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Background: The Aryl Hydrocarbon Receptor (AhR) pathway significantly

influences immune cell regulation, impacting the effectiveness of

immunotherapy and patient outcomes in melanoma. However, the specific

downstream targets and mechanisms by which AhR influences melanoma

remain insufficiently understood.

Methods: Melanoma samples from The Cancer Genome Atlas (TCGA) and

normal skin tissues from the Genotype-Tissue Expression (GTEx) database

were analyzed to identify differentially expressed genes, which were

intersected with a curated list of AhR-related pathway genes. Prognostic

models were subsequently developed, and feature genes were identified.

Advanced methodologies, including Gene Set Enrichment Analysis (GSEA) and

immune cell infiltration analysis, were employed to explore the biological

significance of these genes. The stability of the machine learning models and

the relationship between gene expression and immune infiltrating cells were

validated using three independent melanoma datasets. A mouse melanoma

model was used to validate the dynamic changes of the feature genes during

tumor progression. The relationship between the selected genes and drug

sensitivity, as well as non-coding RNA interactions, was thoroughly investigated.

Results:Our analysis identified a robust prognostic model, with four AhR-related

genes (MAP2K1, PRKACB, KLF5, and PIK3R2) emerging as key contributors to

melanoma progression. GSEA revealed that these genes are involved in primary

immunodeficiency. Immune cell infiltration analysis demonstrated enrichment of

CD4+ naïve and memory T cells, macrophages (M0 and M2), and CD8+ T cells in

melanoma, all of which were associated with the expression of the four feature

genes. Importantly, the diagnostic power of the prognostic model and the

relevance of the feature genes were validated in three additional independent
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melanoma datasets. In the mouse melanoma model, Map2k1 and Prkacb mRNA

levels exhibited a progressive increase with tumor progression, supporting their

role in melanoma advancement.

Conclusions: This study presents a comprehensive analysis of AhR-related genes

in melanoma, highlighting MAP2K1, PRKACB, KLF5, and PIK3R2 as key prognostic

markers and potential therapeutic targets. The integration of bioinformatics and

machine learning provides a robust framework for enhancing prognostic

evaluation in melanoma patients and offers new avenues for the development

of treatments, particularly for those resistant to current immunotherapies.
KEYWORDS

Aryl Hydrocarbon Receptor, melanoma, prognostic model, immune cell infiltration,
machine learning models
1 Introduction

Melanoma, a highly aggressive skin cancer type, accounts for

around 4% of skin tumor cases but is responsible for approximately

80% of skin cancer-related deaths (1). Immunotherapy, especially

through immune checkpoint inhibitors, has transformed the

treatment landscape for melanoma, providing substantial benefits

to certain patient groups (2). However, many patients exhibit

variable responses or develop resistance to these therapies,

highlighting the need for more precise therapeutic strategies.

Recent oncology research has increasingly focused on the aryl

hydrocarbon receptor (AhR), historically known for its role in

xenobiotic metabolism (3). Environmental carcinogens, such as

polycyclic aromatic hydrocarbons and polychlorinated biphenyls,

act as ligands that bind to and activate AhR (4). In melanoma, AhR

is implicated in multiple chemical carcinogenic signaling pathways

and exhibits a dual role, functioning as both a promoter and

suppressor of tumorigenesis (5). It has also emerged as a key

modulator within the tumor microenvironment (TME) (6).

Studies suggest that AhR activation triggers the expression of

various cytokines and immune-modulating factors, shaping the TME

in distinct ways (7). In melanoma, AhR activation has been linked to

the recruitment and activity of regulatory T cells (Tregs), which

suppress anti-tumor immunity (8). Conversely, AhR signaling has

also been shown to enhance anti-tumor immune responses by

promoting Th17 cell differentiation (9), highlighting its complex

role. Additionally, AhR activation can drive macrophages to

acquire an immunosuppressive phenotype, which can mediate

chemotherapy resistance in tumor (10, 11). AhR is notably present

in various crucial immune cells, both innate and adaptive immunity,

but comprehensive analyses of the relevant pathway are lacking (4).

This gap in knowledge presents a significant hurdle in harnessing

AhR’s potential in therapeutic strategies.

While several studies have associated AhR with melanoma

prognosis and resistance to immune checkpoint inhibitors (12),
02
significant gaps persist. For instance, although AHR is implicated in

the recruitment of immunosuppressive cells (3), the key

downstream targets of the AhR pathway in melanoma, their roles

in shaping the tumor microenvironment, and their potential as

reliable prognostic markers have yet to be fully characterized. This

study addresses these gaps by leveraging bioinformatics tools to

systematically analyze AhR-related genes and their associations

with melanoma. Through robust machine learning models, it

identifies novel prognostic markers and potential therapeutic

targets. By enhancing our understanding of the AhR pathway,

this research provides a foundation for identifying new treatment

strategies and clarifying the biological mechanisms driving

melanoma progression.
2 Materials and methods

2.1 Raw data acquisition

Figure 1 was created to show the flowchart of our data analysis

process. The study utilized public datasets from TCGA

(www.cancer .gov) for melanoma samples and GTEx

(www.gtexportal.org) as controls. The combined data enabled the

comparison of melanoma-specific gene expression patterns. Gene

expression and single-cell RNA sequencing (scRNA-seq) data for

melanoma were obtained from the Gene Expression Omnibus

(www.ncbi.nlm.nih.gov/geo/). The GSE19234 dataset (GPL570)

includes data from 38 melanoma patients (13). The GSE65904

dataset (GPL10558) consists of data from 214 melanoma patients,

with only cutaneous melanoma samples that have available disease-

specific survival information and survival duration selected (n=21)

(14). The GSE72056 dataset (GPL18573) contains single-cell RNA-

seq data from 4645 cells isolated from 19 melanoma patients (15).

Gene expression across different cell types was processed and

analyzed using the Seurat and SingleR R packages (16, 17).
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2.2 Differentially expressed genes

Using the limma package (18), DEGs were screened according

to the threshold parameters (|logFC| > 0.5 and adjusted p < 0.05).

Volcano plots and heatmaps were generated to show the gene

expression changes by R. The analysis focused on genes within the

chemical carcinogenesis receptor activation signaling pathway

(hsa05207) involving AhR pathway, identifying 103 intersecting

genes. Network of 103 intersecting genes were conducted by igraph

package with p < 0.5, r > 0.3. The skin-specific coexpression

network were conducted by NetworkAnalyst, which have human

tissue-specific gene coexpression from the iNetModels

database (19).
2.3 Construction of prognostic model and
immune cell infiltration analysis
in melanoma

The melanoma dataset from TCGA was split into training (75%)

and testing (25%) sets. Using the R software and the Mime package,

we constructed an optimal prognostic model and identified feature

genes (20). Mime, a machine learning framework, integrates ten

classic algorithms: Lasso, Enet, Boruta, CoxBoost, Random Forests

(RSF), eXtreme Gradient Boosting (Xgboost), StepCox, plsRcox,

Generalized Boosted Regression Model (GBM), and Support

Vector Machine Recursive Feature Elimination (SVM-REF). A total
Frontiers in Immunology 03
of 117 combinations were applied with K-fold cross-validation for

model training. The model’s performance, assessed using the C-

index, demonstrated its capability to stratify patients into high- and

low-risk survival groups. Immune cell infiltration was analyzed using

xCell, Epic, abis, estimate, and Cibersort via the Mime and

immunedeconv packages (21).
2.4 Gene set enrichment and
variation analyses

GSEA was used to investigate the functional enrichment of the

feature genes. We divided each feature gene into high expression

and low expression groups based on its expression level, and

conducted differential analysis with a p-valuecutoff value of 0.05.

Using R software along with the enrichplot packages, KEGG

pathways were identified to explore the roles of feature genes in

TCGA melanoma samples (22).
2.5 Ear injection model in mice

C57BL/6 mice were purchased from HFK Bioscience (Beijing,

China) and housed in a specific pathogen-free environment. For the

ear injection model, B16-F10 cells (2 × 105) were injected

intradermally into the ears of mice (8-week-old) in 25 ml of

HBSS buffer.
FIGURE 1

Integrating bioinformatics and machine learning to identify AhR-related gene signatures for prognosis and tumor microenvironment modulation
in melanoma.
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2.6 RNA extraction and quantitative real-
time PCR

Total RNA from tumor or normal tissue was obtained. qRT-PCR

mixtures were prepared by a SYBR green real-time PCR kit (Toyobo,

Osaka, Japan). mRNA levels were normalized to GAPDH, and fold

changes were determined using the 2−DDCt method. Primer pairs: 5’-

TCTCCACACCTATGGTGCAA -3’ and 5’- CAAGAAACAG

GGGAGCTGAG -3 ’ (Gapdh) ; 5 ’- AACGGTGGAGTG

GTCTTCAAG -3’ and 5’- CGGATTGCGGGTTTGATCTC -3’

(Map2k1); 5’- AGGGCAGGACATGGACATTG -3’ and 5’-

CGCCTTATTGTAACCCTTGCTG -3’ (Prkacb); 5’- CAGGC

CACCTACTTTCCCC -3 ’ and 5 ’ - GAATCGCCAGTT

TGGAAGCAA -3’ (Klf5); 5’- ACCTAAGCCCTCTAAGGCAAA -3’

and 5’- TCCCGGAGTCTCTCATTCACC-3’ (Pik3r2).
2.7 Drug sensitivity

To explore the therapeutic implications, drug-gene interactions

were predicted for the identified hub genes using Gene Set Cancer

Analysis (GSCA). GSCA integrates over 750 small molecule drugs

from Cancer Therapeutics Response Portal (CTRP) and Genomics

of Drug Sensitivity in Cancer (GDSC) databases (23). This analysis

is crucial for identifying potential compounds that could reverse

resistance to immunotherapy.
2.8 mRNA-miRNA-lncRNA network

A comprehensive mRNA-miRNA-lncRNA network was

constructed to explore the post-transcriptional regulation of the

feature genes. Using the miRDB database (24) for miRNA

prediction (target score ≥ 95) and ENCORI database (25) for

lncRNA prediction.
3 Results

3.1 DEGs identification and
correlation analysis

We conducted a differential gene expression analysis between

melanoma samples from TCGA and normal control tissues from

GTEx, identifying 12891 differentially expressed genes (DEGs)

(Figure 2A). From the human chemical carcinogenesis receptor

activation signaling pathway (hsa05207), which is closely associated

with the AHR pathway, we identified 215 related genes

(Supplementary Figure S1). Of these, 103 genes overlapped with

the DEGs (Figure 2B), with 52 genes being upregulated and 51

downregulated in melanoma (Figure 2C). Correlation analysis

further demonstrated strong interrelationships among these 103

genes (Figure 2D). Additionally, we constructed the skin-specific
Frontiers in Immunology 04
coexpression network of these 103 genes using NetworkAnalyst

(Supplementary Figure S2).
3.2 Construction of prognostic models

The TCGAmelanoma dataset (n = 456) was divided into a training

subset (75%, n = 342) and a testing subset (25%, n = 114). A set of 103

overlapping genes was utilized with both subsets to build prognostic

models, applying 10 machine learning algorithms via Mime. Out of the

117 models developed, the StepCox[forward] + RSF combined model

achieved the highest C-index mean across both the training and testing

datasets (Figure 3A). Both the StepCox[forward] + RSF combined

model and the RSF model yielded the same mean C-index across

training and testing datasets. Since the combined model selected the

same feature genes as both methods, which are deemed more

significant, we chose the StepCox[forward] + RSF combined model

for further analysis. Based on the median risk score calculated byMime

from the combined mode, patients were categorized into high-risk and

low-risk groups. The survival probability for each cohort was assessed,

showing that individuals in the high-risk group had significantly poorer

outcomes in both datasets (Figure 3B). Notably, the 3- and 5-year AUC

of the combined model reached 1 in the test set and >0.96 in the

training set, indicating the model’s exceptional precision and

stability (Figure 3C).
3.3 Selection of significant feature genes

We analyzed the top 10 genes from the StepCox and RSF models,

respectively (Figure 4A). Using a Venn diagram, we identified

MAP2K1, PRKACB, KLF5, and PIK3R2 as significant features

common to both models (Figure 4B). Based on the expression of

the feature genes, patients were stratified into high-risk and low-risk

groups using Mime, and survival probabilities were calculated for

each cohort. Notably, higher expression levels of PRKACB and

MAP2K1 were associated with better survival outcomes, while

elevated expression of KLF5 and PIK3R2 correlated with poorer

prognosis (Figure 4C). An examination of the expression profiles of

melanoma patients from the TCGA database, compared to normal

controls from the GTEx database, revealed that AHR, MAP2K1, and

PRKACBwere upregulated in melanoma, whereas KLF5 and PIK3R2

were downregulated (Figure 4D). Correlation analysis demonstrated

a significant positive correlation between AHR and MAP2K1, as well

as PRKACB, and a significant negative correlation with PIK3R2. No

significant correlation was observed between KLF5 and the other

genes (Figure 4E). AHR also co-expressed with these feature genes in

a skin tissue coexpression network (Supplementary Figure S2). These

results suggest that these genes are not only key prognostic markers

but may also play essential roles in melanoma progression,

positioning them as promising targets for therapy.

To assess the robustness and predictive accuracy of the

prognostic model, we used external datasets, GSE19234 and
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GSE65904, as independent test sets. The combined StepCox

[forward] + RSF model showed strong consistency across these

datasets (Supplementary Figures S3A, C). Notably, melanoma

patients in GSE65904 with high MAP2K1 expression exhibited

better outcomes (Supplementary Figures S3B, D). Additionally, we

conducted a correlation analysis of MAP2K1, KLF5, PRKACB, and

PIK3R2 with immune signatures across both datasets

(Supplementary Figures S3E, F). However, due to the limited

sample size, survival differences between the low-risk and high-

risk groups were not statistically significant for other genes, and

their correlations with immune signatures varied between

the datasets.
3.4 GSEA analysis of selected feature genes

Beyond their prognostic significance, the four feature genes are

implicated in key biological pathways. GSEA revealed that

MAP2K1 is predominantly associated with the metabolism of

xenobiotics by cytochrome P450, primary immunodeficiency and
Frontiers in Immunology 05
tyrosine metabolism (Figure 5A). KLF5 is linked to the metabolism

of xenobiotics by cytochrome P450 and tyrosine metabolism

(Figure 5B). PRKACB is primarily involved in primary

immunodeficiency (Figure 5C). PIK3R2 plays a role in the

metabolism of xenobiotics by cytochrome P450, tyrosine

metabolism and oxidative phosphorylation (Figure 5D).
3.5 Correlation between feature genes and
immune signatures

The immunological environment plays a critical role in the

progression of melanoma. To explore this, we enriched immune

infiltration and tumor microenvironment signatures using Mime.

Immune scores obtained through various tools, including xCell and

ESTIMATE, while specific immune cell populations such as CD4+ T

cells (via EPIC), CD4+ naïve and memory T cells (via ABIS), CD8+

T cells, and macrophages (M0 and M2 types) were assessed using

CIBERSORT and CIBERSORT_abs, showing high expression in

melanoma samples from the TCGA dataset (Figure 6A).
FIGURE 2

DEGs identification and correlation analysis. (A) Volcano plot of DEGs between melanoma samples from TCGA-SKCM and control tissues from
GTEx. (B) 103 intersecting genes of DEGs and genes from the hsa05207 pathway. (C) Heat map depicting the expression patterns of DEGs across
the two groups. (D) Network of 103 intersecting genes. Red nodes represent upregulated genes and blue nodes representing downregulated genes.
Red lines indicate positive correlations, while blue lines denote negative correlations between the genes.
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Correlation analysis between the feature genes and immune cell

signatures revealed that MAP2K1 and PRKACB are positively

correlated with CD4+ T cells and immune score, both of which

are crucial for anti-tumor immunity. KLF5 and PIK3R2 were

associated with the CD4+ naïve T cells and immunosuppressive

macrophages (M2 type) (Figure 6B). These findings highlight the

diverse roles of AHR-related genes in melanoma and emphasize

their potential as key modulators of the immune landscape.
3.6 Validation of the relationships between
feature genes and immune cells

We analyzed the expression of the feature genes in different immune

cells using single-cell sequencing data frommelanoma (GSE72056). First,

we grouped the cells based on their expression profiles (Figure 7A) and
Frontiers in Immunology 06
examined the expression of the feature genes across different cell types

(Figure 7B). Notably, AHR and the four feature genes were expressed in

T cells and macrophages (Figures 7C, D). These results further confirm

that the feature genes are involved in immune responses within the

melanoma microenvironment. The expression of these genes in T cells

and macrophages, key immune cell types, supports the hypothesis that

they play crucial roles in regulating immune responses and may

influence the tumor’s ability to evade immune surveillance.
3.7 Validation of the feature genes in
mouse melanoma model

To further validate the dynamic changes in the feature genes

during melanoma progression, we established a melanoma model in
FIGURE 3

Construction of prognostic models. (A) C-index values for each model across both the training and testing datasets, highlighting model
performance. (B) Survival curves for patients stratified by risk scores, calculated using the StepCox[forward] + RSF combined model across different
datasets. (C) ROC curves for the 1-, 3-, and 5-year survival predictions, demonstrating the performance of the StepCox[forward] + RSF combined
model in both the training and testing datasets.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1519345
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li and Li 10.3389/fimmu.2024.1519345
the mouse ear (Figure 8A), which is considered more clinically

relevant for studying the progression and metastasis of human

melanoma (26). In this model, the mRNA levels of Map2k1 and

Prkacb increased significantly on days 21 and 14, respectively,

whereas the expression of Klf5 and Pik3r2 showed no significant

changes (Figures 8B).
3.8 Construction of mRNA-miRNAs-
lncRNAs network and Drug-
gene interactions

We predicted the drugs correlated with AHR, MAP2K1, KLF5,

PRKACB and PIK3R2 using data from the CTRP and GDSC
Frontiers in Immunology 07
databases. Additionally, the drug-gene interactions were

visualized using the GSCA platform (Supplementary Figures S4A,

B). To further explore regulatory mechanisms, we searched the

miRDB database to identify miRNAs with a target score of ≥ 95 that

are linked to the mRNAs of these feature genes. We then used the

ENCORI database to identify lncRNAs associated with these

miRNAs. A comprehensive mRNA-miRNA-lncRNA network was

constructed by intersecting the identified miRNAs and lncRNAs

(Supplementary Figure S5). These analyses aim to uncover potential

therapeutic strategies for melanoma by targeting key molecules in

the AHR, MAP2K1, KLF5, PRKACB, and PIK3R2 signaling

pathways. These analyses aim to identify therapeutic strategies for

melanoma by targeting key genes (AHR, MAP2K1, KLF5,

PRKACB, PIK3R2) and their regulatory RNA networks, offering
FIGURE 4

Selection of significant feature genes. (A) Top 10 features selected by the StepCox (left) and Random Forest (right) algorithms. (B) Venn diagram
showing the intersection of four feature genes derived from both the StepCox and Random Forest models. (C) Survival curves of patients stratified
by the median expression levels of each gene across different datasets. (D) Comparison of the expression levels of the identified feature genes in
melanoma patients from the TCGA database against normal controls from the GTEx database. (E) A correlation heatmap illustrating the relationships
among the selected genes. ***P < 0.001.
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potential for personalized treatments and novel biomarkers to

improve clinical outcomes.
4 Discussion

4.1 Overview of findings

This study provides significant insights into the role of the AhR

pathway in melanoma, particularly in relation to tumor progression

and immune modulation. Previous research has highlighted the

dualistic nature of AhR signaling in cancer, where it can either

suppress or promote tumorigenesis depending on the context (5, 27).

Recent evidences in melanoma, where AhR appears to promote

macrophage polarization towards immunosuppressive phenotype

(11) and widely suppress immune cell function (28), complicating

its utility as a straightforward therapeutic target. By integrating

bioinformatics and machine learning, we identified four key AhR-

associated genes—MAP2K1, PRKACB, KLF5, and PIK3R2—that

serve as both prognostic markers and potential therapeutic targets.
Frontiers in Immunology 08
These genes were systematically analyzed for their biological roles

and correlations with immune infiltration and patient outcomes.
4.2 Biological and clinical implications of
key genes

MAP2K1, also referred to as MEK1, is a crucial element of the

mitogen-activated protein kinase (MAPK) signaling pathway,

which plays a pivotal role in controlling cell proliferation,

differentiation, and survival (29, 30). MEK1/2 can activated AhR,

resulting in a transient inhibition of cytochrome P450 family 1

subfamily A member 1 (CYP1A1) (31). AHR introduces the

transcriptional activation of CYP1A1, which facilitates the

biotransformation of environmental toxins and carcinogenic

substances into highly reactive and carcinogenic diol epoxide

intermediates (32). Additionally, AhR can influence MAPK

signaling, thereby affecting cellular processes such as dysfunction

and apoptosis (33). In melanoma, dysregulation of MAPK

signaling, often through mutations in upstream effectors like
frontiersin.o
FIGURE 5

GSEA analysis of selected feature genes. In terms of KEGG pathway analysis, the top five upregulated and downregulated pathways were identified
for (A) MAP2K1, (B) KLF5, (C) PRKACB, and (D) PIK3R2.
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BRAF, leads to unchecked tumor growth and resistance to therapy

(34). Our results demonstrate a positive association between

MAP2K1 expression and T cell infiltration in the TME and better

outcomes. This finding is significant because it underscores the

complex role of MAP2K1, which could potentially be exploited to

enhance the efficacy of immunotherapies.

PRKACB, a gene encoding the catalytic subunit of protein

kinase A (PKA), is involved in the regulation of metabolism,

transcription, and immune response (35). Studies show that AhR

can activate PKA signaling, thereby regulating the activation of

cancer stemness (36). In melanoma, PKA can enhance the

migration and metastasis of melanoma cells (37) and impair T

cell infiltration into the tumor microenvironment (38). Recent

evidence indicated that PKA mediates the growth inhibition of
Frontiers in Immunology 09
melanoma cells (39). In our study, the positive correlation between

PRKACB expression and immune score, suggests that PRKACB

may facilitate anti-tumor immunity in melanoma. PKA has been

shown to modulate can phosphorylate the NF-kB subunit p65,

promoting T cell activation and survival (40, 41), which may

explain the association between high PRKACB expression and

better survival outcomes observed in this study. Interestingly,

PRKACB is also associated with inhibiting the proliferation and

invasion of tumor cells (42), making it a promising therapeutic

target in combination with existing immunotherapies.

KLF5 (Kruppel-like factor 5) is a transcription factor known for

its role in cell proliferation, differentiation, and apoptosis (43).

Studies indicate that KLF5 can enhance the expression of CYP1A1,

which are involved in inducing the expression of proinflammatory
FIGURE 6

Correlation between feature genes and immune signatures. (A) Immune signatures in melanoma samples from TCGA were deconvoluted using
various methods. (B) Correlations were analyzed between the feature genes (MAP2K1, KLF5, PRKACB, PIK3R2) and the immune signatures. *P < 0.05,
**P < 0.01, ***P < 0.001.
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cytokines (such as TNF) that can influence melanoma progression

(44, 45). KLF5 can promote the epithelial-mesenchymal transition

(EMT) (46), a process crucial for melanoma invasion and metastasis

(47), making it a potential target for therapeutic interventions

aimed at disrupting these pathways. Moreover, KLF5 can

promote the podosome formation in macrophages and enhance

the tissue infiltration ability of macrophages (48). KLF5 promotes

malignant phenotype of melanoma cells and inhibits autophagy,

leading to poor prognosis (49). Targeting KLF5 could, therefore, be

a potential strategy to reverse EMT and reduce immunosuppression

in the TME.

PIK3R2, encoding the regulatory subunit of phosphoinositide-

3-kinase (PI3K), is frequently activated in various cancers,

including melanoma (50). Activation of AHR has been shown to

lead to the phosphorylation of AKT, a downstream effector of the

PI3K pathway, thereby promoting tumor cell proliferation and

chemotherapy drug resistance (32). PIK3R2 is identified to

promote malignant progression of melanoma by activating the
Frontiers in Immunology 10
PI3K/AKT/NF - k B pathway (51). Here, we indicate a negative

correlation between PIK3R2 expression and T cell infiltration,

alongside a positive association with M2 macrophages. This dual

association highlights the immunosuppressive role of PIK3R2 in the

TME. Additionally, several bioinformatics analyses based on

melanoma transcriptome have indicated that PIK3R2 leads to

poor prognosis and low immune cell infiltration in melanoma

(52, 53). Targeting PIK3R2 in combination with therapies that

reprogram macrophages could potentially enhance anti-tumor

immunity and improve patient outcomes.

The upregulation of AHR, MAP2K1, and PRKACB, alongside

the downregulation of KLF5 and PIK3R2 (Figure 4D), suggests that

these genes play critical roles in melanoma progression through

various signaling pathways. AHR promotes immune evasion and

tumor progression, influencing MAP2K1 and PRKACB, which

regulate key pathways like MAPK and NF-kB signaling,

respectively. Conversely, the downregulation of KLF5 and PIK3R2

may facilitate a more aggressive, proliferative melanoma phenotype
FIGURE 7

Validation of the relationships between feature genes and immune cells. (A) Single cell expression profiles were clustered into different cell types
using the SingleR R package. (B) Expression levels of AHR and the four feature genes across various cell types. (C) Expression of AHR, MAP2K1, KLF5,
PRKACB, and PIK3R2 in T cells. (D) Expression of AHR, MAP2K1, KLF5, PRKACB, and PIK3R2 in macrophage.
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by affecting cell differentiation and metabolism (Figure 5). In the

mouse model, the differential expression of these genes over time

reflects their roles in tumor progression, with the immune

microenvironment possibly influencing gene expression. These

findings highlight the importance of these genes as potential

therapeutic targets and the need for further investigation into

their roles in immune modulation and melanoma progression.
4.3 Integration of bioinformatics and
machine learning

The extensive application of high-throughput sequencing

technologies and machine learning has significantly advanced our

comprehension of biological processes and cancer heterogeneity

(54). Increasingly, researchers have been able to identify distinct

molecular characteristics associated with disease progression,

patient outcomes, and responses to treatment using sequencing

data (55). By leveraging diverse feature selection algorithms, the

study achieved high C-index values, validating the reliability of

these genes in predicting patient survival outcomes. This

integration underscores the growing potential of computational

tools in uncovering complex molecular interactions and identifying

actionable therapeutic targets. Additionally, Drug sensitivity

analyses further support the feasibility of these approaches,

providing a foundation for preclinical and clinical investigations.
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4.4 Limitations and future directions

However, our study has certain limitations. A more profound

understanding of the molecular mechanisms linking AHR with

melanoma is evidently required. Both in vivo and in vitro

experiments hold great potential to clarify these complexities,

indicating numerous opportunities for future research. This

inquiry is anticipated to expand our knowledge and introduce

new therapeutic possibilities for managing melanoma, paving the

way for enhanced understanding and future innovations

in treatment.
4.5 Conclusion

This study provides an integrated approach to understanding

the AhR pathway’s role in melanoma, identifying MAP2K1,

PRKACB, KLF5, and PIK3R2 as critical prognostic markers and

therapeutic targets. By employing bioinformatic tools and machine

learning techniques, a more detailed understanding of the AHR

pathway’s involvement in immune regulation and tumor

development has been achieved. The use of bioinformatics and

machine learning not only enhances our understanding of

melanoma biology but also paves the way for more effective

therapeutic strategies.
FIGURE 8

Validation of the feature genes in mice melanoma model. (A) Schematic representation for the mice model. B16 F10 cells were injected into right
ears of C57BL/6 mice (n = 3). Representative tumor images from three independent experiments were shown. (B) qRT-PCR for the feature genes in
the tumor or normal tissue. *P < 0.05, **P < 0.01.
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