BB as a

costimulatory molecule gradually becoming mainstream. Currently,

all approved CAR-T cell therapies on the market are second-

generation CAR-T products targeting hematologic malignancies.

The Food and Drug Administration (FDA) has approved six CAR-

T cell products, with two targeting BCMA (B-cell Maturation

Antigen) (see Glossary) and four targeting CD19 (Table 1). For

instance, the FDA first approved Tisagenlecleucel (Kymriah) in
FIGURE 3

CAR development from the first to the fifth generation. First-generation CARs are characterized by the presence of a signaling domain originating
from CD3z. Second-generation CARs encompass an additional co-stimulatory domain (CM1), such as CD28 or 4-1-BB. Building upon the second
generation, third-generation CARs incorporate a second co-stimulatory domain (CM2). Fourth-generation CAR T cells, also known as T cells
Redirected for Universal Cytokine-mediated Killing (TRUCKs), contain NFAT transcriptional elements, which can induce the expression of specific
chemokines, such as IL-12, in the tumor microenvironment. Fifth-generation CARs are universal CAR-T cells. VH, variable heavy chain; VL, light
chain; CM, co-stimulatory domain; IL, interleukin; CD, cluster of differentiation; NFAT, nuclear factor of activated T cells; ITAM, immunoreceptor
tyrosine-based activation motify.
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2017, a CD19-targeting CAR-T cell therapy widely used for treating

B-cell acute lymphoblastic leukemia and B-cell lymphoma,

particularly in patients under 25 years old. Kymriah is currently

approved for three indications and remains the only CAR-T cell

therapy approved for both adult and pediatric populations (33).

Similarly, Axicabtagene ciloleucel (Yescarta) received its first FDA

approval in 2017 for the treatment of relapsed or refractory diffuse

large B-cell lymphoma (DLBCL) in adult patients and is now

approved for three indications (34). In March 2021, Abecma

became the first FDA-approved BCMA-targeting CAR-T cell

therapy for adults with relapsed or refractory multiple myeloma

after at least four prior lines of therapy, marking a significant

advancement in multiple myeloma treatment (34).

Several studies have demonstrated that the costimulatory

molecule CD28 imparts potent activation signals, allowing T cells

to rapidly attain high levels of cytotoxic activity while also

contributing significantly to the generation of memory and

effector cells, albeit with a shorter duration. On the other hand,

the activation signals mediated by 4-1BB are more persistent,

playing a vital role in regulating lymphocyte proliferation and
Frontiers in Immunology 06
survival and enhancing IL-2 production but with limited

cytotoxic capabilities (41–43).

Unfortunately, studies have shown that a single costimulatory

domain fails to resolve the issues of CAR-T cell therapy persistence

and relapse. The use of retroviral vectors for gene transfer into T cells,

a prevailing method for generating second-generation CAR-T cells,

constrains the size of the gene fragments they can accommodate, and

consequently, it is not feasible to transfect the ITAM regions of both

CD28 and CD137 costimulatory molecules into T lymphocytes

simultaneously. As a result, researchers have been forced to choose

between achieving persistence and preventing relapse during therapy

with the use of second-generation CAR-T cells.
3.3 Third-generation CAR-T cells

The development of third-generation CAR-T cells has focused

on using specific transduction techniques to endow them with two

or more costimulatory domains linked with CD3z. These

approaches typically involve advanced gene delivery methods
TABLE 1 Summary of FDA approved CAR-T products.

Product Target Approval Date Indication Ref.

Yescarta CD19

2017/8
For adult patients with relapsed or refractory large B-cell lymphoma
(LBCL) after first-line chemotherapy or those who relapse within 12
months of initial treatment (35)

2018/5
For adult patients with relapsed or refractory follicular lymphoma (FL)
after two or more lines of therapy

2022/5
For adult patients with LBCL that is refractory to first-line
chemoimmunotherapy or relapses within 12 months of initial treatment

Tecartus CD19
2020/7

For adult patients with relapsed or refractory mantle cell
lymphoma (MCL) (36)

2021/10 For adult patients with relapsed or refractory B-cell precursor ALL

Kymriah CD19

2017/8
For patients aged 25 or younger with refractory or second or greater
relapse B-cell precursor acute lymphoblastic leukemia ALL

(37)2018/5
For adult patients with relapsed or refractory LBCL after two or more
lines of systemic therapy. Limitation: It is not indicated for the
treatment of primary central nervous system lymphoma

2022/5
For adult patients with relapsed or refractory follicular lymphoma (FL)
after two or more lines of therapy

Breyanzi CD19

2021/2
For adult patients with LBCL, including those with relapsed or
refractory disease after two or more lines of therapy; Not indicated for
primary central nervous system lymphoma

(38)

2022/6

For adult patients with LBCL, including those refractory to first-line
chemoimmunotherapy or relapsed within 12 months of first-line
treatment; Also for those refractory to or relapsed after first-line
chemoimmunotherapy and ineligible for hematopoietic stem cell
transplantation (HSCT) due to comorbidities or age; Not indicated for
primary central nervous system lymphoma

Abecma BCMA 2021/3
For adult patients with relapsed or refractory multiple myeloma after
four or more lines of therapy, including an immunomodulatory agent, a
proteasome inhibitor, and an anti-CD38 monoclonal antibody

(39)

Carvykti BCMA 2022/2
For adult patients with relapsed or refractory multiple myeloma after
four or more lines of therapy, including a proteasome inhibitor, an
immunomodulatory agent, and an anti-CD38 monoclonal antibody

(40)
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such as lentiviral vectors or transposon systems, which allow for the

precise insertion of multiple costimulatory signals into the CAR-T

cells. These techniques enable the enhancement of T-cell activation

and persistence by integrating additional signaling domains

(10, 44). CAR-T cells of the third generation are embodied by the

CAR-T cell construct, which arises from the fusion of CD3z and

multiple costimulatory domains. The viral vectors used for third-

generation CAR-T cells are mostly lentiviral, which allows larger

gene fragments to be carried into T lymphocytes, thus allowing

CAR-T cells of this generation to contain more costimulatory

structural domains, such as CD28, 4-1BB, and CD134 (OX40). At

present, the most widely utilized third-generation CAR-T cell

construct is the CD3z-CD28-4-1BB construct (44–49). The

costimulatory molecules in these CAR-T cells can activate

signaling pathways within T cells, including the JNK, ERK, and

NF-kB pathways, thereby enhancing T-cell antitumor activity,

proliferation capacity, and survival time, as well as the secretion

of cytokines such as IL-2, TNF-a, and IFN-g (27).
Although clinical data indicate that these CAR-T cells show

superior anticancer potency relative to that of second-generation

CAR-T cells, as demonstrated by their prolonged duration and

increased expansion in B-cell non-Hodgkin lymphoma patients

(50, 51), the safety profile of these CAR-T cells is statistically

equivalent to or even worse than that of second-generation CAR-T

cells. Hence, the simple addition of costimulatory molecules within the

ITAM domain does not necessarily guarantee enhanced therapeutic

efficacy (52, 53).
3.4 Fourth-generation CAR-T cells

Known as precision CAR-T cell therapy, fourth-generation

CAR-T cell therapy is an advanced approach that offers improved

targeting and a reduced risk of tumor recurrence. Building upon the

foundation of second-generation CAR-T cells, precision CAR-T

cells include regulated suicide genes within CAR-T cells to control

their longevity within the organism. This innovative modification

aims to circumvent the adverse effects associated with cytokine

storms while still precisely targeting tumor cells within the host

system. These CAR-T cells are known as TRUCK or armored CAR-

T cells (27, 54–56).

These CAR-T cells also harbor an element that activates the

transcription of the nuclear factor of activated T cells (NFAT) gene,

enabling the secretion of specific cytokines (primarily IL-12) within

the TME to recruit and activate other immune cells for an immune

response (57). Additionally, the secretion of these cytokines

promotes T lymphocyte infiltration within tumor tissues, thereby

offering therapeutic advantages for solid tumors (as opposed to

hematologic malignancies) (58).
3.5 Fifth-generation CAR-T cells

Earlier generations of CAR-T cell therapies, while effective, face

challenges such as immune rejection by the host and the risk of

graft-versus-host disease (GVHD) when infused into patients.
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To address these issues, a promising strategy has emerged that

involves precise genetic modifications of HLA and TCR genes in T

cells obtained from healthy donors. This fifth-generation approach

aims to enhance CAR-T cells by reducing the likelihood of immune

rejection and preventing GVHD, making the therapy safer and

more effective for a broader range of patients. Notably, the inherent

advantage of this approach is that it eliminates the need for patient-

specific alterations, thereby offering a promising avenue for the

treatment of diverse patients with the same therapy. This

innovation can benefit a broader range of patients, including

those with different types of cancers or diseases and individuals

who were previously excluded from CAR-T cell therapy due to

compatibility issues or concerns about GVHD (59). Universal

chimeric antigen receptor T cells (UCAR-T cells) are prototypical

examples of fifth-generation CAR-T cells. Unlike conventional

CAR-T cell therapy, which involves extracting, genetically

modifying, amplifying, and transferring T cells from patients (45,

60–62), UCAR-T cell therapy relies on T cells acquired from healthy

allogeneic donors. Subsequently, endogenous TCRs and HLA class I

molecules are knocked out of these cells through gene editing

techniques, such as ZFN, TALEN, and CRISPR-Cas9, enabling

large-scale production and therapy without the constraints of

individual compatibility (63).

Compared with autologous CAR-T cells, allogeneic CAR-T cells

possess distinct advantages, including broad individual

compatibility and potentially scalable manufacturing and

treatment. However, despite their promise, current clinical trials

of UCAR-T cells face certain challenges that may limit their clinical

application. For instance, their CAR recognition capacity is limited,

with affinity restricted to only one or two targets. Nonetheless,

allogeneic CAR-T cell therapy has great potential for addressing

issues related to the lengthy production cycle and high costs

associated with CAR-T cell therapy, underscoring the need for

extensive exploration of this approach (64–67).

The design, preparation, and application of CAR-T cells exhibit

considerable heterogeneity, as their effectiveness varies depending

on the tumor type. Notably, first-generation CAR-T cells have

exhibited substantial therapeutic efficacy in specific hematologic

malignancies but have shown limited effectiveness in targeting solid

tumors. Second- and third-generation CAR-T cells have

significantly enhanced the viability, effectiveness, and safety

profile of CAR-T cells, thereby improving therapeutic outcomes

in clinical trials. Although third-, fourth-, and fifth-generation

CAR-T cell technologies are still in the developmental stage and

the cost of first- and second-generation CAR-T cell treatments

remains high, it is reasonably presumed that these technologies will

progressively enhance the stability and effectiveness of CAR-T cells,

reduce their cost, and mitigate their adverse effects (68).
4 Challenges and solutions in CAR-T
cell therapy for solid tumors

CAR-T cell therapy has enabled substantial progress in the

treatment of hematological tumors, and the US FDA has granted

market approval for six CAR-T cell products targeting various
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hematological malignancie (10, 69–76). However, for solid tumors,

which constitute more than 90% of all cancers, CAR-T cell therapy

faces significant challenges and limitations (5, 77). The six primary

obstacles faced by CAR-T cell therapy in treating solid tumors,

along with the corresponding strategies proposed to address these

challenges, are presented below (78).
4.1 Antigen escape

Antigen escape describes the situation in which the expression of

target antigens by malignant tumor cells in the body is partially or

completely inhibited. This event plays a pivotal role in the development

of acquired resistance against CAR-T cells in solid tumors (79, 80).

To overcome this limitation and minimize damage to healthy

tissues, researchers have explored the utilization of dual-CAR or

tandem-CAR systems that target multiple antigens simultaneously

(4). Several studies have reported encouraging results from the

application of dual CAR-T cells that target both CD19 and CD22

to treat patients with acute lymphoblastic leukemia (ALL), reporting

that this therapy is more effective than CD19 CAR-T cell therapy

alone (81). Additionally, in this situation, CAR-T cells are activated

upon recognizing multiple antigens, thereby reducing the likelihood

of accidental activation in healthy tissues and mitigating adverse

effects (82).

Neoplasm-targeting allele-sensing CAR (NASCAR), is designed to

target a mutation commonly found in the cancer transformation

process called clonal loss of heterozygosity (LOH). LOH is observed

in 90% of human cancers and often involves tumor suppressor genes,

providing a clear distinction between normal and cancer cells. Previous

therapeutic approaches targeting this distinction, such as antisense

oligonucleotides and siRNA, have generally been ineffective. However,

programming CAR-T cells to recognize LOH can significantly enhance

their precision. This is achieved by introducing both CAR and an

inhibitory CAR (iCAR) into CAR-T cells, with iCAR carrying

intracellular domains like PD-1 or CTLA-4. In cancer cell lines

engineered with LOH using CRISPR technology, NASCAR-T cells

have demonstrated strong antitumor efficacy, highlighting their

potential for precise and effective tumor targeting (83).

Above, we introduced several representative strategies focusing

primarily on enhancing the targeting capabilities of CAR-T cells.

However, researchers are also making significant efforts to improve

other aspects of CAR-T cell functionality, such as the controllability

of their activity and cytotoxicity. These enhancements include the

addition of drug-responsive interfaces to T cells, allowing for the

precise modulation of CAR-T cell activity through external drug

administration. Looking ahead, more advanced versions of CAR-T

cells will likely emerge, taking into greater account the specific

needs and conditions of patients (78).
4.2 T-cell exhaustion

Prolonged proliferation of CAR-T cells is a key requirement for

achieving an effective antitumor response within patients (84, 85),

and T-cell exhaustion therefore poses a significant hurdle in CAR-T
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cell therapy (86, 87). Continuous stimulation of T cells by antigens

within the tumor environment renders them susceptible to

exhaustion, leading to inadequate production of IL-2 (88, 89).

Recent studies have provided compelling evidence indicating

that CAR-T cell expansion and persistence can be augmented

through the judicious selection of costimulatory signaling

molecules, such as CD28, ICOS, OX40, and 4-1BB (29, 90–92).

CAR-T cells incorporating CD28 displayed greater persistence than

those containing 4-1BB, thus mitigating T-cell exhaustion and

accelerating the expression of effector molecules after antigenic

stimulation (37, 93).

Additionally, genetic engineering methods have emerged as

promising strategies to address T-cell exhaustion. For example,

enhancing the expression of the cytokine IL-7 or IL-15 has been

shown to promote T-cell proliferation and, when combined with

the downregulation of PD-1 expression, prevent CAR-T cell

exhaustion (94, 95). Furthermore, gene manipulation to induce

the overexpression of mutated Fas variants within T cells has been

used to effectively suppress FasL-mediated cellular apoptosis (96).

Modulating the expression of inhibitory receptors, such as PD-1

and TIM-3, in CAR-T cells is another approach that has been

successful in counteracting CAR-T cell exhaustion (97, 98).

Further advancements in understanding and manipulating

these and other exhaustion pathways could lead to more robust

and enduring CAR-T cell therapies, ultimately improving patient

outcomes and expanding the applicability of this treatment across

various cancers.
4.3 Off-tumor effects

A significant challenge confronting solid tumor CAR-T cell

therapy is the widespread presence of TAA in normal tissues, which

makes it more difficult to target the desired effects specifically to

tumor cells. For instance, trastuzumab-based (anti-HER2) CAR-T

cell therapy exhibited fatal cardiopulmonary toxicity in a patient

diagnosed with metastatic colon cancer (47). Current approaches to

address this issue include targeting posttranslational modifications

that are specific to tumor cells (99, 100). Examples of these

modifications include phosphorylation patterns unique to

oncogenic signaling pathways, glycosylation changes that alter cell

surface antigens, and acetylation modifications affecting tumor

suppressor proteins. By focusing on these tumor-specific

modifications, therapies can more precisely target cancer cells

while sparing normal tissues. For instance, certain truncated O-

glycans, such as Tn (GalNAca1-O-Ser/Thr) and sialyl-Tn (STn)

(NeuAca2-6-GalNAca1-O-Ser/Thr), are overexpressed in solid

tumors, providing opportunities for targeted therapy. Therapies

targeting these specific glycan modifications are currently in various

stages of development. Some have progressed to early clinical trials,

where they have demonstrated initial promise in selectively

targeting cancer cells while minimizing damage to normal tissues.

However, many of these approaches are still in the preclinical or

experimental phase, where they are being explored for their

potential to enhance specificity and efficacy in cancer

treatment (99).
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Another approach taken by some researchers has been to endow

T cells with two engineered receptors: a conventional CAR and a

chimeric costimulatory receptor (CCR). This method is related to the

evolution seen in the different generations of CAR-T cell therapy.

Specifically, while second and third-generation CAR-T cells

incorporate single and multiple costimulatory domains directly into

the CAR structure to enhance T-cell activation and persistence, the

strategy of using separate CCRs represents a novel enhancement

beyond these generations. This dual-receptor strategy differs from the

dual activation mentioned earlier in that the CCR is designed to

provide an additional, distinct costimulatory signal only upon

encountering a specific antigen in the tumor microenvironment.

This ensures that T cells are fully activated only when they bind both

the tumor-associated antigen via the CAR and the second antigen via

the CCR, thereby increasing precision and reducing the likelihood of

off-target effects (101). For example, these dual-receptor T cells

continuously expand and persist for longer durations in multiple

myeloma and low-antigen leukemia. This phenomenon concurrently

prolongs patient survival and delays cancer progression (102).

Masked CAR-T cell (mCAR-T) therapy is another strategy to

reduce the off-tumor effects. It has a CAR receptor with an additional

masking peptide and a protease-sensitive linker. The masking peptide

covers the antigen recognition domain and is removed through

protease cleavage, which is triggered by the high protease levels

typically found in the tumor microenvironment. This approach

enhances targeting precision, and the antitumor efficacy of mCAR-

T cells is comparable to that of conventional CAR-T cells (103).
4.4 CAR-T cell trafficking

Despite the advancements in CAR-T cell therapies, targeting

solid tumors remains particularly challenging. CAR-T cell delivery

to solid tumors encounters significant challenges related to the

tumor microenvironment (TME), tumor stroma, and disparities

between the chemokine receptors expressed by CAR-T cells and the

chemokines released by tumor tissue. These factors collectively

impede the effective infiltration and activity of CAR-T cells within

solid tumors (104).

Therefore, specific strategies are needed to enhance the delivery

of CAR-T cells to solid tumors. Some approaches that have been

used are localized administration to facilitate CAR-T localization at

the tumor site and engineering CAR-T cells to express chemokine

receptors that are compatible with tumor-derived chemokine

factors (105). For example, a recent study found that compared to

intravenous infusion, directly injecting CAR-T cells into the pleural

cavity significantly improves therapeutic outcomes and

substantially reduces the required T cell dosage. Based on these

promising results, the researchers have initiated a clinical trial to

evaluate the safety of locally administered mesothelin-targeted

CAR-T cell therapy in patients with malignant pleural tumors

(106). Moreover, studies focusing on chemokine factors have

revealed that CAR-T cells targeting the tumor-associated avb6
integrin and expressing CXCR1/2 are effectively enriched at the

tumor site (107–109). Additionally, for neuroblastoma, which
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exhibits high CCL2 expression, the use of CAR-T cells targeting

GD2 and CCR2b has yielded promising outcomes in terms of

transportation (110).

Another obstacle to effective CAR-T cell transportation stems

from the vasculature in the TME (111). Tumors often exploit

abnormal blood vessel formation to acquire nutrients and

promote infiltration, and these abnormalities can hinder

therapeutic efficacy. Consequently, specifically targeting abnormal

vessels represent a promising approach for enhancing CAR-T cell

penetration (112, 113). Considering the pivotal role of vascular

endothelial growth factors and their receptors in angiogenic

signaling pathways, studies have suggested that inhibiting these

factors and receptors could be employed as an antiangiogenic

therapy for treating such aberrant vessels (113). Furthermore,

considering that heparan sulfate proteoglycans are major

constituents of the tumor stroma, the expression of heparinase,

an enzyme capable of degrading heparan sulfate proteoglycans, in

CAR-T cells has been suggested as a potential strategy (114).

In summary, overcoming the challenges of CAR-T cell

trafficking to solid tumors is crucial for enhancing their

therapeutic effectiveness. Strategies such as modifying chemokine

receptors, degrading tumor stroma components, and employing

innovative delivery methods are key to improving CAR-T cell

infiltration and persistence within the tumor microenvironment.
4.5 Immunosuppressive microenvironment

Other factors limiting CAR-T cell efficacy include the presence

of an immunosuppressive TME with a cytokine profile (such as IL-

10, TGF-b, VEGF and IL-4) that preferentially recruits

immunosuppressive Treg cells, myeloid-derived suppressor cells

(MDSCs) and tumor-associated macrophages(TAMs) (Figure 4)

(115). Treg cells suppress cytotoxic T cell activity through various

mechanisms, including the secretion of immunosuppressive

cytokines, competitive consumption of IL-2, CTLA4-mediated

inhibition of antigen-presenting cells (APCs), and the prevention

of T cell activation (116). Similarly, MDSCs exert a strong

immunosuppressive effect on effector T cells, significantly

impairing CAR-T cell functionality. Clinical observations have

linked low MDSC levels in patients receiving CD19 CAR-T

therapy with favorable responses in lymphoma and leukemia

treatment. TAMs, as the predominant immune-infiltrating cells in

the TME, suppress T cell-mediated anti-tumor responses by

secreting immunosuppressive cytokines, producing amino acid-

depleting enzymes such as arginase 1 and indoleamine 2,3-

dioxygenase (IDO), and promoting the recruitment of Treg cells.

Moreover, immune checkpoints, particularly PD-1, contribute to

the reduced efficacy of immunotherapy (117). Other elements of the

TME, including physical barriers, hypoxia, and immunosuppressive

factors, exert similar effects (118, 119). Targeting these

immunosuppressive cells or molecular signals has the potential to

enhance the therapeutic efficacy of CAR-T cells (78).

Numerous strategies have been proposed to address these

challenges. First, engineered synthetic receptors have been
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developed to counteract suppressive cytokines, with notable targets

including TGF-b and IL-4. One such innovation is the synthetic

TGF-b dominant-negative receptor (DNR), a modified version of

TGF-b receptor II (TGF-bRII) that lacks the cytoplasmic signaling

domain. These TGF-b DNRs inhibit native TGF-b signaling by

forming non-functional ligand-receptor complexes, effectively

serving as a molecular sink to sequester TGF-b (120). The

incorporation of immune checkpoint blockade agents into CAR-T

cells also promotes their long-term persistence, leading to

promising outcomes (121). Furthermore, gene-editing

technologies such as CRISPR/Cas9 can be utilized to disrupt PD-

1 expression, further enhancing CAR-T cell persistence (98).

Designing CAR-T cells to resist immune inhibitory factors can

also result in prolonged persistence, contributing to their sustained

presence and efficacy in the TME (122).
4.6 CAR-T cell toxicity

A notable obstacle to the widespread adoption of CAR-T cell

therapy is the toxicity associated with these approaches including

cytokine release syndrome (CRS) and immune effector cell-

associated neurotoxicity syndrome (ICANS) (36). CAR-T cell

activation and cytokine secretion depend on the binding of the

antigen-binding domain to its corresponding target antigen and

reaching a specific activation threshold. This threshold refers to the

amount of antigen engagement needed to sufficiently activate the

CAR-T cells. Typically, it involves a certain number of antigen
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receptors being bound on the surface of CAR-T cells. When this

threshold is met, it triggers a robust immune response. However, if

the number of bound receptors or the intensity of activation signals

exceeds this threshold, it can lead to excessive cytokine release and

potentially cause toxicity, such as CRS or off-target effects on

healthy tissues. Consequently, there has been a comprehensive

exploration of modifying the CAR construct as a potential

strategy to mitigate such toxicity (123).

One effective approach involves reducing the affinity of the

antigen recognition domain, which consequently requires higher

levels of target antigens on tumor cells to trigger T-cell activation.

This alteration allows for the relative sparing of healthy cells that

express lower levels of the targeted antigens (124). Another strategy

to mitigate toxicity involves modifying the hinge and

transmembrane regions of CAR constructs. These modifications

are designed to optimize the flexibility and stability of the CAR

structure, which can influence the strength and duration of the

activation signal. By fine-tuning these regions, the CAR-T cells can

achieve a more controlled and balanced activation response. This

helps in regulating the amount of cytokine secretion, preventing

excessive immune responses and reducing the risk of toxicity.

Notably, modifying the CD8-a hinge and transmembrane region

in anti-CD19 CAR-T cell therapy significantly reduced cytokine

release (12).

Therefore, effectively managing CAR-T cell toxicity is essential

to ensure the safety and success of these therapies. Current

strategies focus on refining CAR designs to better regulate

activation and cytokine release, thereby reducing adverse effects.
FIGURE 4

CAR-T cells in immunosuppressive TME. The immunosuppressive TME is a key factor that limits the efficacy of CAR-T cell therapy. The
immunosuppressive tumor microenvironment is contributed by immunosuppressive cells including Treg cells, MDSCs, TAMs and immunosuppressive
molecules like IL-10, TGF-0, IL-4 and VEGF. TME, tumor microenvironment; MDSCs, myeloid-derived suppressor cells; TAMs, tumor-
associated macrophages.
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5 Innovations in CAR-T cell therapy

5.1 Specialized CAR-T cells

Several efforts to address the limitations arising from the

adverse effects of CAR-T cell therapy have led to the development

of CAR-T cells with specialized functionalities (125). For example,

“self-driving” CARs are characterized by the expression of

chemokine receptors that can detect and respond to the

production of chemokines by tumor cells targeted for destruction.

This mechanism enables the efficient trafficking of CAR-T cells to

tumor sites, thereby augmenting their antitumor efficacy (45). For

example, CAR-T cells carrying the tumor antigen GD2 enhance the

migration of CAR-T cells to CCL2 by expressing the chemokine

receptor CCR2b (126).

In the dual-CAR strategy, described above, genetic engineering

techniques enable T cells to express two distinct CARs. This allows

the targeting of multiple antigens simultaneously, potentially

reducing patient resistance to CAR-T cell therapy and enhancing

its overall effectiveness (4). Recent experimental evidence suggests

that patients with ALL treated with CAR-T cells specifically

targeting CD19 may experience loss or downregulation of the

CD19 antigen (127, 128). However, the utilization of dual CAR-T

cells that target both CD19 and CD22 has proven effective in

addressing this challenge (81).

Inhibitory CARs (I-CARs) are CARs that can suppress T-cell

responses. These CAR-T cells express two different CARs, one

conventional and the other carrying an I-CAR. The I-CAR acts as

a self-regulating switch that inhibits T-cell activation when it

specifically recognizes and binds to antigens that are present

exclusively or predominantly in healthy tissues. This design

ensures that CAR-T cells function only in the absence of I-CAR

stimulation, preventing damage to healthy tissues. Examples

include I-CARs based on CTLA-4 or PD-1, which selectively limit

the cytotoxicity induced by endogenous T-cell receptors or the

activation of chimeric receptors (129).

Tan-CARs are characterized by the presence of two ScFv

structural domains, each capable of recognizing a different target.

This configuration increases the likelihood of CAR-T cell activation.

However, it also carries the risk of causing damage to healthy

tissues (125).

The concept of “off-switch” CARs emerged in response to the

severe adverse effects associated with CAR-T cells, such as CRS.

These CAR-T cells are designed such that specific inducers can be

used to halt their excessive toxicity and induce depletion, thereby

reducing or preventing adverse effects (130). For instance, CD20

CAR-T cells can be depleted through the administration of

rituximab (131). However, one limitation of this antibody-

mediated “off-switch” approach is that it acts on a relatively long

timescale; that is, the rate of depletion of the undesired cells is slow

(132). Moreover, alternative methods have been developed,

including the use of dasatinib, inducible Cas9, and protease-based

small molecule-assisted shutdown CARs (SMASh-CARs)

(133, 134). In addition to “off-switch CARs”, there are also “on-

switch CARs” that remain inactive under normal circumstances and

are activated only upon stimulation by exogenous molecules, thus
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enabling the regulation of the timing and location of CAR-T cell

activity (135).

In conclusion, continued research and optimization of these

specialized CAR-T cells will be crucial to maximize their therapeutic

potential and extend their application to a broader range of cancers

and patient populations.
5.2 Combination therapies: CAR-T-based
approaches in conjunction with
other treatments

While CAR-T cells have demonstrated promising efficacy,

achieving complete eradication of solid tumors using CAR-T cell

therapy alone is difficult (136). However, some researchers have

found that CAR-T cell therapy can significantly enhance the

antitumor effects of other treatment modalities. Combination

therapies that have been tested in conjunction with CAR-T cells

to date include synergistic approaches that activate the patient’s

endogenous T cells (137), as well as chemotherapy, radiation

therapy, nanoparticles (NPs), oncolytic viruses (OVs), immune

checkpoint blockade (ICB) and mRNA vaccine techniques (138).

The PD-L1/PD-1 signaling pathway is a tumor hallmark, with

the TME inducing the expression of PD-L1 on tumor cells, and

blocking the PD-1 receptor can deactivate CAR-T cells. The binding

of PD-L1 on tumor cells to PD-1 on CAR-T cells inhibits the

antitumor effects of CAR-T cells (139, 140). Hence, integrating ICB

into CAR-T cells by blocking the PD-1/PD-L1 signaling pathway,

such as by combining CAR-T cell therapy with anti-PD-1/PD-L1

agents (121, 141, 142), has shown potential in prolonging the

persistence of CAR-T cell therapy and increasing the ratio of

CD8+/CD4+ T cells within the TME (121, 143–145). Clinically,

combination therapy targeting both PD-1 and CD19 has yielded

favorable treatment outcomes and persistence in patients with

hematologic malignancies (146).

Moreover, blocking the PD-1 signaling pathway in combination

with CAR-T cell therapy has significantly improved the efficacy of

CAR-T treatment of solid tumors (78). Recent studies have shown

that combining CAR-T cell therapy with pembrolizumab (a PD-1

inhibitor) substantially increases the longevity of chimeric antigen

receptor (CAR) cells in a murine model of metastatic melanoma

(147, 148). Additionally, another study revealed that CAR-T cells

secreting an anti-PD-1 scFv significantly enhanced CAR-T cell

persistence and prevented the toxicity associated with systemic

checkpoint inhibition (149, 150). Furthermore, employing

CRISPR-Cas9 to knock out the PD-1 gene in CAR-T cells

enhances CAR-T cell function, prolongs persistence, and reduces

cytotoxicity, although it falls short in inducing T-cell infiltration

(36, 151, 152).

Other gene editing techniques can also be applied to the

modification and manufacturing of CAR-T cells. Studies have

shown that CRISPR/Cas9 knockout of the TCR in tumor cells

enhances T-cell potency (153) and reduces the risk of GVHD.

Additionally, CRISPR/Cas9 can be used in conjunction with viral

vectors to achieve targeted gene integration at specific sites (154).

This precise integration can enhance the efficiency and safety of
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CAR-T cell therapies by ensuring that the CAR gene is inserted into

a known and controlled location within the genome. However,

some studies have indicated that this method may inadvertently

shorten the lifespan of the CAR-T cell response. This unexpected

outcome could be related to the disruption of genomic stability or

the altered expression of nearby genes caused by the integration

process, rather than the specific gene that was knocked in. As a

result, while CRISPR/Cas9 offers a powerful tool for precise gene

editing, it is essential to further investigate and mitigate these

potential impacts to fully harness its benefits in CAR-T cell

therapy (155). In terms of manufacturing, CRISPR/Cas9-based

methods are characterized by low toxicity and high efficiency.

OVs are particularly interesting as a combination therapy

because themselves exhibit antitumor activity (156, 157), and

moreover, combining CAR-T cell therapy with OVs provides a

more effective targeting of solid tumors, leading to enhanced

antitumor effects (158). The OV genome can also be modified to

express tumor necrosis factor-alpha or IL-2, which has been shown

to increase the quantity of CAR-T cells in the TME and thereby

enhance antitumor efficacy (159, 160).

Various nanotechnologies promise to enhance cancer

immunotherapy by facilitating the delivery of immune-

modulating drugs. In particular, NPs can serve as carriers for

CAR-T cells into the TME, preventing their inhibition by TMICs

and other immunosuppressive factors (115, 161–163).

The remarkable success of the SARS-CoV-2 mRNA vaccine has

spurred extensive efforts to broaden the mRNA vaccine platform for

the treatment of other conditions. Recent research has

demonstrated that modified mRNAs encoding a CAR designed

against fibroblast activation protein (FAP) (a marker of activated

fibroblasts) encapsulated in targeted LNPs can be intravenously

injected to induce the generation of functionally engineered T cells

in vivo, offering potential for treating cardiac injury (164). These

mRNAs typically encode for CARs or TCRs, which can reprogram

T cells to target specific antigens associated with disease, thereby

enhancing their therapeutic potential (165–167). Furthermore,

numerous experiments have shown the potential of this method

for treating solid tumors. Recent findings from a pioneering phase

1/2 basket trial investigated a claudin-6 (CLDN6)-directed CAR-T

cell therapy for patients with CLDN6 tumors with the use of

CARVac, an innovative antigen delivery mechanism that

leverages an mRNA vaccine to bolster CAR-T cell amplification

and persistence (168). This strategy is attractive because it enables

CAR-T cell therapy to be performed directly in vivo, that is, without

removing T cells from the body for editing, which saves

considerable time and money. Additionally, the ability to

promptly and precisely adjust the mRNA sequence and dosage to

suit various tumor types and variants offers clear practical

advantages. For example, it avoids prolonged CAR-T cell activity

and the resulting amplification effects, thus reducing the risk of

severe side effects such as CRS and neurotoxicity. Maintaining

CAR-T cell efficacy and durability through multiple sequential

injections addresses challenges such as immunosuppression and

drug resistance within the TME. Moreover, synergistic

enhancement of CAR-T cell antitumor efficacy can be achieved

by combining or coadministering various mRNA types or drugs.
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Overall, the integration of mRNA technology with CAR-T cell

approaches has potential for ‘off-the-shelf’ universal therapies,

offering a scalable and affordable solution in oncology and for

other diseases, such as autoimmune disorders, cardiovascular

diseases, infectious diseases, and certain genetic conditions
5.3 Novel strategies: CAR-Tregs, CAR-NK
cells, and CAR-M cells

Recent advances have expanded the scope of immunotherapy

beyond CAR-T cells alone. Innovations in cellular immunotherapy

have propelled the expansion of the core CAR strategy to different

cell types, such as Tregs, NK cells, and macrophages (M cells), to

enhance their efficacy and broaden the therapeutic landscape. The

resulting therapies hold great potential for treating cancer and

immune-related disorders. These innovative approaches are

described in detail below.

5.3.1 Advantages and challenges of CAR-
Treg therapy

Treg cells possess potent immunoregulatory functions and

promote immune tolerance, making Treg cell therapy desirable

for inducing tolerance to allogeneic tissues and cells in organ and

hematopoietic stem cell transplantation (169–175). Treg cells can be

used for the management of GVHD (176, 177), type 1 diabetes

(T1D) (178), and other autoimmune diseases.

Despite the potential of Treg cell therapy, it has several

limitations. Treg cell activation can lead to bystander suppression,

in which non-targeted immune responses are suppressed,

potentially reducing the effectiveness of the overall immune

response. Moreover, the therapeutic effects are suboptimal when

an insufficient number of Treg cells are present. In certain immune

environments, nonspecific Tregs can be converted into

proinflammatory Th17 cells, and this treatment approach may

also induce nonspecific immune suppression (170, 171). Specific

Treg cell therapies, such as TCR-Tregs, have been developed to

overcome these limitations. However, the reliance of TCR-Tregs on

MHC for antigen recognition limits the effectiveness of this

approach. The engineering of Treg cells to express CARs offers

advantages such as independence from MHC, lack of HLA

restrictions, lower dependence on IL-2, stable phenotype and

function, and improved specificity and suppressive capacity

through coreceptor signaling requirements (170, 171, 179).

CAR-Tregs can recognize specific antigens and induce their

activation and proliferation. Subsequently, the CAR-Tregs directly

inactivate APCs, preventing antigen presentation to T cells.

Additionally, CAR-Tregs can directly impede T-cell activation by

producing inhibitory cytokines such as TGF-b, IL-10, and IL-35.

Upon activation, CAR-Tregs can curb rejection responses by

releasing granule enzymes and perforin to eliminate cytotoxic T

cells (180).

The process of manufacturing CAR-Tregs is similar to that of

CAR-T cells and therefore faces similar challenges, such as high cost

and complexity (Table 2) (181). Currently, there are two methods

for obtaining CAR-Treg cells. Isolation from PBMCs is the most
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commonly used method, but the relatively low abundance of Tregs

in the peripheral blood limits the suppressive capacity of Tregs

obtained in this way (182). Another method involves engineering

and modifying CD4+ or CD3+ conventional T cells by introducing

CARs and further introducing FoxP3 cDNA to induce the

differentiation of these cells into Tregs. This approach overcomes

the limitations of low Treg levels in the peripheral blood and the

lack of FoxP3 expression in endogenous Tregs (180). Transfecting T

cells with FoxP3 can also induce regulatory activity, specifically

enhancing their ability to suppress immune responses and maintain

immune tolerance (183). In CAR-Treg manufacturing, CAR genes

are mainly delivered using viral vectors such as lentiviruses (175) or

adenoviruses (184), although nonviral methods such as the Sleeping

Beauty system (185) and CRISPR-Cas9 technology (186) have also

been employed. Cell sorting is primarily performed using magnetic-

activated cell sorting (MACS), but this technique may result in

insufficient purity and low Treg cell recovery rates. Although FACS

ensures higher purity and recovery rates, as well as more precise

separation of Treg cells, the relatively small quantity of cells that can

be produced and slow processing speed are drawbacks of this

approach (187, 188). Currently, activation is achieved through

stimulation with magnetic beads coated with anti-CD3/CD28

antibodies and IL-2. Notably, during in vitro expansion, the

mTOR inhibitor rapamycin is often added to deplete effector T

cells (Teffs) to maintain Treg stability (189).

5.3.2 Advantages and challenges of CAR-
NK therapy

NK cells are innate cytotoxic immune cells that can mount

immune responses against foreign cells (190, 191) and recognize
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malignant cells through various signals from different cell surface

receptors (192). In the context of cancer immunotherapy, NK cells

are appealing as they intrinsically regulate their own cytotoxic

activity toward normal cells and avoid “on-target, off-tumor”

toxicity by employing killer cell immunoglobulin-like receptors

(KIRs) for self-recognition (193–195). In contrast to CAR-T cells,

which can only specifically recognize cells with tumor-associated

target antigens, CAR-NK cells can kill cancer cells that do not

express target antigens (196).

Furthermore, NK cells exhibit non-MHC-restricted

recognition, infiltrative properties within tumor tissues, and fewer

side effects, such as CRS and GVHD, among other advantages.

Consequently, the distinct characteristics of NK cells position them

as a potential alternative to T cells, and the fusion of CAR

technology with NK cells has established the groundwork for

CAR-NK therapy (Table 2) (138).

CAR-NK cells can effectively eliminate tumors through a

combination of CAR-dependent and NK cell receptor-dependent

mechanisms, resembling the mechanisms observed in CAR-T cell

antitumor therapy (138). This allows CAR-NK cells to effectively

target cancer cells for eradication. CAR-NK cells can also be

activated by CAR-independent pathways, thereby broadening

their versatility in tumor eradication (197, 198). For instance,

antibody-dependent cellular cytotoxicity (ADCC) mediated by

CD16 can be utilized by CAR-NK cells to eliminate tumor cells

(199). These mechanisms show the multifaceted capabilities of

CAR-NK cells in combating tumors and illustrate their promise

for therapeutic applications.

As previously mentioned, allogeneic CAR-T cell therapy carries

a risk of GVHD, a condition where donor immune cells attack the
TABLE 2 Advantages and challenges of CAR-T cell, CAR-Treg, CAR-NK cell, and CAR-M therapies.

Type of Therapy Advantages Challenges Strategies

CAR-T cell Therapy

Effective for hematologic malignancies High cost and complexity Optimize manufacturing to reduce cost

Precise tumor targeting via
genetic modification

Serious cytotoxicity and side effects
(e.g., CRS)

Use dual/tandem CARs to target
multiple antigens

High response rates Poor durability Combine with immune checkpoint inhibitors

Challenges with solid tumors (e.g., antigen
escape, TME, T-cell depletion)

CAR-Treg Therapy

Immunomodulation potential Complex and costly Improve manufacturing processes

Targets immune cells in autoimmune
diseases and transplantation

Limited specificity Develop improved CAR constructs

Good safety profile due to
immune suppression

Off-target effects
Select specific Treg subpopulations for
treatment

CAR-NK cell Therapy
Non-MHC-restricted recognition Poor persistence and amplification Engineer NK cell receptors

Lower risk of CRS and GVHD Less effective for solid tumors Optimize manufacturing

CAR-M Therapy

Broad applicability due to range of
tumor antigens

Limited macrophage numbers
Use anti-HER2 CAR-M to shift
macrophage phenotype

Better safety profile Poor survival in immunosuppressive TME
Combine with other therapies (e.g.,
checkpoint inhibitors)

Pro-inflammatory phenotype of
M1 macrophages

Potential off-target toxicity Apply gene editing (e.g.,CRISPR-Cas9)
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recipient’s tissues and organs. However, allogeneic CAR-NK cell

transplantation carries a lower risk of GVHD than does CAR-T cell

therapy, and potential complications such as CRS and ICANS are

avoided, making CAR-NK cells a potential alternative for

immunotherapy (200). Consequently, CAR-NK cell-based

therapies have demonstrated improved clinical safety profiles and

have addressed the problems associated with immune-mediated

adverse events commonly associated with allogeneic CAR-T

cell therapies.

Allogeneic NK cells are frequently favored for cellular

immunotherapy, and they can be derived from induced

pluripotent stem cells (iPSCs), peripheral blood (PB), and

umbilical cord blood (UCB), among other sources (201). Among

these, UCB has the capacity to generate NK cells in high quantities

(202), facilitating the production of readily available CAR-NK cells

for patient administration when needed (203). This approach offers

notable advantages, such as safety, convenience, rapidity, and cost-

effectiveness. However, a significant drawback is that UCB must be

collected at birth, limiting its availability for current patients.

Alternative approaches, such as deriving NK cells from iPSCs or

peripheral blood, are being explored to address this limitation (204).

Indeed, while CAR-NK-cell therapy offers several advantages

over CAR-T cell therapy, it also has several limitations similar to

those faced by CAR-T cell therapy, particularly in the context of

treating solid tumors. One of the significant challenges is that TME

components such as immune cells, stromal cells, and extracellular

matrix can hinder CAR-NK cell activity (205). To address these

limitations, ongoing research has focused on developing strategies to

enhance CAR-NK cell function within the TME, such as combination

approaches involving immune checkpoint inhibitors, cytokine

support, or genetic modifications like enhancing expression of

cytokine receptors, incorporating co-stimulatory domains, or

knocking out inhibitory receptors To address these limitations,

ongoing research has focused on developing strategies to enhance

CAR-NK cell function within the TME, such as combination

approaches involving immune checkpoint inhibitors, cytokine

support, or genetic modifications like enhancing expression of

cytokine receptors, incorporating co-stimulatory domains, or

knocking out inhibitory receptors. Additionally, advancements in

nanotechnology and engineering approaches have been applied to

optimize CAR-NK cell delivery and improve CAR-NK persistence

and efficacy in solid tumor environments (206).

Additionally, the transduction, in vitro expansion, and in vivo

maintenance of NK cells pose greater challenges than those of

infiltrating T cells, creating a hurdle for achieving long-term

persistence and sustained antitumor effects. In particular, the

transient nature of NK cell function and the shorter lifespans of

these cells in vivo can impact the durability of CAR-NK therapy

(207). Ongoing research efforts to address these limitations include

the optimization of transduction techniques and the development

of methods for more effective in vitro expansion and enhancing NK

cell survival and persistence in vivo.

Due to the promising attributes of CAR-NK cell treatment,

there has been notable progress within this domain in recent years.

Numerous researchers have proposed the fabrication of CAR

vectors that specifically target NK cells to enhance the efficacy of
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tumor therapy. Significantly, the inclusion of costimulatory

domains that are specific to NK cells, such as 2B4 and DNAX

activation protein 10 or 12 (DAP-10 or DAP-12), has been shown to

induce increased cytotoxicity and the production of IFN-g (208).

Furthermore, the integration of transgenes that encode activating

cytokines, such as IL-21, which can stimulate the growth and

viability of NK cells, can extend the longevity of CAR-NK cells

(207). For instance, the introduction of CXCR3 receptors into the

activation signaling domain of NK cells facilitates their migration to

tumor sites, thereby bolstering their therapeutic efficacy against

solid tumors (209, 210). In addition, the use of novel viral

transduction enhancers, such as polyethyleneimine, can enhance

the transduction efficiency of NK cells, thus amplifying their

anticancer effects (211).

5.3.3 Advantages and challenges of CAR-M-
cell therapy

In addition to NK cells, macrophages have garnered significant

attention as promising cells for cancer therapy. Their efficacy stems

from their capacity to engulf tumor antigens and secrete anti-

inflammatory factors, along with other anticancer mechanisms

(Table 2) (212).

TAMs can assume two phenotypes, known as M1 and M2

(213). M1 macrophages release interleukin-12 (IL-12), which

activates the cytotoxic activity of NK cells and stimulates Th1 and

CD8+ T cells, thus facilitating the eradication of tumors (214–216).

Moreover, M1 macrophages can function as APCs for tumor

antigens, thereby contributing to their antitumor effects (217).

Conversely, M2 macrophages promote tumor growth (218) and

typically impede the immune-mediated clearance of tumor cells

(219). Macrophages can be derived from different sources, such as

UCB, bone marrow (BM), and iPSCs. Each source has its own

advantages and disadvantages. UCB provides a readily available

source with high proliferation potential, but its collection is limited

to the time of birth, making it unavailable for current patients. BM-

derived macrophages are more accessible for adult patients and

have a well-established use in clinical settings, but their collection is

invasive and can be painful. iPSCs offer the advantage of being able

to generate large quantities of macrophages with specific desired

properties, including genetic modifications for enhanced anticancer

effects. Macrophages derived from iPSCs that are engineered to

express chimeric antigen receptors (CAR-iMacs) retain their innate

immune functions and can shift from an M2 phenotype to an M1

phenotype upon encountering antigens, exerting potent anticancer

effects. However, iPSC-derived macrophages require extensive

laboratory work and are cost-intensive. The choice of source is

crucial as it impacts the practicality, scalability, and effectiveness of

macrophage-based therapies, with iPSCs providing a particularly

flexible and potent option for engineering macrophages with

enhanced therapeutic properties (220).

CAR-M therapy and CAR-NK cell therapy share several

characteristics, including a reduced likelihood of inducing GVHD,

that make them promising alternatives for allogeneic cell therapy.

Furthermore, the remarkable capacity of macrophages to remodel

the extracellular matrix (ECM) enables their infiltration into the

immunosuppressive TME (221). Consequently, CAR-M therapy
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has a significant advantage over CAR-T cell and CAR-NK-cell

therapies. Another noteworthy aspect of CAR-M therapy is its

ability to elicit antitumor responses through both the innate and

adaptive immune systems (222).

Nevertheless, CAR-M therapy has certain limitations, including

a constrained macrophage quantity, limited effectiveness of CAR

transduction, and compromised survival and persistence within

immunosuppressive TMEs (138). Additionally, since macrophages

serve as a primary source of cytokines, the administration of CAR-

M treatment may induce CRS (223). Furthermore, the systemic

circulation of macrophages may result in off-target effects (224).

The strategies that have been pursued to improve CAR-M

therapy include viral and nonviral engineering approaches.

Research has shown the effectiveness of modified lentiviral

particles encoding the Vpx protein for proficiently transferring

transgenes into myeloid cells (225). Additionally, anti-HER2

CAR-M therapy has been shown to induce a phenotypic shift

from M2 to M1 macrophages, thereby augmenting antitumor

efficacy (226).
6 The expanded application of CAR-
based cell therapy in
autoimmune diseases

Although CAR-T cell therapy is predominantly used for

oncology, recent studies have indicated its potential application in

the treatment of autoimmune diseases such as SLE, colitis, and

common aspergillosis (57, 227–230). Despite the significant

progress that has been made in the treatment of autoimmune

diseases since the beginning of this century, the current

interventions (primarily immunosuppressive agents and blocking

antibodies) can control the disease but often fail to achieve a cure, as

they still inadequately control the underlying autoimmune

processes. Achieving the therapeutic goal of long-term remission

in patients with autoimmune diseases remains challenging. CAR

therapies offer a promising approach for controlling autoimmune

diseases by specifically targeting and modulating the immune cells

responsible for the pathological immune response. By engineering T

cells to express CAR that recognize autoantigens or immune cell

markers, CAR-based therapies can selectively eliminate or suppress

autoreactive immune cells, thereby restoring immune balance and

preventing tissue damage. To date, three CAR-based cell therapy

strategies for treating autoimmune diseases have been reported:

CAR-T cell therapy, CAR-Treg therapy and Chimeric autoantibody

receptor (CAAR)-T cell therapy.
6.1 CAR-T cell therapy for
autoimmune diseases

Following the success of CAR-T cell therapy for cancer,

researchers have explored its potential in treating autoimmune

diseases. Excessive B-cell activation leads to autoantibody

production, driving autoimmune disorders. CAR-T cell targeting
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of autoreactive B cells aims to reduce autoantibodies and suppress

autoimmunity. This innovative approach offers treatment promise

across autoimmune disorders, enhancing patient outcomes and

quality of life.

6.1.1 Systemic lupus erythematosus
SLE is a chronic autoimmune disease characterized by the immune

system attacking the body’s own tissues, leading to widespread

inflammation and tissue damage in organs such as the skin, joints,

kidneys, and brain. B cells play a crucial role in SLE by producing

autoantibodies that form immune complexes, which contribute to the

inflammatory process and tissue damage. Given the role of B-cell

hyperactivation in SLE, targeting B cells is a promising approach for

SLE treatment (231). CAR-T cell therapy has potential for enabling

selective B-cell targeting (232). Recent studies have highlighted the

efficacy of CAR-T cell therapy in SLE, particularly when directed

against the CD19 antigen. CD19 CAR-T cell infusion in chronic

lymphocytic leukemia and acute myeloid leukemia patients leads to

CD19+ B-cell reduction, autoantibody suppression, and lupus nephritis

reversal. Subsequent work has focused on constructing CD19 CARs

with internal costimulatory domains such as CD28 or 4-1BB, which,

when employed in SLE patients, demonstrate similar therapeutic

effectiveness and even preventive effects. Notably, CAR-T cells

integrating the 4-1BB costimulatory domain outperform those with

CD28 in terms of treatment outcomes (23, 210, 211, 233–236). As a

result, CD19 CAR-T cell therapy has proven to be efficacious in

controlling CD19+ B cells (25, 37, 93, 230, 231, 237, 238). A latest

follow-up research evaluated 8 patients with severe SLE who received a

single infusion of CD19 CAR-T cells 2 years ago. As a result, all the

patients with SLE had Definition of Remission in SLE (DORIS)

remission and Immunosuppressive therapy was completely stopped

in all the patients, providing rationale for further controlled clinical

trials (239).

Despite the notable adverse events linked to CAR-T cell

therapy, such as CRS and ICANS (36), it is worth noting that SLE

patients, who have a lower B cell burden than patients with B-cell

malignancies, do not exhibit high-grade CRS following CAR-T cell

therapy. Furthermore, the incidence of ICANS in SLE patients

receiving CAR-T cell therapy is lower than that in non-SLE patients

(233, 240–243). As a result, CAR-T cell therapy represents a viable

approach for achieving sustained B-cell depletion, highlighting the

significance of CD19-targeting CAR-T cells as a valuable

therapeutic option for managing SLE.

In addition, B cell maturation antigen (BCMA)-based CAR T

cell therapies also have been applied to various B cell-mediated

autoimmune diseases including systemic lupus erythematosu,

promoting the field of CAR-T cell therapy in autoimmune

diseases rapidly evolve (244).

6.1.2 Rheumatoid arthritis
B lymphocyte function in the etiology of RA is similar to that in

SLE. Recent investigations have shown the promise of employing

inert UCAR-T cells that are engineered target fluorescein

isothiocyanate (FITC) epitopes to alleviate RA. These CAR-T

constructs consist of one end capable of connecting to CAR-T
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cells through FITC and the other end capable of binding to self-

reactive B cells via antigen peptides, connected with a linker

molecules. By simply substituting the antigenic terminus of the

linker compound according to the patient’s antibody profile, a

tailored strategy can be developed to specifically target and

eradicate distinct B lymphocyte populations, resulting in

prolonged and efficacious enhancement of RA outcomes (245).
6.2 Application of CAR-Tregs in
autoimmune diseases

Originally utilized for GVHD treatment (246), Treg-based

therapy aims to reinstate immune tolerance in the context of

autoimmune diseases (188). Since its original application, the

amalgamation of Treg cells with CAR technology has been

considered to have considerable potential in addressing diverse

autoimmune conditions, facilitating the extensive utilization of

CAR-Tregs (247, 248). Clinical trials commonly employ

manipulation techniques involving CD4+ FOXP3+ Treg cells (249).

6.2.1 cGVHD
CAR-Treg technology has the ability to produce allogeneic

antigen-specific Tregs (175). This approach facilitates the use of

CAR-Tregs to treat autoimmune diseases.

HLA disparities are common in transplantation and can lead to

graft incompatibility and immune-mediated rejection when donor-

recipient HLA mismatch occurs (250). Studies have demonstrated

that targeting HLA-A2 via CAR and FOXP3 transduction enables

the generation of HLA-A2-specific HLA-A2-CAR-Tregs. Activated

HLA-A2 CAR-Tregs effectively suppress skin graft rejection in

humanized mice with immune reconstitution (175). Moreover,

they outperform polyclonal Treg cells in inhibiting delayed-type

hypersensitivity (DTH) reactions to allogeneic antigens, completely

preventing cytotoxicity against allogeneic human skin grafts (234).

Second-generation HLA-A2-CAR-Tregs designed by another

research team to have enhanced suppressive potential upon

specific HLA-A2 activation effectively alleviated alloimmune-

induced skin damage without inducing cytotoxicity (251, 252).

CAR-Treg therapy holds promising prospects for the treatment

of GVHD. Sangamo Therapeutics initiated the first clinical trial

(NCT04817774) of CAR-Tregs, known as TX200. TX200 was

specifically developed to mitigate immune-mediated rejection in

kidney transplantation with HLA-A2 mismatch, particularly in

patients with end-stage renal disease. In March 2022, TX200 was

administered to a patient for the first time as part of the phase 1/2

STEADFAST clinical study (253). Additionally, Quell Therapeutics

is currently conducting a clinical trial (NCT05234190) of QEL-001,

a self-targeting CAR-T regulatory cell therapy that specifically

targets HLA-A2, to mitigate transplant rejection in patients after

liver transplantation.

6.2.2 Inflammatory bowel disease (IBD)
IBDs, clinically consisting of ulcerative colitis (UC) and Crohn’s

disease (CD), are chronic inflammatory disorders of the
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gastrointestinal tract (254). In a 2,4,6-trinitrophenol (TNP)-

induced IBD mice model, the accumulation of TNP-CAR-Treg

cells was observed at the inflamed colonic sites upon activation.

These cells effectively suppressed the activity of Teffs and

significantly improved colitis, representing an initial preclinical

exploration of CAR-Treg therapy (227). The induction of the IL-

23 receptor (IL-23R) plays a significant role in CD (255). Hence, IL-

23R-CAR-Treg cells, which incorporate CD28 as a costimulatory

domain, were used to enhance the management of CD (256).

6.2.3 T1D
T1D is a chronic autoimmune disorder, characterized by the

autoimmune destruction of pancreatic b cells leading to insulin

deficiency (257, 258). The current therapeutic options for T1D

include insulin injections, dietary management, and exercise (259).

Changes in Treg cell number and function have been observed and

documented in the context of T1D (260). Notably, an increased

prevalence of IFN-g+ FoxP3+ (Th1-like) Treg cells with reduced

immunosuppressive activity has been observed in the peripheral

blood of individuals affected by this condition (261). Consequently,

the continuous infusion of Treg cells has been suggested as a potential

strategy to mitigate T1D (262–264). However, the long-term delivery

of Treg cells poses challenges due to the intricate and costly

manufacturing process involved in the large-scale production of

these cells (181).

Preclinical studies utilizing mouse models have successfully

demonstrated effective control of T1D through the use of FoxP3-

engineered islet-specific T cells (265). Expanding on this discovery,

researchers are currently considering the application of CAR-Treg cells

targeting distinct structural domains for the treatment of other forms of

diabetes. One approach involves redirecting T effector cells to Tregs by

employing FoxP3 engineering while simultaneously utilizing CAR

technology to specifically target T cells to insulin, thereby reducing

autoimmune attacks on pancreatic beta cells and preserving insulin

production in patients with diabetes. The resulting insulin-specific

CAR-Treg cells exhibit enduring functionality and sustained effects

(266). Moreover, by incorporating a FITC-binding domain into the

CAR structure, antigen-specific monoclonal CAR-Treg cells can be

designed to selectively target desired antigens using FITC-conjugated

corresponding antibodies. This innovative strategy holds promise for

addressing immune rejection associated with allogeneic islet

transplantation and ultimately ameliorating T1D (267).

6.2.4 Multiple sclerosis
The recognition of self-antigens by autoreactive T cells targeting

myelin epitopes contributes to the pathogenesis of MS (268).

Individuals with MS exhibit increases in the populations of Th1-

like Treg cells, which exhibit impaired suppressive function. The

generation of these cells can be regulated by the PI3K/AKT/FOXO

signaling pathway, and inhibiting this pathway therefore has the

potential to decrease the quantity of Th1-like Treg cells and restore

their suppressive capabilities (269, 270). By utilizing a lentiviral

vector system, CD4+ T cells were modified to express a CAR

targeting myelin oligodendrocyte glycoprotein (MOG), as well as

the FoxP3 gene, facilitating the desired expression in the cells. In
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murine experiments involving MOG-CAR-Treg cells, these cells

migrated to the central nervous system, resulting in decreased levels

of IL-12 and IFN-g, thereby leading to long-term suppression of

experimental autoimmune encephalomyelitis (183).

Overall, CAR-T and CAR-Treg therapies show significant

potential for the treatment of multiple sclerosis. For example,

researchers have utilized KYV-101, a fully humanized CD19

CAR-T cell therapy developed by Kyverna, to treat patients with

multiple sclerosis. Treatment data indicate that this therapy exhibits

tolerable safety and promising efficacy in progressive MS, including

patients for whom conventional antibody-mediated B-cell depletion

fails (271). By precisely targeting immune cells and mitigating

pathological immune responses, these therapies are expected to

alleviate symptoms and enhance the quality of life for patients.

6.2.5 Rheumatoid arthritis
An increased presence of Th17-like Treg cells (Treg cells with

impaired suppressive function) has been observed in the inflamed

joints of RA patients and may be associated with persistent arthritis

(272, 273). CD4+ T cells were modified to express a CAR targeting

type II collagen and the FoxP3 gene. These CAR-Treg cells

effectively suppressed ovalbumin (OVA)-induced arthritis by

inhibiting the immune response to OVA (274). Furthermore,

antigen-specific CAR-Tregs targeting citrullinated vimentin (CV)

can be engineered for the treatment of RA. CV is a key autoantigen

implicated in the pathogenesis of RA, as it is commonly found in the

synovial tissue of patients and is associated with the autoimmune

response driving the disease. By specifically targeting CV, CAR-

Tregs can potentially modulate this immune response, reducing the

inflammation and joint damage characteristic of RA (275).

6.2.6 Other autoimmune diseases
CAR-Treg therapy has the potential to treat a variety of

autoimmune diseases in addition to those mentioned above. For

example, autoimmune liver disease (AILD) is characterized by

persistent immune-mediated inflammation of the liver, loss of

immune tolerance to hepatocytes and bile duct epithelial cells,

elevated serum total IgG, and the presence of circulating

autoantibodies (235). Currently, there is no curative treatment for

AILD, and patients need lifelong medication to manage liver

inflammation and prevent bile duct injury (236). Two AILD

subtypes, PBC and AIH type 2, are characterized by distinct self-

antigens, making CAR-Treg therapy targeting these antigens a

promising approach for treatment. CAR-Treg technology for AILD

treatment is still in the clinical research phase (NCT05234190). This

phase I/II single-arm, open-label clinical trial targets the HLA-A2

antigen. When these CAR-Tregs recognize the HLA-A2 antigen on the

transplanted liver, they become activated and work to induce and

maintain immune tolerance to the transplanted organ.

Although CAR-Treg therapy shows potential for treating

autoimmune diseases, clinical investigation of such applications is

still in its infancy, several obstacles remain to be addressed, such as

CAR-Treg depletion. Nonetheless, preliminary evidence suggests

their potential as a future therapeutic choice. Future research should
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aim to evaluate the safety, effectiveness, and long-term impacts of

CAR-Treg therapies and to fully scope their potential in managing

autoimmune diseases (276).
6.3 Application of CAAR-T-cell therapy in
autoimmune diseases

Another recent area of exploration within the field of CAR-T cell

and CAR-Treg therapy for autoimmune disease treatment involves

modifying CAR-T cells to proficiently eliminate self-reactive B

lymphocytes. Of particular interest is a novel engineered T-cell

construct, termed the chimeric autoantibody receptor (CAAR). In

contrast to CAR-T cells, CAAR-T cells possess an extracellular

domain derived from autoantigen. This unique feature enables

CAAR-T cells to identify and eradicate self-reactive B-cell receptor

(BCR)-expressing B lymphocytes, granting them the ability to

specifically target this population (229). Although the investigation

of CAAR-T cells is still in its initial phases, it represents an enticing

strategy for treating autoimmune diseases.

Pemphigus vulgaris (PV) is a severe blistering disease affecting

the skin and mucous membranes caused by autoantibodies targeting

desmoglein proteins (277). Therefore, the presence of anti-

desmoglein BCR on memory B cells contributes to PV

pathogenesis (278, 279). Recent studies have demonstrated that

cell-based therapies targeting anti-desmoglein 3 (Dsg3) antibodies

can be employed for treating PV. Compared with CD19 CAR-T cells,

chimeric CAAR-T cells with Dsg3 extracellular domains have shown

superior and more durable therapeutic effects. However, they are still

associated with several adverse effects, such as CRS (280). Despite

being in its nascent phase, CAAR-T-cell technology has exhibited

promise in preclinical investigations and initial clinical trials. Further

research endeavors and clinical studies will facilitate a comprehensive

assessment and refinement of the therapeutic efficacy, safety, and

long-term sustainability of this technology.
7 Discussion

CAR-T cell therapy has revolutionized the landscape of cancer

treatment, demonstrating remarkable efficacy in hematologic

malignancies and showing promising potential in autoimmune

diseases. However, significant challenges remain, particularly in

the treatment of solid tumors. The evolution of CAR-T technology,

from first-generation to fifth-generation CARs, highlights ongoing

efforts to enhance efficacy, safety, and specificity. To overcome these

challenges, current research is focusing on discovering new antigen

targets, optimizing CAR designs, and developing multitargeting

strategies. Future research still needs to focus on overcoming the

immunosuppressive tumor microenvironment, improving CAR-T

cell persistence, and minimizing off-target effects. Ultimately, the

continued refinement and expansion of CAR-T cell therapy hold

great promise for transforming oncological and immunological

treatments, offering new hope for patients with challenging diseases.
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164. Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L,
et al. CAR T cells produced in vivo to treat cardiac injury. Science. (2022) 375(6576):91–
6. doi: 10.1126/science.abm059
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Glossary

BCMA (B-cell Maturation Antigen) A protein found on the surface of
Frontiers in Immunol
multiple myeloma cells. It is a common target for CAR-T cell
therapies aimed at treating multiple myeloma
CAR (Chimeric Antigen Receptor)A genetically engineered

receptor introduced into T cells to help them recognize and
attack cancer cells. CAR-T cell therapy is a breakthrough in
cancer immunotherapy
CRISPR/Cas9 A gene-editing technology used to modify genes within

organisms. In CAR-T therapies, it is used to improve the
efficacy and persistence of T cells by knocking out genes like
PD-1
CRS (Cytokine Release Syndrome) A potentially life-threatening

side effect of CAR-T cell therapy characterized by a severe
immune response, where large numbers of cytokines are
released into the blood
GVHD (Graft-versus-Host Disease) A condition where transplanted

immune cells (like CAR-T cells) attack the recipient's tissues,
causing severe complications. Allogeneic CAR-T therapies
aim to mitigate this risk. ICANS (Immune Effector Cell-
Associated Neurotoxicity Syndrome), A neurological side
effect associated with CAR-T cell therapies, causing
symptoms ranging from confusion to seizures
ogy 25
IL (Interleukin) A group of cytokines (immune system proteins)

that play various roles in regulating immune responses. In
CAR-T therapies, IL-12 is often used to enhance the anti-
tumor activity of the modified T cells
MHC (Major Histocompatibility Complex) A set of proteins

displayed on cell surfaces that help the immune system
recognize foreign substances. CAR-T cel ls work
independently of MHC, allowing them to target tumor cells
more broadly
NK Cells (Natural Killer Cells) A type of immune cell involved in

killing virus-infected and tumor cells. CAR-NK cell therapies
represent an alternative to CAR-T cell therapies with fewer
side effects like GVHD
PD-1 (Programmed Cell Death Protein 1) A checkpoint protein on

T cells that regulates immune response by preventing the
activation of T cells, thus reducing their ability to attack
cancer cells. Blocking PD-1 enhances the effectiveness of
CAR-T therapies
TME (Tumor Microenvironment) The environment around a

tumor, including various cells, blood vessels, and signaling
molecules. The TME can inhibit CAR-T cell efficacy, making
it a significant barrier to successful immunotherapy
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