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Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor,

and the development of accurate predictive models for prognosis and drug

sensitivity remains challenging.

Methods: We integrated laboratory data and public cohorts to conduct a multi-

omics analysis of HCC, which included bulk RNA sequencing, proteomic analysis,

single-cell RNA sequencing (scRNA-seq), spatial transcriptomics sequencing

(ST-seq), and genome sequencing. We constructed a tumor purity (TP) and

tumor microenvironment (TME) prognostic risk model. Proteomic analysis

validated the TP-TME-related signatures. Joint analysis of scRNA-seq and ST-

seq revealed characteristic clusters associated with TP high-risk subtypes, and

immunohistochemistry confirmed the expression of key genes. We conducted

functional enrichment analysis, transcription factor activity inference, cell-cell

interaction, drug efficacy analysis, and mutation information analysis to identify a

novel subtype of HCC.

Results: Our analyses constructed a robust HCC prognostic risk prediction

model. The patients with TP-TME high-risk subtypes predominantly exhibit

hypoxia and activation of the Wnt/beta-catenin, Notch, and TGF-beta signaling

pathways. Furthermore, we identified a novel subtype, XPO1+Epithelial. This

subtype expresses signatures of the TP risk subtype and aligns with the biological

behavior of high-risk patients. Additional analyses revealed that XPO1+Epithelial

is influenced primarily by fibroblasts via ligand-receptor interactions, such as

FN1-(ITGAV+ITGB1), and constitute a significant component of the TP-TME

subtype. Moreover, XPO1+Epithelial interact with monocytes/macrophages, T/

NK cells, and endothelial cells through ligand-receptor pairs, including MIF-

(CD74+CXCR4), MIF-(CD74+CD44), and VEGFA-VEGFR1R2, respectively,

thereby promoting the recruitment of immune-suppressive cells and

angiogenesis. The ST-seq cohort treated with Tyrosine Kinase Inhibitors (TKIs)

and Programmed Cell Death Protein 1 (PD-1) presented elevated levels of TP and

TME risk subtype signature genes, as well as XPO1+Epithelial, T-cell, and
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endothelial cell infiltration in the treatment response group. Drug sensitivity

analyses indicated that TP-TME high-risk subtypes, including sorafenib and

pembrolizumab, were associated with sensitivity to multiple drugs. Further

exploratory analyses revealed that CTLA4, PDCD1, and the cancer antigens

MSLN, MUC1, EPCAM, and PROM1 presented significantly increase expression

levels in the high-risk subtype group.

Conclusions: This study constructed a robust prognostic model for HCC and

identified novel subgroups at the single-cell level, potentially assisting in the

assessment of prognostic risk for HCC patients and facilitating personalized

drug therapy.
KEYWORDS

hepatocellular carcinoma, tumor purity, tumor microenvironment, single-cell RNA
sequencing, spatial transcriptomics, immunotherapy, precision medicine
1 Introduction

Hepatocellular carcinoma (HCC) is the most prevalent primary

liver cancer, ranking as the sixth most common tumor and the third

leading cause of cancer-related mortality (1, 2). The progression of

HCC is a complex, multifactorial, and multistep process that

involves the accumulation of genomic alterations in somatic

driver genes, in addition to epigenetic changes, resulting in

significant molecular heterogeneity. Therefore, understanding the

molecular mechanisms driving this heterogeneity is crucial for the

development of targeted therapies (3–5).

Current staging and subtyping systems for HCC primarily rely on

radiological, serological, and pathological assessments of the tumor

load (6). However, HCC at the same stage can exhibit distinct

molecular characteristics (7), highlighting the need for more precise

subtyping systems that can better predict prognosis and treatment

response. Tumor tissues consist not only tumor cells but also non-

tumor cells, including immune cells, and stromal cells, all of which

collectively influence tumor development (8). Tumor purity (TP) is

defined as the proportion of tumor cells relative to the total cell

population in a sample (9). Research has shown that TP is

significantly correlated with various clinical characteristics, genomic

expression, and the biological properties of patients with tumors (10,

11). Furthermore, heterogeneity of the tumor microenvironment

(TME) is a key contributor to tumor diversity in HCC (12, 75).

Persistent tumor stimulation affects the remodeling of the TME,

which subsequently influences the response of tumors to various

treatments (13, 76). Targeting the TME is considered a promising

strategy to overcome barriers to anticancer immune responses and

enhance the efficacy of immunotherapy. With rapid advancements in

high-throughput sequencing and single-cell sequencing (scRNA-seq),

numerous approaches have been developed to identify disease

biomarkers, leading to significant progress in disease prognosis

prediction (14–16). However, only a few molecular classifications of
02
HCC have integrated both malignant cells and TME-associated

molecules. In recent years, single-cell histological studies,

particularly those employing scRNA-seq technology, have

substantially enhanced our understanding of tumor cell

heterogeneity, tumor-infiltrating immune cell clusters, and tumor-

associated stromal cell characteristics at the single-cell level (17).

Nevertheless, the ability of scRNA-seq to investigate tumor spatial

structure is limited because of the loss of spatial and morphological

information when tissues are dissociated into single-cell suspensions.

The advent of spatial transcriptomics sequencing (ST-seq) has

addressed the limitations of scRNA-seq, enabling the exploration of

the spatial architecture of tumors (18).

In this study, we first established a novel prognostic model for

HCC via bulk RNA sequencing, which was based on the expression

patterns of TP-related and TME-related genes. The expression levels

of these TP and TME-related genes were subsequently validated

through proteomic analysis. We then conducted an in-depth

exploration of the expression patterns and biological functions of

the characteristic genes associated with TP risk subtypes via scRNA-

seq and ST-seq. Notably, we identified XPO1+Epithelial within the

tumor that may promote tumor progression and contribute to the

regulation of the TME through cellular communication networks.

Finally, we conducted a preliminary assessment of the relevance and

potential mechanisms of the TP-TME risk subtypes in relation to

HCC targeting and immunotherapy.
2 Materials and methods

2.1 Data processing

Six HCC samples were obtained from six patients who

underwent hepatectomy as the initial treatment, along with one

normal liver sample provided by a hepatic hemangioma patient
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through surgical resection, at the Cancer Hospital of Guangxi

Medical University. These samples were utilized for proteomic

analysis, scRNA-seq, and ST-seq. The patients were enrolled at the

Cancer Hospital of Guangxi Medical University from June to

September 2021. Detailed information on the diagnostic criteria for

HCC, along with patient inclusion and exclusion criteria, has been

reported previously (19). In summary, all enrolled patients with HCC

were newly diagnosed, pathologically confirmed, and free from other

cancer types. Additionally, tumor and adjacent tissues were collected

from 40 HCC patients who were diagnosed and treated with radical

surgery between January 2021 and January 2024 at the Cancer

Hospital of Guangxi Medical University for immunohistochemical

(IHC) experiments. The detailed clinical information is present in

Supplementary Table S1.

We screened the HCCDB database (http://lifeome.net/

database/hccdb/home.html) (20) to identify the candidate

datasets. The inclusion criteria were as follows: 1) the dataset

included both gene expression profiles and the prognosis of

patients with HCC, 2) the number of patients with a survival of

more than 30 days should be more than 100, and 3) the gene

expression profile of the dataset should contain more than 10,000

genes. In the HCCDB database, four datasets met the above criteria.

We selected and downloaded the three largest datasets by sample

size (GSE14520_GPL3921, TCGA-LIHC, and LIRI-JP) for analysis.

The dataset GSE14520_GPL3921 (21) containing 225 HCC and 220

tumor-adjacent liver tissue samples was utilized to develop our

subtyping systems. The TCGA-LIHC dataset, which contains RNA-

seq data and clinical information for 356 HCC patients from The

Cancer Genome Atlas (TCGA) (https://www.cancer.gov/tcga), and

the LIRI-JP data set containing RNA-seq data and clinical

information for 212 HCC patients from the JP Project from the

International Cancer Genome Consortium (https://dcc.icgc.org/),

were used to validate the subtyping systems.

Finally, we gathered proteomic analysis data of tumor and

tumor adjacent tissues from 159 cases of HBV-associated HCC

reported in Gao’s study (22). This served as a validation of the

proteomic analysis to confirm our findings. We also collected the

ST-seq cohort GSE238264 (23), which was diagnosed with HCC

and treated with a combination of tyrosine kinase inhibitors (TKIs)

and programmed cell death protein 1 (PD-1) inhibitors, serving as a

validation cohort sourced from the GEO database. The workflow of

the present study is illustrated in Figure 1.
2.2 Calculation of the TP and TME scores
and identification of differentially
expressed genes

The gene expression profiles of GSE14520_GPL3921 were first

utilized to calculate TP via the ESTIMATE package (24).

GSE14520_GPL3921 was also used to calculate the TME score via

the xCell tool (https://xcell.ucsf.edu/) (25) with the xCell gene

signature. The DEGs in HCC compared to tumor-adjacent liver

tissue were identified via the R package limma (v3.54.2) (26). Genes

with fold changes > 1.5 and P (adjusted by false discovery rate)

values < 0.05 were considered significant.
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2.3 Normality test and correlation analysis

The TP and TME scores were separately analyzed via the

Shapiro-Wilk test. Spearman or Pearson correlation analyses were

performed to calculate the correlation between DEGs and the TP

and the TME scores. A DEG that was positively correlated with TP

and negatively correlated with the TME score was considered a TP-

related gene, whereas a DEG that was negatively correlated with TP

and positively correlated the TME score was considered a TME-

related gene. In addition, the TME-related genes do not include

marker genes of TME cells in the xCell signature.
2.4 Functional and pathway
enrichment analysis

The online Metascape tool (https://metascape.org/) was used for

functional enrichment analysis of DEGs in HCC and tumor-

adjacent liver tissues. We performed GSEA (27, 28) on the

GSE14520_GPL3921 dataset via the GSEA Java software (http://

www.gsea-msigdb.org/gsea/index.jsp). Hallmark and canonical

pathway gene sets derived from the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway database were downloaded from

the Molecular Signatures Database (MSigDB) (28, 29) and used as

reference gene sets. The threshold was set to a nominal P (NOM P)

value < 0.05 and FDR q value < 0.25. Functional enrichment

analyses of DEGs between single-cell clusters were performed via

the R package clusterProfiler (v.4.6.2) (29), which is based on the

Gene Ontology (GO) or MsigDB. The corrected enrichment terms

with P<0.05 were considered statistically significant. Functional

scoring was performed via AddModuleScore in the R package

Seurat for gene sets in the MsigDB. Functional enrichment

analyses of DEGs among single-cell clusters were conducted via

the R package clusterProfiler (version 4.6.2) (30), which utilizes the

GO framework or data from MsigDB. Enrichment terms with a

corrected p-value of less than 0.05 were deemed statistically

significant. Additionally, functional scoring was performed via the

AddModuleScore function in the R package Seurat for gene sets

derived from MsigDB.
2.5 Protein-protein interaction networks

The PPI networks of TP-related and TME-related genes were

obtained from the STRING database (v11.5) (31) to preliminarily

reveal the crosstalk between tumor cells and TME. The interactions

with high confidence (>0.7) were included in the present study and

visualized via Cytoscape software (v 3.8.0) (32).
2.6 Development of the TP- and TME-
related gene-based polygenic risk scores

First, to develop the TP-related polygenic risk score (PRS),

overall survival (OS)-associated TP-related genes were identified

via univariate Cox regression analysis. Second, the expression
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profiles of the OS-associated TP-related genes were used to carry

out least absolute shrinkage and selection operator (LASSO) Cox

regression model analysis with leave-one-out cross validation via

the glmnet package (33). The genes with nonzero coefficients were

considered the optimal features and subjected to multivariate Cox

regression and stepwise regression analysis. The TP-related PRS

was subsequently developed via the following formula: TP-related

PRS = S (Expressioni ∗ Coeffienti) where “Coeffient” and

“Expression” represent the risk coefficient and expression of

each gene in the multivariate Cox regression and stepwise

regression analysis, respectively. The TME-related PRS was also

developed according to the same method as above.
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2.7 The TP-TME subtypes of HCC

The optimal cutoffs of the TP-related and TME-related PRS

were identified vis the surv_cutpoint function from the Survminer

package (https://CRAN.R-project.org/package=survminer) to

separately divide patients into high and low TP- and TME-related

PRS groups. Each individual received a TP- and a TME-related PRS

levels, and we developed the TP-TME subtype according to the TP-

and TME-related PRS levels. Patients with high TP- and TME-

related PRS were considered the high-risk subtype, those possessing

low TP- and TME-related PRS were considered the low-risk

subtype, and the remaining patients with high TP-related and low
FIGURE 1

A flowchart showing the overall idea of this study. The figure was created with biorender.com.
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TME-related PRS or a low TP-related and high TME-related PRS

were considered the intermediate-risk subtype.
2.8 Proteomic analysis

The protein samples were extracted, digested, and labeled with

Tandem Mass Tag (TMT) according to the experimental

specifications. A 10 mL aliquot of the supernatant was injected

into a nanoflow HPLC system (Thermo Scientific) linked to an

Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific).

The extracts were then applied to an Acclaim PepMap100 C18

column and separated on an EASY-Spray C18 column. In the

Orbitrap mode, the mass spectrometer performed a comprehensive

mass spectrometry (MS) scan across the 300-1500 m/z range in

positive ion mode (with a source voltage fixed at 2.1 kV) and

achieved a resolution of 120,000. After the complete MS scan, the 20

most abundant ions with different charge states were selected for

high-energy collisional dissociation fragmentation analysis. For this

experiment, the UniProt HUMAN database, which was

downloaded on April 20, 2019, served as the database. MS/MS

data were analyzed via Proteome Discoverer 1.4.
2.9 Preprocessing and quality control of
single-cell transcriptome data

Raw FASTQ data were processed via Cell Ranger (version 8.0.0;

10× Genomics, USA), generating gene count matrices on the basis

of the human genome reference set GRCh38 with all default

parameter settings. The output filtered gene expression matrix for

each sample was analyzed via the R package Seurat (v.4.3.0) (34).

We calculated the doublet fraction for each cell via the R package

DoubletFinder (v.2.0.4) (35) with aim of removing potential

doublets with a target value of 7.6% per 1000 droplets.

Additionally, for each sample, cells with fewer than 300 unique

molecular identifiers (UMIs), or expressing more than 7000 or

fewer than 300 genes were excluded. To eliminate dead or dying

cells, we further removed cells with more than 10% UMIs

originating from the mitochondrial genome. Next, the

“FindVariableFeatures” function in Seurat and the vst method

were employed to screen for the 2000 variable genes exhibiting

the largest normalized variance, which were subsequently processed

for principal component analysis (PCA). The “RunHarmony”

function from the Harmony package (v.1.2.0) (36) was then

utilized for sample batch correction. The “RunUMAP” function

was applied to perform UMAP downscaling of the first 20 principal

components according to the aforementioned steps. Finally, the

“FindNeighbors” and “FindClusters” functions were employed to

identify cell clusters.
2.10 Cell type identification

We collected typical marker genes for the identification of the

major cell types. Epithelial cells were identified by the expression of
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ALB, APOA2, and EPCAM; fibroblasts were characterized by

COL1A1, COL1A2, and DCN; endothelial cells were identified via

PECAM1, VWF, and PLVAP; T/NK cells were marked via CD3D,

CD3E, and CD2; B cells were identified via CD79A and MZB1;

monocytes/macrophages were characterized via LYZ, CD86, and

C1QC; mast cells were identified via TPSB2, CPA3, and KIT;

neutrophils were marked via G0S2, CXCL8, and CSF3R; and

dividing cells were identified via MKI67 and STMN1.
2.11 Immunohistochemistry experiments

Following tissue collection, samples from patients were fixed in

10% formaldehyde for 12 hours. The tissues were subsequently

dehydrated, clarified, paraffin embedded, and sectioned at a

thickness of 4 µm for both H&E and IHC staining. The staining

procedures were performed according to the manufacturer’s

guidelines. Sections stained with H&E were examined under a

light microscope (OLYMPUS BX43) via a ×10 eyepiece and a ×40

objective lens, with images captured using ImageView 4.15

(Pooher) software. For immunohistochemical analysis, the

sections were scanned with a Pannoramic digital section scanner

(3DHISTECH). Two pathologists, blinded to the clinical

characteristics and findings of the patients, independently

evaluated all the sections. Scoring was conducted on a 4-point

scale on the basis of the intensity of cellular staining: no positive

staining (negative) received a score of 0, yellowish (weakly positive)

scored a score of 1, tan (positive) scored a score of 2, and tan

(strongly positive) scored a score of 3. Additionally, a 4-point scale

based on the percentage of positive cells was employed, with ≤25%

scoring 1, 26%-50% scoring 2, 51%-75% scoring 3, and >75%

scoring 4. The final score was derived by multiplying the two

individual scores. The following primary antibodies were used to

bind specific IHC proteins: XPO1 (Proteintech, 27917-1-AP) and

RCN2 (Proteintech, 10193-2-AP), and the secondary antibody used

was horse anti-mouse/rabbit IgG (Vector, ZF1028). Raw data for 40

HCC patients were uploaded (Supplementary File 1).
2.12 Chromosome copy number
variation analysis

The R package InferCNV (v1.21.0) (https://github.com/

broadinstitute/inferCNV) was used to infer CNV changes in the

scRNA-seq data. The raw gene expression counts extracted from

the Seurat object were imported into the Infercnv object via the

“InfercnvObject()” function. T/NK cells and B cells were selected as

control datasets for reference. The CNV value for each cell was

estimated via the “run()” function in InferCNV with a cutoff

value of 0.1.
2.13 Transcription factors activity analyses

Activity analyses of TFs were performed to pinpoint key

regulatory TFs in the selected cell clusters, and SCENIC analysis
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was conducted via the pySCENIC (37) package. The necessary

databases for executing SCENIC, which include the TF database

(cisTarget.hg38.mc9nr.feather) and the subject annotation database

(hgnc.v9.1.0), were acquired from the pySCENIC website (https://

github.com/aertslab/pySCENIC). The normalized expression matrix

generated by Seurat served as the input matrix for the pySCENIC.

TF activity was determined by the area under the recovery curve

(AUC), and detailed findings from the transcription factor activity

analyses are shown in Supplementary Table S2.
2.14 Cell-cell communication analyses

Cell-cell communication was inferred via the R software version

of CellChat (v1.6.1) (38) and an existing database of ligand-receptor

interactions. The apparent overexpression of ligands and receptors

in specific cell clusters was initially identified via CellChat. The

probability of communication occurring between two interacting

clusters was quantified on the basis of the average expression level of

the ligand in one cluster and the average expression level of the

receptor in the other. The significance of communication was

assessed via a permutation test. Interaction pairs with a P value <

0.05 were selected to assess intercellular communication. The

detailed results of the cell-cell communication analysis are listed

in Supplementary Table S3.
2.15 Spatial transcriptome data analyses

The expression matrices from the ST-seq data were processed

via Seurat. “SCTransform()” normalised the values at each point,

and “RunPCA()” retained the first 20 principal components (PCs)

to reduce dimensionality. The top 30 DEGs for each cell cluster in

the scRNA-seq cohort were used as input. Scores were assigned to

individual points in the ST-seq dataset via the “gsva()” function of

the R package GSVA (v1.46) (39) with default parameters. The

spatial feature expression plots were generated via the

“SpatialFeaturePlot()” function in Seurat.
2.16 Analyses of gene mutations and
stemness scores

Gene mutation data from the TCGA-LIHC dataset were

extracted from mutation annotation format (MAF) files via the

GDCquery_Maf function in the “TCGAbiolinks” package (40).

The gene mutation frequencies of each risk subtype were

visualized as a waterfall plot via the oncoplot function in the

“TCGAbiolinks” package. The tumor mutational burden (TMB)

of each sample was obtained from a previous study (41). The

stemness score (42) was calculated for each individual in the

TCGA-LIHC dataset via the TCGA analyze_Stemness function in

the “TCGAbiolinks” package.
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2.17 Prediction of the efficacy of therapy

For the TP-TME risk subtypes, we compared the expression

levels of two immune checkpoints (PDL1 and CTLA4) and five

antigens (CD133, EPCAM, GCP3, MSLN, and MUC1) (43) to

predict the potential response to these treatments. In addition, we

performed drug repositioning analysis for the high-risk subtype via

the PATHOME-Drug (http://statgen.snu.ac.kr/software/pathome/)

web tool.
2.18 Statistical analysis

Unless otherwise stated, all analyses were performed in R

(version 4.2.3). We identified DEGs via unpaired t-tests provided

via the limma package. The Shapiro-Wilk test was used for the

normality test. Time-dependent receiver operating characteristic

(tROC) curve analysis was carried out using the tROC package

(44). Kaplan–Meier survival curves for OS and progression free

survival (PFS) were compared in different subtypes using the log-

rank method in the “survival” package (https://CRAN.R-

project.org/package=survival) and the “survminer” package

(https://CRAN.R-project.org/package=survminer). Intergroup

differences in continuous variables were assessed for significance

via Wilcoxon, Kruskal–Wallis, or unpaired t tests. All tests were

two-sided, and unless otherwise stated, we set P value < 0.05 to

indicate statistical significance. Visualization was done vis the

“ggplot2” R package.
3 Results

3.1 Biological functions and interactions of
TP-related and TME-related genes

Using the GSE14520_GPL3921 dataset, we identified a total of

2,263 differentially expressed genes (DEGs) in HCC compared with

tumor-adjacent liver tissue (Figure 2A). A total of 451 TP-related

genes and 121 TME-related genes were identified through

Spearman correlation analysis. Bidirectional hierarchical

clustering revealed that the expression patterns of these genes

could largely distinguish between HCC and tumor-adjacent liver

tissue (Figure 2B). Unsurprisingly, the TP-related genes were

enriched in mainly cancer-related Gene Ontology (GO) terms

and pathways, such as the cell cycle and mismatch repair

(Figure 2C). In contrast, TME-related genes were associated

primarily with immune system processes (Figure 2D). The PPI

networks of the TP-related and TME-related genes contain 342

nodes and 1177 edges (Supplementary Figure S1). In the PPI

networks, red nodes indicate genes whose expression is

upregulated, and blue nodes indicate genes whose expression is

downregulated in tumors. Circular nodes represent TP-related

genes, whereas rhombic nodes represent TME-related genes.
frontiersin.org

https://github.com/aertslab/pySCENIC
https://github.com/aertslab/pySCENIC
http://statgen.snu.ac.kr/software/pathome/
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survminer
https://doi.org/10.3389/fimmu.2024.1517312
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1517312
3.2 The TP-TME risk subtype is a robust
prognostic prediction system

Fifty TP-related genes were identified as OS-associated genes,

twenty-two of which presented nonzero coefficients (Figure 3A),

and 11 genes (ALG6, ATP5MF, CNIH4, ESM1, HEY1, LANCL1,

P2RX4, PEX11B, POP7, RCN2, and XPO1) were used to generate

the TP-related PRS (Supplementary Table S4). The TP-related

PRS was significantly associated with OS [P < 0.0001, hazard ratio

(HR) = 2.718 (95% CI for HR = 2.147-3.442)], and the area under

the curve (AUC) of the tROC analysis was stable at approximately

0.8 (Figure 3B). The HCC patients with high TP-related PRS had

shorter OS than did those with low TP-related PRS (P < 0.0001)

(Figure 3C). Among the TME-related genes, twelve genes were
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identified as OS-associated genes, ten of which had nonzero

coefficients (Figure 3D), and seven genes (ALDH1B1, CTSC,

GUCY1A1, MRC1, SPRY2, TARP, and TRIM22) were used to

generate the TME-related PRS (Supplementary Table S5). The

TME-related PRS was also significantly associated with OS [P <

0.0001, HR = 2.718 (95%CI for HR = 1.978-3.735)], and the AUC

of tROC analysis was 0.7-0.8 (Figure 3E). HCC patients with a

high TME-related PRS had shorter OS than did those with low

TP-related PRS (P < 0.0001) (Figure 3F). Our TP-TME risk

subtype was generated on the basis of two PRSs, and 34, 52, and

123 patients with HCC were divided into high-, intermediate-, and

low-risk subtypes, respectively. Patients in the high-risk subtype

had the poorest survival, those in the low-risk subtype had the best

survival, and those in the intermediate-risk cases had a better
FIGURE 2

Identification, enrichment analysis, and protein-protein interaction networks of the tumor purity-related genes and tumor microenvironment-related
genes in GSE14520_GPL3921. (A) Volcano plot of the differentially expressed genes. (B) Hierarchical clustering showing that the expression patterns of
TP-related and TME-related genes basically distinguish HCC and tumor-adjacent liver tissues. (C) Functional enrichment analysis of the TP-related
genes. Left panel: GO terms and pathways involving TP-related genes, and right panel: interactions among the GO terms and pathways. (D) Functional
enrichment analysis of TME-related genes. Left panel: GO terms and pathways involving TME-related genes, and right panel: interactions among the GO
terms and pathways.
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prognosis than did those in the high-risk subtype and worse prognosis

than did those in the low-risk subtype did (Figure 3G). A similar trend

was also observed for PFS (Figure 3H). Furthermore, the TP-TME risk

subtyping system demonstrated superior prognostic predictive power

compared to routine clinicopathological features and remained

independent of these features (Figure 3I) . As in the
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GSE14520_GPL3921 dataset, the TP-related PRS and the TME-

related PRS in the TCGA-LIHC and LIRI-JP datasets were

calculated according to the abovementioned formulas. We found

similar results in the TCGA-LIHC cohort (Supplementary Figures

S2A–E) and the LIRI-JP cohort (Supplementary Figures S2F–I).

Overall, TP-TMErisksubtype is a robustprognosticpredictionsystem.
FIGURE 3

Development and validation of TP-TME risk subtypes in GSE14520_GPL3921. (A) Twenty-two TP-related genes had nonzero coefficients in the
LASSO Cox regression model analysis; (B) Time-dependent ROC curve analysis for the TP-related PRS; (C) HCC with high TP-related PRS had
shorter overall survival than those with low TP-related PRS. (D) Ten TME-related genes had nonzero coefficients in the LASSO Cox regression model
analysis; (E) Time-dependent ROC curve analysis for the TME-related polygenic risk score; (F) HCC with high TME-related PRS had shorter overall
survival than those with low TME-related PRS. (G) There were significant differences in overall survival among the three subtypes of the TP-TME risk
subtypes. (H) There were significantly differences in progression-free survival among the three subtypes of the TP-TME risk subtypes. (I) The TP-TME
risk subtype system was proven to be an independent prognostic factor, after adjusting for other clinicopathological characteristics.
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3.3 The biological functions of
characteristic genes involved in
TP-TME risk subtype

Compared with those in the TP-TME intermediate- and high-

risk subtypes, the liver function-related HALLMARK (Figure 4A)

and metabolism-related KEGG (Figure 4B) gene sets were

significantly enriched in the TP-TME low-risk subtype. These

findings suggest that the TP-TME low-risk subtype of HCC is

well- differentiated. The TP-TME intermediate-risk subtype was

characterized by enrichment of transcription factor E2F and MYC

targets (Figure 4C) and cell cycle pathways (Figure 4D), whereas the

TP-TME high-risk subtype was characterized by enrichment of

hypoxia, Wnt/beta-catenin signaling (Figure 4E), the Notch

signaling pathway and the TGF-beta signaling pathway
Frontiers in Immunology 09
(Figure 4F). These results indicate that there is significant

biological heterogeneity among these three subtypes.

To validate the expression of genes characterizing the TP-TME

risk subtype at the protein level, we collected tumor and adjacent-

tumor tissues from 6 HCC patients for proteomic analysis. Analysis

of the protein expression levels of genes associated with the HCC-TP-

TME risk subtype showed, that XPO1, RCN2, PEX11B, P2RX4,

LANCL1, ATP5MF, ALG6, TRIM22, GUCY1A3, CTSC, and

ALDH1B1 were significantly elevated in tumor tissues compared

with adjacent tumor tissues (Figure 4G). Furthermore, we validated

these findings via published data from Gao et al. (22), which

corroborated our results in an independent cohort (Figure 4H).

Collectively, these results indicate that the characteristic genes of

the TP-TME risk subtypes identified in our study have important

clinical implications for the prognostic assessment of HCC and
FIGURE 4

Biological behavior and characteristic gene protein expression levels of TP-TME risk subtypes. (A) The hallmark gene sets enriched in the TP-TME
low-risk subtype. (B) The KEGG pathway gene sets enriched in the TP-TME low-risk subtype. (C) The hallmark gene sets enriched in the TP-TME
intermediate-risk subtype. (D) The KEGG pathway gene sets enriched in the TP-TME intermediate-risk subtype. (E) The hallmark gene sets enriched
in the TP-TME high-risk subtype. (F) The KEGG pathway gene sets enriched in the TP-TME high-risk subtype. (G) Heatmap showing the protein
expression levels of genes associated with the TP-TME risk subtypes. (H) Heatmap showing protein expression levels of genes associated with the
TP-TME risk subtypes reported by Gao et al.
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warrant further investigation into the biological functions of

these genes.
3.4 Exploring the expression patterns and
biological functions of genes
characterizing TP-TME risk subtypes in
HCC via scRNA-seq

By analyzing the scRNA-seq data for HCC, we obtained 62,163

high-quality cells. Nine distinct cell types were identified on the

basis of knownmarkers: epithelial cells, fibroblasts, endothelial cells,

T/NK cells, B cells, monocytes/macrophages, mast cells,

neutrophils, and cycling cells (Figures 5A–C). Furthermore, we

analyzed the proportions of various cell types across different

patients and found that, although all cell types were present in

each patient, the predominant infiltrating cell types varied, which

may reflect heterogeneity among HCC patients (Figure 5D).

Next, we re-clustered the epithelial cells on the basis of their

differentially expressed genes, identifying 4 clusters: XPO1

+Epithelial, CYP2E1+Epithelial, S100A6+Epithelial, and STMN1

+Epithelial (Figure 5E). The bubble diagram illustrates the highly

expressed genes in each cluster (Figure 5F). Functional enrichment

analysis revealed that XPO1+Epithelial was predominantly

associated with the acute inflammatory response, cell growth,

positive regulation of angiogenesis, and epithelial cell

proliferation, indicating its potential role in tumor progression. In

contrast, CYP2E1+Epithelial were primarily linked to material and

energy metabolism, whereas S100A6+Epithelial were associated

with the regulation of ubiquitin-protein ligase activity, among

other functions. STMN1+Epithelial exhibited characteristics

related to cytokinesis (Figure 5F). We subsequently analyzed the

chromosome copy number variation in these epithelial cells via

inferCNV. The results indicated that all four clusters presented

significant chromosome amplificat ions and delet ions

(Supplementary Figure S3A). Additionally, we observed minimal

capture of epithelial cells in normal liver tissue samples (Figure 5D),

leading us to conclude that all four clusters consisted of malignant

epithelial cells.

We found that 7 genes characterizing TME risk subtypes were

expressed at varying levels across multiple cell types within the

TME (Supplementary Figure S3B). However, 11 genes associated

with the TP risk subtype signatures exhibited significantly increased

expression in the XPO1+Epithelial. Specifically, the expression

levels of XPO1, RCN2, P2RX4, PEX11B, LANCL1, HEY1, and

ESM1 were significantly increase in this cluster than in the other

clusters (Figures 5G, H). Consequently, we focused on this cluster

characterized by high expression of genes in the XPO1+Epithelial

group. Next, we collected tumor tissues and adjacent-tumor tissues

from 40 HCC patients for immunohistochemical staining

(Figure 5I) to validate our findings. We observed that the

expression levels of XPO1 and RCN2 were elevated in tumor

tissues compared with adjacent-tumor tissues (Figure 5J). Further

analysis indicated that the expression of XPO1 and RCN2 was

greater in tumor tissues with high Ki67 expression (Figures 5I, K, L).
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These results suggest that the elevated expression of XPO1 and

RCN2 is closely associated with the proliferation of HCC.

Further analysis revealed that the XPO1+Epithelial cluster

scored significantly increase than other clusters did in terms of

functions associated with the TGF-beta signaling pathway, WNT/

beta-catenin signaling, Notch signaling, Hedgehog signaling, and

hypoxia signaling (Figure 6A). This finding was consistent with the

upregulation of these functions observed in high-risk patients

within the TP-TME risk model (Figures 4A–F). Additionally,

compared with the other clusters, the XPO1+Epithelial cluster

presented significantly increase scores for proliferation, migration,

epithelial-mesenchymal transition (EMT), and angiogenesis

(Figure 6A). Our analysis of the key TFs driving the distinct

functions of these clusters revealed that the ten most active

transcription factors in XPO1+Epithelial were predominantly

associated with tumor proliferation, migration, and invasion

(Figure 6B). For example, MEF2A may play a dual role in

promoting tumor proliferation and metastasis by inducing the

activation of EMT and WNT/beta -catenin signaling (45),

whereas TCF7L2 serves as a core TF of the WNT signaling

pathway, and is involved in regulating tumor cell proliferation

and migration (46). Furthermore, we observed that patients

exhibiting high expression of XPO1+Epithelial signatures had

significantly shorter OS and PFS in the TCGA cohort (Figure 6C).

In summary, we found that XPO1+Epithelial constitute a

cluster of cells characterized by TP high-risk subtypes, which

exhibit elevated expression in cancer tissues. This cluster shows

higher expression levels in patients with tumors that have high

proliferation rates and is positively correlated with poor patient

prognosis. The underlying mechanism may involve the

contribution of this cluster to tumor progression through

pathways such as EMT and WNT/beta-catenin signaling.
3.5 Crosstalk between XPO1+ Epithelial
and TME

To further explore the crosstalk between XPO1+Epithelial and

the TME in HCC, we performed intercellular communication

analysis via ‘CellChat’. The results indicated that among the four

epithelial cell clusters, XPO1+Epithelial exhibited the highest degree

of communication with TME components (Figure 7A). XPO1

+Epithelial was regulated primarily by fibroblasts (Figure 7B).

Additionally, signals sent by XPO1+Epithelial predominantly

regulate monocyte/macrophages, endothelial cells, and T/NK cells

(Figure 7C). Our further analysis of key ligand-receptor pairs that

interact with XPO1+Epithelial (Figures 7D, E) revealed that

fibroblasts regulate XPO1+Epithelial mainly through ligand-

receptor pairs such as CD99-CD99 and FN1-(ITGAV+ITGB1)

(Figure 7D). Conversely, XPO1+Epithelial promotes monocyte/

macrophage recruitment by regulating monocytes through MIF-

(CD74+CXCR4) and MIF-(CD74+CD44), as well as C3-(ITGAX

+ITGB2). Furthermore, the iso-ligand receptors MIF-(CD74

+CXCR4) and MIF-(CD74+CD44) regulate T/NK cells (Figure 7E),

potentially facilitating tumor cell evasion of immune surveillance
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FIGURE 5

Single-cell resolution exploration of the expression profiles of genes characterizing TP-TME risk subtypes in HCC. (A) UMAP plot illustrating the
distribution of cells across different samples, with distinct colors representing each sample; (B) UMAP plot depicting the transcriptomic landscape of
62,163 high-quality cells across nine cell types, with different colors indicating the various cell types: Epi (epithelial cell), Fib (fibroblast cell), Endo
(endothelial cell), Tc/NK (T cell/natural killer cell), Bc (B cell), Mono/Mac (monocyte/macrophage cell), Mast (mast cell), Neu (neutrophil cell), and Cycling
(cycling cell). (C) Bubble plots displaying the percentage expression of classical marker genes across the nine cell types, alongside average expression
levels. (D) Bar graph illustrating the distribution of the nine cell types across different tissues, color-coded by cell type. (E) UMAP plot showing the cluster
of epithelial cells divided into four distinct cell clusters. (F) Bubble plots highlighting the percentage and average expression levels of genes with high
expression specific to different epithelial cell clusters, as well as GO-BP functional enrichment. (G) Bubble plots presenting the expression percentages
and average expression levels of genes characterizing the TP risk subtype across different epithelial cell clusters. (H) Density map illustrating the
distribution of TP-related genes within epithelial cell clusters. (I) IHC staining of XPO1 and RCN2 in clinical samples from HCC adjacent and tumor
tissues. (J) Violin plot demonstrating the statistical analysis of IHC scores for XPO1 and RCN2 genes. (K, L) Violin plots displaying IHC scoring statistics for
XPO1 (K) and RCN2 (L) under varying levels of Ki67 expression.
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(47, 48). Additionally, XPO1+Epithelial regulates endothelial cells via

VEGFA-VEGFR1R2 and VEGFA-VEGFR1, which may be associated

with promoting tumor vascular production (49, 50).

To confi rm the resu l t s observed in the ce l l - ce l l

communication analyses, we validated our findings via the

TCGA-LIHC cohort at the bulk RNA-seq level. These data

corroborated the positive correlation between the expression

levels of specific receptors in the target cells (Figure 7F;

Supplementary Figure S4A). Further evidence was provided by

spatial transcriptome analysis (Figure 7G; Supplementary Figure

S4B), which consistently demonstrated that fibroblasts co-

localized with XPO1+Epithelial in specific physical locations.
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Additionally, the scores for both cell types were positively

correlated, and fibroblasts regulated the co-localization of the

primary ligand receptor for XPO1+Epithelial cells. Similarly,

we observed physical positional co-localization between XPO1

+Epithelial and monocytes/macrophages, T/NK cells, endothelial

cells, and their corresponding ligands and receptors, suggesting

communication exchanges among these cell types. Thus, we

validated the interaction network between XPO1+Epithelial

cells and the TME via multi-omics.

In summary, our findings indicate that XPO1+Epithelial cells are

key components in the remodeling of the TME, and are regulated

primarily by ligand signaling from fibroblasts. This interaction may
FIGURE 6

Biological function scoring and survival analysis of epithelial cells. (A) Violin plots illustrating various epithelial cell clusters in relation to TGF-beta
signaling, Wnt beta/catenin signaling, Notch signaling, Hedgehog signaling, hypoxia, epithelial cell proliferation, cell migration, angiogenesis, and EMT
scores. The Wilcoxon test was employed to evaluate the differences between groups. Statistical significance is indicated by ‘****’, corresponding to
P < 0.0001, respectively. (B) Heatmap displaying the top 10 transcription factors with the highest activity across different epithelial cell clusters. (C) A line
graph depicting the overall survival and progression-free survival of XPO1+ epithelial cells.
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FIGURE 7

Cell-cell interaction network of HCC epithelial cells. (A) Heatmap illustrating the interaction intensities among various cell types in HCC.
(B, C) Circular plot depicting the interaction intensities of incoming (B) and outgoing (C) interactions involving XPO1+Epithelial. (D, E) Heatmaps
demonstrating the enhancement of ligand-receptor interaction intensities between XPO1+Epithelial and other cell types, with (D) focusing on
incoming interactions and (E) on outgoing interactions. (F) A scatter plot revealing the correlation between XPO1+Epithelial and fibroblasts,
monocytes/macrophages, and T/NK cells, along with their associated ligand receptors within the TCGA-LIHC cohort (n=374). (G) ST-seq was used
to assess the spatial distribution and correlation between XPO1+Epithelial, fibroblasts, monocytes/macrophages, T/NK cells, and their interacting
ligand receptors in HCC.
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modulate endothelial cells, monocyte macrophages, and T-cells

through seeded ligand receptors, potentially influencing immune

cell recruitment, immunosuppression, and pro-angiogenesis.
3.6 Analysis and mechanistic exploration of
the correlation between TP-TME risk
subtypes and drug efficacy

In light of the analyses conducted at both the scRNA-seq

and ST-seq levels, we determined that XPO1+Epithelial in

HCC significant interacts with endothelial cells and T cells. This

observation led us to speculate that XPO1+Epithelial may serve as a

potential target for anti-angiogenic therapies and immunotherapy.

To further investigate this hypothesis, we validated our findings via

spatial transcriptome samples from the HCC treatment cohort.

Compared with the nonresponsive group, the group that responded

to the combination of TKIs and PD-1 treatment presented

significantly increase signature gene scores (Figures 8A, B) for

TP-TME risk subtypes, as well as elevated scores for XPO1

+Epithelial (Figure 8C). Additionally, T-cell and endothelial cell

infiltration was notably more pronounced in the combination

treatment response group (Figures 8D, E).

Through PATHOME-Drug analysis, we constructed drug-

target networks to identify potentially effective drugs for the high-

risk subtypes (Supplementary Figure S5A). The identified drugs

included recommended agents, such as sorafenib, regorafenib,

cabozantinib, and pembrolizumab (Supplementary Table S6).

Collectively, these results suggest that TP-TME risk subtypes may

be used to predict the efficacy of targeted and immunological

therapies, warranting further investigation in follow-up

cohort studies.

We conducted a preliminary exploration of the potential

mechanisms associated with the genes that characterize the TP-

TME risk subtypes and their implications for immunotherapy

efficacy. Analysis of the top 30 mutated genes (Figures 8F–H)

across the high-, intermediate-, and low-risk subtypes revealed

that the genes with the highest mutation percentages in the

different risk groups included TP53, TTN, and CTNNB1.

Notably, the mutation percentages are greater in the

intermediate- and high-risk groups, and these mutations are

closely linked to the onset and progression of various tumors.

There are currently few known drugs that target these mutated

genes. Additionally, we observed that the tumor mutational burden

(TMB) was low in HCC patients and did not differ significantly

among the three subtypes (Supplementary Figure S5B), indicating

that TMB may not serve as a valid biomarker for selecting HCC

patients for treatment with immune checkpoint inhibitors (ICIs).

Furthermore, our analyses revealed no significant differences in the

stemness scores among the three risk subtypes (Supplementary

Figure S5C). Although no significant differences were observed in

the expression of CD274 (also known as PDL1) among the three

risk subtypes, the expression levels of CTLA4 and PDCD1 were

significantly increase in the intermediate- and high-risk subtypes

than in compared to the low-risk subtype (Figure 8I). Consequently,

the response rates of the intermediate- and high-risk subtypes to
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ICIs treatment may be greater than that those of the low-risk

subtype. Furthermore, the three risk subtypes of the TP-TME

presented distinct expression levels of the 5 cancer antigens

targeted in chimeric antigen receptor-modified T cell (CAR-T)

therapy (Figure 8I). Specifically, GPC3 expression was elevated in

the intermediate-risk subtype relative to the low-risk subtype,

whereas MSLN expression was higher in both the intermediate-

and high-risk subtypes than in the low-risk subtype. The highest

expression levels of MUC1, EPCAM, and PROM1 were observed in

the high-risk subtype. Therefore, the three TP-TME risk subtypes

may exhibit varying therapeutic responses to the corresponding

CAR-T therapies.
4 Discussion

The heterogeneity of HCC is attributed to various etiologies,

such as vial or parasitic infections, chemical carcinogens, cigarette

smoking, excess alcohol intake, and dietary factors (51, 77). One of

the essential efforts for improving the poor outcome of HCC is

to provide a subtyping system that is capable of accurately

defining tumor risk subtypes, each displaying unique molecular

characteristics linked to potentially druggable driver genes, in

order to provide personalized treatment choices on basis of the

subtyping system. Although many efforts, which have focused

mainly on malignant cells, have focused on intertumor

heterogeneity and proposed various single- or multi-omics-based

molecular typing systems (52, 53), their effectiveness for providing

precision treatment remains limited. Given that the crucial role of

the TME in cancers has been confirmed (54), TME-related

molecules should contribute to the subtyping of HCC. Another

challenge of previous molecular typing methods is cost

effectiveness, because hundreds of genes or even multiple omics

data types are needed.

In the present study, we first identified the genes of related to TP

and the TME and subsequently generated a TP-related PRS and a

TME-related PRS according to the expression patterns of these

types of genes, and further proposed a novel risk subtyping method

that could successfully divide patients with HCC into three risk

subtypes. Similar to other molecular typing systems (55–58), our

subtypes have distinct prognoses and were validated in two

independent external datasets.

Unsurprisingly, some of these candidates eleven TP-related PRS

genes and seven TME-related genes have been associated with HCC

or other types of cancers in previous studies. ESM1 was identified as

a biomarker of macrotrabecular-massive HCC (59). HEY1 plays a

critical role in the hypoxia-related regulation of mitochondrial

activity in HCC (60). The interactions between CTSC and the

TNF-a/p38 MAPK signaling pathway are associated with

proliferation and metastasis in HCC (61). LANCL1 was reported

to protect prostate cancer cells from oxidative stress (62). XPO1 not

only regulates tumor proliferation but also enhances sorafenib

resistance by promoting EMT (63, 64). It has been identified as a

therapeutic target for HCC (65). RCN2 promotes HCC progression

by activating the MYC signaling pathway and regulating the EGFR-

ERK pathway. In this context, our proteomic analysis revealed that
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FIGURE 8

Mutation, stemness, and immunotherapeutic efficacy analysis. (A–E) Spatial transcriptomics data (GSE238264) reveal genes associated with TP risk
profiles (A), genes linked to TME risk profiles (B), the spatial distribution of XPO1+Epi (C), T/NK cells (D), and endothelial cells (E), and their statistical
quantification in patients who either responded or did not respond to TKIs in combination with PD1 therapy. The Wilcoxon test was employed to
evaluate differences between groups, with significance levels indicated as follows: ‘****’, corresponding to P<0.0001, respectively. (F–H) Violin plots
illustrating the top 30 mutated genes across three risk subtypes: (F) TP-TME high-risk subtype, (G) TP-TME intermediate-risk subtype, and (H) TP-
TME low-risk subtype. (I) The expression levels of CD274, CTLA4, PDCD1, GPC3, MSLN, MUC1, EPCAM, and PROM1 are presented across the three
TP-TME risk subtypes.
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the protein levels of several tumor progression-related PRS genes

were elevated in cancer tissues from patients with HCC.

Our research revealed indicates that the genes characterizing

the TP risk subtypes, such as XPO1 and RCN2, in HCC have not yet

been examined at the single-cell level. In this context, we

investigated the critical functions of genes defining TP risk

subtypes in HCC at single-cell resolution. We identified a

previously unreported malignant cell cluster, XPO1+Epithelial,

exhibiting features associated with the TP-TME risk subtype.

This cluster involves the upregulation of the TFs MEF2A,

TCF7L2, and ZNF148, which significant activate the TGF-beta

signaling pathway, and the WNT/beta -catenin signaling pathway,

and promote EMT, all of which play a crucial pro-oncogenic roles

(45, 46, 66–68). Furthermore, these factors are associated with

elevated tumorigenic characteristics such as proliferation and

migration. Collectively, these findings suggest that the XPO1

+Epithelial, with TP-TME risk subtype-related features, can serve

as a predictor of tumor malignancy.

There is a consensus regarding the significant impact of the

TME on various tumor phenotypes. Accordingly, we further

analyzed the cell-cell communication between XPO1+ Epithelial

and various components of the TME. Our findings indicate that

fibroblasts are the predominant cell type regulating XPO1+

Epithelial, primarily through enhanced ligand-receptor

interactions, such as those involving FN1-(ITGAV+ITGB1) and

CD99-CD99. These interactions, which are consistent with previous

reports, correlated with increased up-regulation of tumor EMT

through ligand-receptor signaling. Furthermore, XPO1+ Epithelial

can modulate monocyte macrophages, T cells, and endothelial cells

through multiple ligand-receptor pairs. For example, XPO1+

Epithelial can interact with immune cells via several ligand-

receptor pairs, such as MIF-(CD74+CXCR4) and MIF-(CD74

+CD44), which, as previously reported, function as recruiters of

immunosuppressive cells and thus promote immunosuppression,

enabling tumor cells to evade immune surveillance (47, 48, 69).

Additionally, XPO1+ Epithelial can promote angiogenesis via

VEGFA-VEGFR1/R2, thereby facilitating tumor growth, which

aligns with our previous study (19). We fully validated these

findings through multi-omics, utilizing both the TCGA-LIHC

cohort and the paired ST-seq cohort.

By analyzing ST-seq data from HCC patients treated with TKIs

in combination with PD-1 inhibitors, we observed that the scores of

TP, TME-RPS-related genes, and XPO1+Epithelial genes were

significantly increase in the responsive group. Furthermore,

endothelial cell and T-cell infiltration were significantly increase

in the responsive group than in the nonresponsive group. This

strongly suggests that the TP-TME high-risk subtype may exhibit

greater sensitivity to TKIs combined with PD-1 therapy; however,

this finding requires validation through further studies.

Additionally, while further research is necessary, we propose

potential immunotherapies and drugs for high-risk subtypes,

which may aid in clinical decision-making.

Mutations in several key genes play crucial roles in

tumorigenesis (70). Consistent with previous studies, both TP53

and CTNNB1 presented high mutation probabilities across different

risk groups (71). Research has demonstrated that HCC with
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CTNNB1 mutations tends to be well differentiated and associated

with a better prognosis. In contrast, HCC with TP53 mutations,

particularly in the absence of CTNNB1 mutations, is more

aggressive and strongly linked to poor outcomes (72). Our

findings indicate that a higher mutation probability of TP53,

coupled with a lower mutation probability of CTNNB1, is

prevalent in high-risk groups, strongly suggesting that HCC

classified within the TP-TME high-risk subtype is more aggressive.

Furthermore, we investigated the sensitivity of various TP-TME

risk subtypes to immunotherapy. Our comparative analysis of

immune checkpoint expression across different TP-TME risk

subtypes revealed elevated levels of immune checkpoints such as

PDCD1 and CTLA4, in intermediate- and high-risk subtypes. These

findings suggest that these risk subtypes may respond more

effectively to immune checkpoint inhibitors (73). Additionally, the

expression levels of antigens used in CAR-T therapy vary among

the different risk subtypes, indicating that the three TP-TME risk

subtypes may exhibit distinct responses to CAR-T therapy.

Owing to the low sensitivity of conventional diagnostic

techniques and the lack of pronounced early symptoms, HCC is

often diagnosed at an advanced stage (2, 78). Despite recent

advancements in HCC treatment, many patients still experience

treatment resistance and disease progression (74, 79). Our proposed

classification method aims to improve prognosis evaluation in HCC

and identify patients likely to benefit from TKIs and PD-1

inhibitors. By leveraging a risk score and the proportion of XPO1

+Epithelial expression, clinicians can predict patient responses to

TKIs and PD-1 therapy, facilitating the development of

personalized immunotherapy regimens designed to improve

patient outcomes.

Although our current study introduces a novel molecular

classification system and elaborates on the biological and clinical

significance of the XPO1+Epithelial, several noteworthy limitations

exist. First, the TP-TME risk model was derived from retrospective

analyses and needs to be validated and optimized in future

prospective trials to ensure its applicability and accuracy in

different populations and settings. Second, our sample of included

scRNA-seq data was limited; despite the use of ST-seq and bulk

RNA-seq for validation, the findings must still be validated in a

larger cohort. For future research directions, in addition to

validating the risk subtype model, further investigations of

subtype-specific responses to immunotherapy are crucial. Future

studies could initiate exploratory clinical trials tailored to the

characteristics of TP-TME high-risk subtypes, allowing for the

asses sment o f the i r responses to ex i s t ing or nove l

immunotherapies, thereby supporting individualized treatment

strategies. Specifically, targeting particular molecular markers that

may be present in XPO1+ Epithelial cells could facilitate the further

development and optimization of targeted drugs, ultimately

enhancing therapeutic efficacy while minimizing toxic side effects.
5 Conclusion

We proposed and validated a novel risk subtype system for

HCC that is based on tumor progression in the TP-TME.
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Additionally, we identified and validated the biological behavior

and clinical significance of XPO1+Epithelial, a novel category

among the TP risk subtypes characterized, across multiple

cohorts. These findings enhance prognostic risk prediction for

HCC patients and provide valuable insights for predicting

personalized targeted therapy and immunotherapy.
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SUPPLEMENTARY FIGURE 1

Protein-protein interaction networks of the TP-related genes and TME-
related genes. Red represents upregulated, and blue represents

downregulated genes in hepatocellular carcinoma. The circular nodes
represent TP-related genes, and the diamond nodes represent TME-

related genes.

SUPPLEMENTARY FIGURE 2

Validation of TP-TME risk subtypes in multiple cohorts. (A–E) Validation of
TP-TME risk subtypes in the TCGA-LIHC. (A) HCC with high TP-related PRS

had shorter overall survival than those with low TP-related PRS. (B) HCC with
high TME-related PRS had shorter overall survival than those with low TME-

related PRS. (C) There were significant differences in overall survival among
the three subtypes of the TP-TME risk subtypes. (D) There were significant

differences in progression-free survival among the three subtypes of the TP-

TME risk subtypes. (E) The TP-TME risk subtype system was proven to be an
independent prognostic factor, after adjusting for other clinicopathological

characteristics. (F–I) Validation of TP-TME risk subtypes in LIRI-JP. (F) HCC
with high TP-related PRS had shorter overall survival than those with low TP-

related PRS. (G) HCC with high TME-related PRS had shorter overall survival
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than those with low TME-related PRS. (H) There were significant differences
in overall survival among the three subtypes in the TP-TME risk subtypes.

(I) The TP-TME risk subtype system was proved to be an independent

prognostic factor, after adjusting for other clinicopathological characteristics.

SUPPLEMENTARY FIGURE 3

Illustrates the functional scoring of epithelial cells. (A) Hierarchical heatmap

displaying large-scale copy number variations (CNVs) in epithelial cells.
(B) Bubble plots depict the average expression and percentage of

expression of the TME risk subtype signature genes across various cell types.

SUPPLEMENTARY FIGURE 4

XPO1+Epi and endothelial cell interactions in the TCGA-LIHC cohort and
spatial transcriptome cohort correlations. (A) A scatterplot illustrating the
Frontiers in Immunology 18
correlation between XPO1+Epithelial and endothelial cells, along with their
ligand receptors, in the TCGA-LIHC cohort (n=374). (B) ST-seq analysis

revealing the spatial distribution and correlation between endothelial cells

and ligand receptors of XPO1+Epithelial interacting with endothelial cells
in HCC.

SUPPLEMENTARY FIGURE 5

Drug-target networks for potentially effective drugs for the TP-TME high-risk
subtypes. (A) Drug-target networks for potentially effective drugs for the TP-

TME high-risk subtypes. Red represents upregulated, and blue represents

downregulated in the TP-TME high-risk subtypes. The Wilcox test was used
to assess the differences between groups. (B) Tumor mutation burden scores

of the three TP-TME risk subtypes. (C) Stemness scores of the three TP-TME
risk subtypes.
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HCC Hepatocellular carcinoma
Frontiers in Immunol
scRNA-seq Single-cell RNA sequencing
ST-seq Spatial transcriptomics sequencing
TP Tumor purity
TME Tumor microenvironment
EMT Epithelial-mesenchymal transition
TKIs Tyrosine Kinase Inhibitors
PD-1 Programmed Cell Death Protein 1
IHC Immunohistochemical
TCGA The Cancer Genome Atlas Program
DEGs Differentially expressed genes
HR Hazard Ratio
AUC Area under curve
KEGG The Kyoto Encyclopedia of Genes and Genomes
MSigDB The Molecular Signatures Database
GO The Gene Ontology
PPI Protein-protein interaction
PRS Polygenic risk score
ogy 20
OS Overall survival
PFS Progression free survival
LASSO The least absolute shrinkage and selection operator
CNV Chromosome copy number variation
TFs Transcription factors
MAF Mutation annotation format
TMB Tumor mutational burden
tROC Time-dependent receiver operating characteristic curve
L-R Ligand-receptor
Epi Epithelial cell
Fib Fibrobalst cell
Endo Endothlial cell
Tc/Nk T cell/Natural killer cell
Bc B cell
Mono/Mac Monocytes/Macrophages cell
Mast Mast cell
Neu Neutrophil cell
Cycling Cycling cell
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