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Sepsis-induced acute lung injury (ALI) remains a leading cause of mortality in

critically ill patients. Macrophages, key modulators of immune responses, play a

dual role in both promoting and resolving inflammation. Exosomes, small

extracellular vesicles released by various cells, carry bioactive molecules that

influence macrophage polarization and immune responses. Emerging

researchers have identified exosomes as crucial mediators that modulate

macrophage activity during sepsis-induced ALI. This review explores the role

of exosomes in modulating macrophage functions, focusing on the cellular

interactions within the lung microenvironment and their potential as

therapeutic targets. It highlights the regulation of macrophages by exosomes

derived from pathogenic germs, neutrophils, alveolar epithelial cells, and

mesenchymal stromal cells. By understanding these mechanisms, it aims to

uncover innovative therapeutic strategies for sepsis-induced ALI.
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1 Introduction

Sepsis-induced acute lung injury (ALI) is a life-threatening condition characterized by

severe pulmonary inflammation, increased vascular permeability, alveolar damage, and

respiratory dysfunction (1). The overwhelming inflammation often leads to the

development of acute respiratory distress syndrome, a condition with high morbidity

and mortality rates, especially in critically ill patients (2). Despite significant advances in the

management of sepsis-induced ALI, effective therapeutic interventions targeting the

underlying pathophysiology of ALI remain elusive (3), and mortality rates remain high,

ranging between 30-50% (3, 4). As key effectors of the innate immune system, macrophages

are involved in pathogen recognition, cytokine production, and tissue repair. They display

remarkable plasticity, being capable of adopting different functional states depending on

the signals from their environment (5, 6). In sepsis-induced ALI, macrophages can polarize
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into M1 macrophages, which are pro-inflammatory and responsible

for initiating and sustaining the inflammatory response, or M2

macrophages, which are anti-inflammatory and involved in

resolving inflammation and promoting tissue repair (7, 8). The

balance between these two phenotypes is critical in determining the

outcome of ALI, with excessive M1 activation leading to tissue

damage and fibrosis, while insufficient M2 activation impairs the

resolution of inflammation and tissue regeneration (9, 10).

Exosomes are a kind of small extracellular vesicles (30-150 nm)

that are released by a wide variety of cell types. These vesicles carry

proteins, lipids, and nucleic acids like mRNAs, microRNAs

(miRNAs), and long non-coding RNAs (lncRNAs), which can be

transferred into target cells to influence their function (11, 12).

Exosomes have been shown to play a pivotal role in intercellular

communication and the regulation of immune responses, making

them function as key players in the pathophysiology of sepsis-

induced ALI. By transferring bioactive molecules between cells,

exosomes can modulate macrophage polarization, promoting either

pro-inflammatory M1 responses or anti-inflammatory M2 responses

depending on their cargo and cell sources (13, 14). Exosomes have

been implicated in several crucial processes, including the

amplification of inflammation, modulation of immune responses,

and facilitation of tissue repair. For example, exosomes derived from

neutrophils, epithelial cells, or pathogens can promote M1

macrophage polarization, thereby exacerbating lung inflammation

and injury (15–17). Whereas, exosomes released by mesenchymal

stromal cells (MSCs) can promote M2 macrophage polarization,

aiding in the resolution of inflammation and tissue regeneration (18).

The ability of exosomes to selectively influence macrophage function

has made them an attractive target for therapeutic interventions in

sepsis-induced ALI, offering the potential to modulate immune

responses and alleviate lung injury.

This review concisely summarizes the role of macrophages in

sepsis-induced ALI and the biogenesis and molecular composition

of exosomes, focusing on how exosomes derived from various cell

sources modulate macrophage activity and influence disease

progression. It also explores the potential of exosomes as

therapeutic agents, highlighting recent advances in exosome-

based therapies and the challenges that remain in translating

these findings into clinical practice. By clarifying the complex

interactions between exosomes and macrophages, it hopes to shed

light on new therapeutic strategies that could improve outcomes for

patients suffering from sepsis-induced ALI.
Abbreviations: ALI, acute lung injury; ADMSCs, adipose-derived mesenchymal

stem cells; AECs, alveolar epithelial cells; AMs, alveolar macrophages; BMSCs,

bone marrow mesenchymal stem cells; CCL, C-motif chemokine ligand; ESCRT,

endosomal sorting complexes required for transport; hvKp, hypervirulent

Klebsiella pneumonia; IFN, interferon; IL, interleukin; ILVs, intraluminal

vesicles; LPS, lipopolysaccharide; LncRNAs, long non-coding RNAs; MSCs,

mesenchymal stromal cells; miRNAs, microRNAs; MVBs, multivesicular

bodies; NET, neutrophil extracellular trap; NLRP3, NOD-like receptor 3; ROS,

reactive oxygen species; SAA1, serum amyloid A1; STAT3, signal transducer and

activator of transcription 3; TLR4, Toll-like receptor 4; TGF, transforming growth

factor; TNF, tumor necrosis factor.
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2 Macrophages and sepsis-
induced ALI
Macrophages, acting as key effectors of the innate immune system,

are responsible for phagocytosing pathogens, clearing cellular debris,

and regulating inflammation (19). In sepsis-related ALI, both alveolar

macrophages (AMs) and interstitial macrophages are involved in

disease progression. AMs account for the majority of lung-resident

macrophages and reside in the alveolar space, which regulate the local

immune microenvironment through phagocytosis and the secretion of

bioactive molecules (20). Interstitial macrophages, located in the

connective tissue surrounding the bronchi, are critical for

maintaining lung structure and responding to pathogens (21).

During ALI, macrophages exhibit remarkable plasticity, allowing

them to polarize into distinct phenotypes in response to

microenvironmental cues. The two major polarization states are M1

(classically activated macrophages), and M2 (alternatively activated

macrophages) (Figure 1) (22). M1 macrophages are pro-inflammatory,

which are responsible for initiating the inflammatory response

necessary to control infection; however, excessive M1 activation can

lead to uncontrolled inflammation and tissue damage (23). Conversely,

M2macrophages are anti-inflammatory that promote the resolution of

inflammation and tissue repair (24). The balance between M1 and M2

macrophages is critical in determining the progression of ALI and its

subsequent resolution.

In the early phase of sepsis-induced ALI, lung macrophages are

activated by pathogens and inflammatory signals, thereby polarizing

towards the M1 phenotype to effectively control infection and

pathogen clearance (25). Generally, M1 macrophages are activated

by several stimulators, such as lipopolysaccharide (LPS) and

interferon (IFN)-g, primarily through the Toll-like receptor 4

(TLR4)/NF-kB signaling pathway (26). These M1 macrophages

release large amounts of pro-inflammatory cytokines (e.g., tumor

necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6) and

chemokines (e.g., CC-motif chemokine ligand (CCL)2, CCL5),

leading to the recruitment of neutrophils and amplifying the

inflammatory response (27, 28). Neutrophil-derived enzymes and

reactive oxygen species (ROS) further damage alveolar epithelial cells

(AECs) and endothelial cells, disrupting the alveolar-capillary barrier,

resulting in pulmonary edema and respiratory failure (29). Thus,

excessive M1 activation can result in a damaging inflammatory

storm, causing alveolar damage and lung dysfunction.

M2 macrophages typically emerge during the later stages of

sepsis or during the tissue repair phase (30). According to the

induced stimuli and phenotypic features, M2 macrophages are

delineated into four subtypes, namely M2a, M2b, M2c and M2d

(6). These macrophages show variability in their expressed surface

markers, secreted cytokines, and biological roles. M2a macrophages

are activated by IL-4, IL-13, and fungal infections, exhibiting

elevated levels of CD206, arginase 1, YM1, FIZZ1, and

transforming growth factor (TGF)-b, which contribute to

pulmonary inflammation and tissue damage. M2b macrophages

are stimulated by LPS, IL-1b, and immune complex, and are

responsible for the release of pro-inflammatory cytokines such as

IL-1b, IL-6, and TNF-a, alongside the anti-inflammatory IL-10,
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thereby functioning as immunoregulatory macrophages. M2c

macrophages are triggered by IL-10, glucocorticoids, and TGF-b,
expressing high levels of innate receptors CD206 and CD163, are

essential for the tissue remodeling and fibrosis. M2d macrophages

are induced by IL-6 and adenosines, which are associated with

highly expressed vascular endothelial growth factor and IL-10,

participating in processes of angiogenesis and tumor growth (5,

31, 32). During sepsis-induced ALI, M2 macrophages contribute to

the resolution of inflammation by promoting extracellular matrix

remodeling and cellular regeneration (33). M2 macrophage-derived

exosomes inhibit polymorphonuclear neutrophil migration and

excessive neutrophil extracellular trap (NET) formation, thereby

alleviating lung injury (14).

Given the central role of macrophages in the pathogenesis of

sepsis-induced ALI, modulating macrophage polarization has emerged

as a promising therapeutic strategy. Exosomes released from different

cell types within the lung microenvironment, including alveolar

epithelial cells, neutrophils, and MSCs, can influence macrophage

polarization. By either inhibiting excessive M1 macrophage activation

or enhancing M2 macrophage-mediated anti-inflammatory and

reparative functions, exosomes may be possible to reduce

inflammatory damage and promote tissue repair in the lungs.

Understanding the role of exosomes in regulating macrophage

activity during sepsis-induced ALI is essential for developing

targeted therapies.
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3 Biogenesis and function
of exosomes

The formation and secretion of exosomes involve several key

steps, including endocytosis, multivesicular body formation, and

exosome release, which govern the biogenesis of exosomes and the

selective incorporation of bioactive molecules into vesicles (11, 34).

The biogenesis of exosomes begins with the inward budding of the

plasma membrane, creating early endosomes (35). This process,

known as endocytosis, is triggered when the cell membrane

invaginates to engulf extracellular material, causing the formation

of endocytic vesicles that subsequently mature into early

endosomes, which are dynamic structures involved in sorting and

trafficking of internalized molecules (36). These early endosomes

undergo further maturation into late endosomes, also known as

multivesicular bodies (MVBs), where invaginations of the

endosomal membrane create intraluminal vesicles (ILVs), which

contain various biomolecules from the originating cell (37).

Eventually, MVBs either fuse with lysosomes for degradation or

with the plasma membrane, where they release the ILVs into the

extracellular space as exosomes (38). Exosome formation is

orchestrated by a variety of molecular machinery, including the

endosomal sorting complexes required for transport (ESCRT)

pathway, which is responsible for sorting specific proteins into

ILVs during exosome biogenesis (39). In addition to the ESCRT-
FIGURE 1

The biogenesis of exosomes and their regulation on the phenotype and function of macrophages. Intraluminal vesicles from multivesicular bodies
release exosomes into the extracellular space. Exosomes move to M0 macrophages and modulate the polarization into M1 and M2 under different
stimulation conditions. IL, interleukin; mesenchymal stem cells; TLR4, Toll-like receptor 4; TGF, transforming growth factor; TNF, tumor necrosis factor.
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dependent pathway, there are ESCRT-independent mechanisms,

such as tetraspanins (e.g., CD63, CD81) and lipids like ceramides,

which also contribute to exosome formation (40). These findings

indicate that exosome biogenesis is a multifaceted process that can

be modulated by the physiological state of the cell and the

cellular environment.

Exosomes are enriched with a unique set of proteins, lipids, and

nucleic acids, reflecting the physiological or pathological condition of the

donor cell (41). Their molecular cargo varies depending on the cell type

of origin and the environmental signals received by the cells, making

exosomes highly versatile and adaptable intercellular communication

tools (42). For instance, exosomes, characterized by the presence of

certain proteins such as heat shock proteins andmajor histocompatibility

complex molecules, play roles in antigen presentation and immune

modulation (43). Lipids, including sphingomyelin and cholesterol, are

abundant in exosomal membranes, contributing to their stability and

function in cellular communication (44). Exosomes carrying functional

RNAs can regulate gene expression in recipient cells. The selective

packaging of these RNAs into exosomes is an active process,

controlled by RNA-binding proteins like hnRNPA2B1 and YBX1,

which recognize specific RNA sequences or secondary structures,

facilitating their inclusion in exosomes (45). This selective sorting

mechanism ensures that exosomes deliver targeted regulatory messages

to recipient cells, affecting a wide range of biological processes. Thus,

exosome-mediated communication by delivering its molecular cargo to

recipient cells, plays a vital role in various physiological and pathological

processes, including immune response, inflammation, and tissue

repair (46).

In the context of sepsis-induced ALI, exosomes have been shown

to influence macrophage polarization and function. Exosomes released

by immune cells like neutrophils can enhance the inflammatory

response by promoting M1 macrophage polarization (16).

Conversely, exosomes derived from MSCs and other reparative cells

can shift macrophages towards the M2 phenotype, promoting the

resolution of inflammation and tissue repair (18). By understanding the

molecular mechanisms underlying exosome formation and their

interaction with surrounding cells, exosomes could serve as potential

therapeutic targets in the management of ALI.
4 Exosome-modulated macrophages
in sepsis-induced ALI

Exosomes play a crucial role in modulating macrophage activity

during sepsis-induced ALI. These vesicles, released from various

cell types in the lung microenvironment, contain proteins, lipids,

and nucleic acids that influence macrophage polarization and

function, thereby affecting the progression of ALI (Figure 2).
4.1 Pathogenic germs

Various types of germs, including bacteria and fungi, trigger a

cascade of immune responses that can exacerbate lung injury,

primarily through the activation of inflammatory pathways and

immune cells. The endotoxins from gram-negative bacteria activate
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inflammatory agents, including complement, neutrophils, and

platelets, leading to pulmonary edema and tissue damage (47).

Fungus cause ALI characterized by capillary obstruction and

interstitial hemorrhage, with the presence of yeast within lung

intravascular leukocytes and the transformation to mycelial forms

exacerbate lung injury (48). Bacteria-derived exosomes, which carry

components such as endotoxins that interact with TLRs on

macrophages, elicit neutrophilic pulmonary inflammation along

with infiltration of both Th1 and Th17 cells (49). These exosomes

trigger the activation of NF-kB signaling pathway, leading to the

production of pro-inflammatory cytokines such as TNF-a, IL-6, IL-
1b, and IL-8 (50). This robust immune activation by macrophages is

essential for the clearance of pathogens, but excessive activation

cause uncontrolled inflammation and severe tissue damage in

sepsis-induced ALI. It is reported that hypervirulent Klebsiella

pneumoniae (hvKp) is highly invasive and pathogenic, and it

mediates severe sepsis or septic shock, often accompanied by ALI

(51). Recent study has revealed that hvKp-derived exosomes carry

high levels of miR-155-5p, which drives macrophage-mediated

inflammatory tissue damage and M1 polarization through

suppressing the expression of mitogen- and stress-activated

kinase 1 and further activating the p38/MAPK signaling

pathway (15).
4.2 Neutrophils

Neutrophils are rapidly recruited to sites of infection and injury

during sepsis (52). In addition to releasing important cytokines,

chemokines, and ROS, the formation of NETs that are web-like

structures composed of DNA, histones, and proteases, can mediate

pyroptosis in alveolar macrophages by regulating NOD-like

receptor 3 (NLRP3) deubiquitination, leading to sustained lung

inflammation and injury (29). Moreover, neutrophil-derived

exosomes are regarded as a new subcellular entity, working as a

fundamental link between neutrophil-driven inflammation and

lung damage (53). These exosomes carry miRNAs that promote

macrophage polarization towards the M1 phenotype, enhancing the

production of inflammatory cytokines and chemokines. For

example, exosomes from neutrophils under septic conditions

contain miR-30d-5p, which inhibits the expression of suppressor

of cytokine signaling and sirtuin 1 in macrophages, thereby

inducing M1 macrophage polarization and priming macrophage

pyroptosis by upregulating NLRP3 inflammasome expression

through NF-kB signaling pathway. Whereas, intravenous

administration of miR-30d-5p inhibitors reduce the generation of

neutrophil-derived exosomal miR-30d-5p, M1 macrophage

activation, and macrophage death in the lung (16). Consistently,

when alveolar macrophages are co-cultured with TNF-a-stimulated

neutrophil-released exosomes, M1 macrophages are activated by

exosomal lncRNA HCG18. Further mechanistic evaluation

indicated that HCG18 mediates the function of neutrophil-

derived exosomes by suppressing the expression of IL-32 in

macrophages and thus promotes M1 macrophage polarization.

Besides, knockdown of HCG18 in septic mice decreased the M1

macrophage activation, lung macrophage death, and histological
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lesions (54). These findings suggest that neutrophil-derived

exosomes regulate the inflammatory response by targeting

pathways involved in macrophage activation and death, which

exacerbates lung injury and perpetuates the inflammatory

response in sepsis-induced ALI.
4.3 Alveolar epithelial cells

AECs are essential for maintaining the structural integrity of the

alveoli and regulating the immune response within the lungs. In

response to injury or infection, AECs release exosomes that carry

signals to neighboring immune cells, including macrophages (55). By

constructing co-culture systems of the influenza A virus-induced

mouse lung epithelial cells with macrophages, it is found that

epithelial cell-derived miR-1249-5p can be delivered into

macrophages, which facilitates the release TNF-a and IL-6 in

macrophages through repressing the expression of solute carrier

family 4 member 1 and thus activating NF-kB signaling pathway
Frontiers in Immunology 05
(56). Similarly, AEC-derived exosomes contain miR-92a-3p, which

increases AM activation and pulmonary inflammation by activating

the NF-kB pathway and downregulating PTEN expression; however,

inhibition of miR-92a-3p in AECs reduces the pro-inflammatory

effects of exosomal miR-92a-3p, highlighting the role of AEC-derived

exosomes in exacerbating lung injury (17). In addition, exosomal

LncRNA MEG3 from airway epithelial cells is demonstrated to

expedite M1 macrophage polarization and pyroptosis (57). These

results indicate that exosomal non-coding RNAs derived from AEC

act as mediators of intercellular communication, influencing

macrophage activity and polarization, contributing to the

pathogenesis of sepsis-induced ALI. Moreover, AECs under

unresolved endoplasmic reticulum stress release exosomes enriched

with tenascin-C, an extracellular matrix glycoprotein, which binds to

TLR4 on macrophages. This interaction leads to increased ROS

production, mitochondrial damage, which culminates in macrophage

pyroptosis via activation of the NF-kB signaling pathway, thus

intensifying the inflammatory response in the lungs during sepsis-

induced ALI (58).
FIGURE 2

The regulatory role of exosomes on macrophages in sepsis-induced ALI. Exosomal components, like miRNAs and lncRNAs derived from various
origins, including Klebsiella pneumoniae, neutrophils, alveolar epithelial cells, and MSCs, regulate macrophage polarization and pyroptosis,
participating in the progression of sepsis-induced ALI. ALI, acute lung injury; ADMSCs, adipose-derived mesenchymal stem cells; BMSCs, bone
marrow; IL, interleukin; lncRNAs, long non-coding RNAs; miRNAs, microRNAs; MSCs, mesenchymal stem cells; NLRP3, NOD-like receptor 3; STAT3,
signal transducer and activator of transcription 3; TLR4, toll-like receptor 4; TGF, transforming growth factor; TNF, tumor necrosis factor. ⊥ indicates
an inhibitory effect and → indicates a promoting effect.
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4.4 Mesenchymal stromal cells

MSC-derived exosomes have emerged as promising mediators

in alleviating sepsis-induced ALI due to their regenerative, anti-

inflammatory, and immunomodulatory properties (39). In the LPS-

induced murine ALI model, exosomal miR-7704 fromMSCs evokes

M2 polarization in lung macrophages by inhibiting the MyD88/

STAT1 signaling pathway, thereby restoring pulmonary function

and increasing survival (18). Likewise, in a mouse model of

cytomegalovirus-induced pneumonia, intravenous administration

of mouse MSC-derived exosomes shifts macrophage polarization

from the M1 to the M2 phenotype via inactivating the NF-kB/
NLRP3 signaling pathway, which reduces the infiltration of

inflammatory cells and pulmonary fibrosis (59). Therefore, MSC-

derived exosomes help repolarize macrophages toward an anti-

inflammatory M2 phenotype, which facilitates tissue repair in

sepsis-induced ALI. MSCs from various sources, such as bone

marrow, adipose tissue, umbilical cord, and placenta, contribute

uniquely to alleviating lung injury through a range of mechanisms.

Bone marrow mesenchymal stem cells (BMSCs) are multipotent

stem cells derived from bone marrow and possess immunomodulatory

capacity that make them suitable for mitigating inflammatory and

immune-mediated conditions like sepsis-induced ALI (60). In LPS-

treated alveolar macrophages, BMSC-derived exosomes inhibit M1

polarization and promotes M2 polarization by suppressing cellular

glycolysis via downregulating of hypoxia-inducible factor 1a. In vivo

study further confirmed that these exosomes alleviate the LPS-induced

pulmonary inflammation and pathological damage in septic mice (61).

Additionally, BMSC-derived exosomal miRNAs exert a protective

effect on LPS-induced ALI. Exosomal miR-384-5p from BMSCs

relieves LPS-induced autophagy dysfunction in alveolar macrophages

by downregulating Beclin-1, which attenuates macrophage viability loss

and apoptosis, thus alleviating pulmonary vascular permeability and

inflammatory response, and improving the survival rate of ALI rats

(62). Similarly, exosomes derived from BMSCs, acting as carriers for

delivering miR-125b-5p into macrophages, suppress the expression of

signal transducer and activator of transcription 3 (STAT3), thereby

halting macrophage pyroptosis and alleviating sepsis-associated ALI

(63). Further study unveiled that miR-223 within BMSC-derived

exosomes promotes M2 polarization of AMs, which produces anti-

inflammatory cytokines like IL-10 and TGF-b, alleviating

inflammatory injuries and edema in the lung of LPS-induced ALI

rats (64). Thus, BMSC-derived exosomal miRNAs protect against

sepsis-induced ALI by modulating macrophage polarization and

death. Moreover, BMSC-derived exosomal protein, serum amyloid

A1 (SAA1), facilitates LPS internalization by mouse AMs and thus

reduces LPS-induced endotoxin, TNF-a, and IL-6 levels, inhibiting

lung injury in septic mice (65).

Adipose-derived MSCs (ADMSCs) are pluripotent progenitor

cells characterized by their capacity for self-renewal, which

ameliorate the immune response and diminish the mortality rates

of patients suffering from sepsis by attenuating pro-inflammatory

and augmenting anti-inflammatory cytokines, representing one of

the most promising stem cells for the treatment of sepsis (66, 67).

ADMSC-derived exosomes play a significant role in modulating

macrophage phenotypes and functions in sepsis-induced ALI.
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For example, ADMSC-secreted exosomes can be internalized by

LPS-stimulated macrophages and further inhibit the production of

IL-27, thereby reducing the release of pro-inflammatory cytokines

including IL-6, TNF-a, and IL-1b. ADMSC-derived exosomes also

suppress macrophage accumulation in lung tissues and alleviate

pulmonary edema and pulmonary vascular leakage, and improve

the survival rate of septic mice (68). Of interest, exosomes from

ADMSC can transfer mitochondrial components to AMs,

improving mitochondrial function and promoting a shift towards

the M2 phenotype, as featured with the decreased secretion of IL-

1b, TNF-a, and iNOS, as well as enhanced generation of anti-

inflammatory cytokines IL-10 and Arg-1. Restoring mitochondrial

integrity in LPS-challenged macrophages accelerates oxidative

phosphorylation and reduces ROS stress, contributing to the

resolution of inflammation (69). Likewise, ADMSC-derived

exosomes induce macrophages to secrete TGF-b, which is crucial

for promoting M2 polarization and increasing the number of

regulatory T cells, thus alleviating sepsis-induced ALI by reducing

inflammation and promoting tissue repair (70).

Perinatal MSCs are obtained from various perinatal tissues, like

the placenta and umbilical cord, and are valued for their high

proliferative capacity and immunomodulatory properties, making

them promising candidates for regenerative and therapeutic

applications in sepsis-induced ALI (71, 72). Perinatal MSC-

derived exosomes modulate macrophage polarization and activity,

which is involved in inflammation resolution and tissue repair in

ALI. For instance, overexpressing hsa-let-7i-5p in exosomes from

human placenta-derived MSCs can reduce M1 polarization and

pro-inflammatory cytokine release, along with inactivation of NF-

kB and HIF-1a, alleviating tissue edema and leukocyte infiltration

in sepsis-induced ALI (73). Consistently, umbilical cord MSC-

derived exosomes improve the metabolic function of AMs and

facilitate their shift to an anti-inflammatory phenotype, leading to a

reduction in LPS-induced ALI (74).
5 Exosomes as potential
therapeutic targets

Exosomes have garnered interest as potential therapeutic agents

due to their ability to modulate immune responses in sepsis-

induced ALI. Exosomes serve as crucial mediators of macrophage

polarization, playing a dual role in either amplifying or resolving

inflammation (Table 1). This makes them attractive targets for

developing innovative therapies aimed at regulating immune

responses, promoting tissue repair, and mitigating the damage

caused by excessive inflammation.

One of the most promising therapeutic applications of

exosomes lies in their ability to carry anti-inflammatory

molecules that can modulate the immune reaction. As concluded

above, MSC-derived exosomes have emerged as potent candidates

for treating sepsis-induced ALI. These exosomes carry a range of

bioactive molecules, including miRNAs, lncRNAs, and proteins,

which have demonstrated the capacity to suppress excessive

immune activation and promote tissue repair (75). Preclinical

studies using MSC-derived exosomes in animal models of sepsis-
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induced ALI have shown promising results. For instance, the

administration of MSC-derived exosomes has been found to

reduce M1 macrophage polarization and inflammatory cytokine

production; meanwhile, they facilitate the polarization of

macrophages towards the M2 phenotype, which contributes to

resolving inflammation and promoting tissue repair (76). Besides,

by decreasing the levels of exosomal miRNA-146a derived from

lung epithelial cells, the natural agent salidroside can reduce the

expression of pro-inflammatory factors by inactivating the TLR4-

mediated NF-kB signaling pathway, exerting a protective effect in

sepsis-induced ALI (77). Of importance, exosomes are smaller, less

immunogenic, and easier to administer than whole cells, and they

can be engineered to carry specific therapeutic cargoes that target

key pathways involved in inflammation and tissue repair. Their

ability to cross biological barriers, such as the alveolar-capillary

barrier, makes them well-suited for delivering therapeutic molecules

to the lungs (11). It is reported that a novel exosome-based drug is

produced by engineering modification of umbilical cord MSC-

derived exosomes that loaded with anti-PD-1 peptide, and it

reduces the expression levels of pro-inflammatory cytokine and

the apoptosis of lung cells, as well as increases the expression of
Frontiers in Immunology 07
anti-inflammatory cytokine IL-10 and the ratio of M2/M1

macrophage, thereby attenuating the inflammatory response in

septic mice (78). Specific surface markers on macrophages can be

targeted by engineered exosomes that deliver drugs and modulate

immune responses to enhance their therapeutic efficacy. For

example, CD206 is a marker for M2 macrophages, which are

associated with tumor progression and immune suppression.

Engineered exosomes that loaded with chemotherapeutic agents

can strengthen antitumor immunity and reduce tumor burden by

targeting CD206-positive M2 macrophages (79). In this content,

engineered exosomes offer the potential to enhance the specificity

and efficacy of treatments by delivering targeted interventions to

macrophages involved in sepsis-induced lung injury. This approach

could also be used in combination with other treatments, such as

antibiotics and immunomodulatory agents, to enhance the overall

therapeutic outcome.

While exosome-based therapies hold promise for treating

sepsis-induced ALI, several challenges remain. These include

optimizing the isolation and production of exosomes on a large

scale, ensuring the stability and efficacy of exosomal cargo, and

addressing potential off-target effects. Additionally, clinical trials are
TABLE 1 The regulatory role of exosomes on macrophages in sepsis-induced ALI.

Exosomal components Origin Targets Effects Ref.

Endotoxins Bacteria TLRs/NF-kB Promote pulmonary inflammation, Th1 and Th17 cell
infiltration, and pro-inflammatory cytokine release

(80)

MiR-155-5p Hypervirulent
Klebsiella pneumoniae

p38/MAPK Induce M1 polarization and tissue damage (15)

MiR-30d-5p Neutrophils NF-kB/NLRP3 Promote M1 polarization and macrophage pyroptosis (16)

LncRNA HCG18 Neutrophils IL-32 Facilitate M1 polarization and pulmonary damage (54)

MiR-1249-5p Alveolar epithelial cells SLC4A1/NF-kB Enhance pro-inflammatory cytokine release (56)

MiR-92a-3p Alveolar epithelial cells NF-kB/PTEN Promote macrophage activation and pulmonary inflammation (17)

LncRNA MEG3 Alveolar epithelial cells Undefine Trigger M1 macrophage polarization and pyroptosis (81)

Tenascin-C Alveolar epithelial cells TLR4/NF-kB Promote ROS production, mitochondrial damage, and
macrophage pyroptosis

(58)

miR-7704 MSCs MyD88/STAT1 Induce M2 polarization and restore pulmonary function (18)

Undefine MSCs NF-kB/NLRP3 Mitigate inflammatory cell infiltration and pulmonary fibrosis (59)

Undefine BMSCs HIF-1a Alleviate pulmonary inflammation and tissue damage (61)

MiR-384-5p BMSCs Beclin-1 Inhibit autophagy dysfunction and pulmonary inflammation (62)

MiR-125b-5p BMSCs STAT3 Reduce macrophage pyroptosis (63)

MiR-223 BMSCs Undefine Promotes M2 polarization and alleviate inflammatory injuries
and edema in the lung

(64)

Serum amyloid A1 BMSCs Undefine Inhibit pro-inflammatory cytokine release and lung injury (65)

Undefine ADMSCs IL-27 Alleviate pulmonary edema and pulmonary vascular leakage (82)

Mitochondrial components ADMSCs Undefine Restore mitochondrial integrity in macrophages (69)

Undefine ADMSCs Undefine Promote M2 polarization and tissue repair (70)

Hsa-let-7i-5p Perinatal MSCs NF-kB, HIF-1a Reduce M1 polarization and pro-inflammatory cytokine release (73)

Undefine Umbilical cord MSC Undefine Improve the metabolic function of macrophages and facilitate
their anti-inflammatory functions

(74)
fro
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needed to validate the safety and efficacy of exosome-based

therapies in patients with sepsis-induced ALI, as well as

investigate the optimal timing of intervention, whether before or

after the onset of sepsis. Future research should focus on further

understanding the mechanisms of exosome-mediated immune

modulation, refining engineering techniques for exosomes, and

exploring the potential of combination therapies that leverage

exosomes alongside traditional treatments.
6 Conclusion and perspective

Macrophages are involved in the progression of ALI, acting as both

drivers of inflammation and facilitators of tissue repair. The recent

recognition of exosomes as key modulators of macrophage function

opens new avenues for understanding the molecular mechanisms

underlying the immune response in sepsis-induced ALI. Exosomes

play a crucial role in determining the balance between pro-

inflammatory M1 macrophages and anti-inflammatory M2

macrophages during sepsis-induced ALI. Their ability to carry and

deliver specific miRNAs, proteins, and lipids to macrophages makes

them essential mediators of immune responses. Exosomes derived

from pathogens, neutrophils, and alveolar epithelial cells, tend to

promote M1 macrophage polarization, perpetuating inflammation

and exacerbating lung injury. In contrast, MSC-derived exosomes

have been shown to promote M2 macrophage polarization,

facilitating the resolution of inflammation and promoting tissue

repair. This dynamic modulation of macrophage polarization by

exosomes suggests that the fine-tuning of exosome production and

cargo composition could be an effective therapeutic strategy. By

inhibiting the pro-inflammatory exosomes or by upregulating the

anti-inflammatory exosomes, it may be possible to shift the balance

in favor of M2 macrophages, promoting healing and reducing

inflammation in sepsis-induced ALI. Preclinical studies have

demonstrated the ability of MSC-derived exosomes to reduce

inflammation, promote tissue repair, and improve survival in animal

models of ALI. However, translating these promising findings into

clinical practice presents several challenges. The production, isolation,

and purification of exosomes at a scale sufficient for therapeutic use

remain significant hurdles. Moreover, ensuring the stability and

targeted delivery of exosomes to the lungs requires further

technological advancements. The development of engineered

exosomes, designed to carry specific therapeutic cargoes such as

miRNAs and proteins, offers an exciting possibility for enhancing the

specificity and efficacy of exosome-based therapies. These engineered

exosomes could be tailored to target specific macrophage populations

or lung cells, ensuring that their therapeutic effects are maximized while
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minimizing off-target effects. Future research should focus on refining

exosome-based interventions and exploring combination therapies in

clinical settings. Furthermore, it should be noted that exosomes derived

from different cell types or released under different conditions can carry

vastly different cargoes, with distinct effects on target cells.

Understanding how the microenvironment influences exosome

biogenesis and cargo selection is essential for designing effective

exosome-based therapies.
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