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Antiviral therapy can effectively
suppress irAEs in HBV positive
hepatocellular carcinoma treated
with ICIs: validation based on
multi machine learning
Shuxian Pan and Zibing Wang*

Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan
Cancer Hospital, Zhengzhou, China
Background: Immune checkpoint inhibitors have proven efficacy against

hepatitis B-virus positive hepatocellular. However, Immunotherapy-related

adverse reactions are still a major challenge faced by tumor immunotherapy,

so it is urgent to establish new methods to effectively predict immunotherapy-

related adverse reactions.

Objective: Multi-machine learning model were constructed to screen the risk

factors for irAEs in ICIs for the treatment of HBV-related hepatocellular and build

a prediction model for the occurrence of clinical IRAEs.

Methods: Data from 274 hepatitis B virus positive tumor patients who received

PD-1 or/and CTLA4 inhibitor treatment and had immune cell detection results

were collected from Henan Cancer Hospital for retrospective analysis. Models

were established using Lasso, RSF (RandomForest), and xgBoost, with ten-fold

cross-validation and resampling methods used to ensure model reliability. The

impact of influencing factors on irAEs (immune-related adverse events) was

validated using Decision Curve Analysis (DCA). Both uni/multivariable analysis

were accomplished by Chi-square/Fisher’s exact tests. The accuracy of the

model is verified in the DCA curve.

Results: A total of 274 HBV-related liver cancer patients were enrolled in the study.

Predictive models were constructed using three machine learning algorithms to

analyze and statistically evaluate clinical characteristics, including immune cell

data. The accuracy of the Lasso regression model was 0.864, XGBoost achieved

0.903, and RandomForest reached 0.961. Resampling internal validation revealed

that RandomForest had the highest recall rate (AUC = 0.892). Based on machine

learning-selected indicators, antiviral therapy and The HBV DNA copy number

showed a significant correlation with both the occurrence and severity of irAEs.

Antiviral therapy notably reduced the incidence of IRAEs and may modulate these

events through regulation of B cells. The DCA model also demonstrated strong

predictive performance. Effective control of viral load through antiviral therapy

significantly mitigates the occurrence of irAEs.
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Conclusion: ICIs show therapeutic potential in the treatment of HBV-HCC.

Following antiviral therapy, the incidence of severe irAEs decreases. Even in

cases where viral load control is incomplete, continuous antiviral treatment can

still mitigate the occurrence of irAEs.
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Introduction

Hepatocellular carcinoma, distinguished by its high incidence

and fatality rates, is the sixth most common of cancer-related deaths

worldwide (1). Primary liver cancer is mainly hepatocellular

carcinoma, accounting for more than 70% (2). Research shows

that high risk factors related to liver cancer are related to multiple

viral infections, the main ones being hepatitis B virus and hepatitis

C virus (3). For patients with liver cancer in early clinical stages,

clinical treatment methods mainly include surgical resection, local

therapeutic intervention, liver allotransplantation, etc (4, 5).

However, for patients with high clinical stages of liver cancer,

current clinical intervention methods still cannot effectively

control recurrence or metastasis within 5 years (4). Currently, the

preferred clinical treatment for advanced liver cancer is targeted

therapy based on anti-tumor angiogenesis-related drugs, but the

clinical benefits are still poor (6).

T cells’ intrinsic negative immune regulators, such as CTLA-4,

PD-1, and their ligands, can be blocked by immune checkpoint

inhibitors (ICIs), which enhance T cell cytotoxicity and augment

the antitumor activity of T lymphocytes (7). Studies have shown

that ICIs have provided significant benefits in treating various

cancers, including lung cancer, melanoma, renal cell carcinoma,

and head and neck tumors (8–11). In individuals with early-stage

hepatocellular carcinoma, PD-1 inhibitors like nivolumab and

pembrolizumab have shown substantial clinical efficacy, markedly

improving both overall survival and disease-free survival rates (12–

14). The combination of anti-PD-1 antibodies and anti-angiogenic

therapy, such as bevacizumab, has shown even greater clinical

benefits in patients with advanced liver cancer (15, 16). Moreover,

the therapeutic potential of cabozantinib in accompanied with

pembrolizumab for the remedy of advanced hepatocellular

carcinoma is actively being assessed (17). Despite the remarkable

success of ICIs in advanced liver cancer, predictive factors for their

clinical efficacy remain limited, with microsatellite instability, gut

microbiota and TMB (tumor mutation burden) being among the

few identified (18–20).

irAEs are a manifestation of the inherent limitations of immune

tolerance, primarily induced by immune checkpoint inhibitors

(ICIs) that trigger the production of auto-antibodies and

pathogenic antibodies (21–24). These irAEs have the potential to
02
impact any organ system and are categorized into five distinct

grades according to their severity (9, 25). Clinically, patients

receiving ICI therapy require frequent monitoring to mitigate the

risk of irAEs (26, 27). Research indicates that irAEs are intricately

linked to the function of immune checkpoint inhibitors (ICIs) in

preserving immune homeostasis. Multiple potential mechanisms

have been suggested, including T cell activation against self-

antigens, the production of auto-antibodies and pro-inflammatory

cytokines, as well as increased complement activation targeting self-

antigens (7, 28). The mechanism of occurrence of immune-related

adverse events determines the specificity of their systemic

pathogenesis, including inflammatory arthritis, Sjögren’s disease,

vasculitis, joint pain, or tendinopathy (29–31). In severe cases, bone

marrow suppression may even occur (32). Because of this, the

occurrence of immune-related adverse events seriously affects the

clinical treatment of cancer patients and has become an important

issue that must be addressed (33).

Recent studies have revealed that severe irAEs can interrupt

cancer patients’ immunotherapy, potentially hindering the clinical

benefits of these treatments (28). Although there has been some

research on the management of irAEs, identifying clinical indicators

and methods to predict or mitigate irAEs remains an urgent need.

In this study, we analyzed clinical data from liver cancer patients

undergoing immunotherapy to assess the risk factors and associated

indicators of irAEs.
Methods

Enrollment of patients

This retrospective study encompassed patients diagnosed with

liver cancer at the Affiliated Cancer Hospital of Zhengzhou

University from January 2019 to February 2024, the process of

including cases in the study is shown in the Figure 7. Diagnosis

was based on clinical pathology and imaging in accordance with the

criteria set by the American Association for the Study of Liver

Diseases (AASLD), including laboratory-confirmed positive HBV

DNA serology, with all patients having undergone at least one PD-

1 inhibitor treatment. Clinical data were meticulously gathered

through manual examination of patient records and pertinent test
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outcomes. Brought into criteria were: 1. Patients older than 18. 2.

Positive laboratory results for HBV DNA. 3. Eastern Cooperative

Oncology Group performance status (ECOG PS) scores ranging 0 - 2,

with at least one measurable lesion per the Response Evaluation

Criteria in Solid Tumors (RECIST) 1.1 guidelines. The efficacy of

immunotherapy was evaluated based on RECIST 1.1 standards,

categorizing outcomes as complete response (CR), partial response

(PR), stable disease (SD), or progressive disease (PD). 4. The severity

of immune-related adverse events (irAEs) was classified by the

Common Terminology Criteria for Adverse Events (CTCAE 5.0)

established by the U.S. National Cancer Institute. 5. Patients on

antiviral therapy were included if they had received such treatment

prior to or concurrently with PD-1 inhibitors. Among the included

cases, 20 patients unreceived anti-viral treatment during ICIs, 44

exhibited poor compliance and ceased antiviral therapy before

hospitalization, 18 discontinued due to financial difficulties, and 7

self-discontinued antiviral therapy prior to immunotherapy. 6.

Laboratory evaluations encompassed peripheral blood immune cell

assays, treatment protocols, clinical outcomes, and related

biochemical results. HBV reactivation was defined per the 2018

AASLD hepatitis B guidelines, meeting at least one of the following

criteria: (i) virus DNA increase of ≥ 2 log (100-fold) versus baseline;

(ii) DNA increase ≥ 3 log (1,000) IU/mL (for patients non-detectable

previously serum virus DNA, recognizing the potential for

fluctuations in HBV DNA levels); or (iii) if baseline levels were

unavailable, virus DNA increase ≥ 4 log (10,000) IU/mL (34). The

albumin/bilirubin (ALBI) grade was calculated using the formula:

(0.66 × log10 bilirubin) + (−0.085 × albumin), with bilirubin

measured in mmol/L and albumin in g/L. The grading criteria are

defined as follows: Grade 1, ALBI ≤ −2.60; Grade 2, −2.60 < ALBI ≤

−1.39; and Grade 3, ALBI > −1.39 (35).
Statistical analysis

The results of this study, along with the relevant statistical

analyses, were completed by R language (version 4.4.0). Numerical

variables that adhering normal distribution are expressed as mean ±

standard, chi-square or Fisher’s exact test were utilized for analysis

of categorical variables. Lasso (glmnet-4.1-8), RSF (randomForest-

4.7), and XGBoost (xgBoost-2.1.3) were used to assess the

importance of both categorical and numerical variables in

predicting outcomes over the observation period. Rank-sum tests

were used to evaluate differences in stratified data, and univariate

analyses were performed using two-tailed t-tests. p <0.05 means

statistically significant.
Results

The clinical baseline characteristics of
enrolled patients

A total of 274 HBV-positive liver cancer patients who received

ICIs treatment were enrolled in the research. clinical characteristics
Frontiers in Immunology 03
are summarized in Supplementary Table 1. All the enrolled samples,

191 were male (69.7%) and 83 were female (30.3%). Among male

patients, 72% experienced grade 1-2 irAEs, while 28% of female

patients experienced grade 1-2 irAEs. The cohort included 119

patients (43.4%) aged 60 and older, and 155 patients (56.6%) under

60. A total of 214 patients (78.1%) developed grade 1-2 irAEs, while

60 patients (21.9%) experienced grade 3-4 irAEs.

As shown in Table 1, 42.1% of patients aged 60 and older

developed grade 1-2 irAEs, compared to 57.9% of patients under 60.

Of the 184 patients who received antiviral treatment during PD-1

inhibitor therapy, 168 (78.5%) experienced grade 1-2 irAEs, and 16

(26.7%) experienced grade 3-4 irAEs. According to the RECIST

evaluation, 7 patients achieved complete response (CR), 81 had

partial response (PR), 128 had stable disease (SD), and 51

experienced progressive disease (PD). Among patients with PR

and CR, 72 (77.4%) received antiviral treatment, compared to 21

(22.6%) who did not, with a significant difference (p = 0.014,

Supplementary Table 1).

Patients with grade 1-2 irAEs had a lower proportion of HBV

DNA levels above 500 IU/mL compared to those with grade 3-4

irAEs (p < 0.001). Additionally, patients who received antiviral

therapy had a significantly higher proportion of irAEs (p < 0.001),

with notably elevated absolute B cell counts (p = 0.005) and

significantly lower ALBI scores (p = 0.006). However, no

significant differences were observed in other immune cell

proportions and absolute counts, tumor size, ECOG scores,

alpha-fetoprotein levels, treatment regimens, vascular invasion,

or liver function across the different grades of irAEs.

Supplementary Table 2 demonstrates that liver cancer patients

who received antiviral therapy had a significantly higher

proportion of clinical benefit from immunotherapy (p = 0.014),

Supplementary Tables 3 and 4 present the statistics of the

occurrence of immune-related adverse reactions in different

organs and the effects of different antiviral drugs on the efficacy

of immunotherapy, respectively.
Biomarkers selection for prediction of irAEs

To identify clinical indicators associated with irAEs, we

conducted a lasso regression analysis on the selected clinical

parameters, utilizing ten-fold cross-validation. The results from

the lasso regression are displayed in Figure 1A, showing the

distribution of clinical characteristics after applying the lasso

regression model. Cross-validation parameters were optimized

using the minimum lambda value (lambda min), and both the

optimal lambda min and lambda standard error (lambda se) were

used to generate the ten-fold cross-validation curve (Figure 1B).

The minimum standard value was identified through cross-

validation, and the corresponding ten-fold cross-validation curve

was plotted (Figure 1B). As a result, we identified seven clinical

parameters with non-zero coefficients (Figure 2E). Univariate and

multivariate logistic regression analyses further confirmed that

antiviral therapy and HBV DNA levels were independent risk

factors for the occurrence of irAEs (Table 2).
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TABLE 1 Baseline information on clinical subgroups of patients with
different grades of immune adverse events.

Name Levels
G1-
G2

(N=214)

G3-
G4

(N=60)
p

Gender female 60 (28%) 23 (38.3%) .169

male 154 (72%) 37 (61.7%)

Age <60 124 (57.9%) 31 (51.7%) .472

>=60 90 (42.1%) 29 (48.3%)

DNA(HBV) <500 153 (71.5%) 25 (41.7%) <.001

>=500 61 (28.5%) 35 (58.3%)

Alcohol No 108 (50.5%) 30 (50%) 1.000

Yes 106 (49.5%) 30 (50%)

Antivirus_therapy Anti-virus 168 (78.5%) 16 (26.7%) <.001

No-antivirus 46 (21.5%) 44 (73.3%)

Antivirus. drug 46 (21.5%) 39 (65%) <.001

Adefovir ester 6 (2.8%) 0 (0%)

Entecavir 155 (72.4%) 21 (35%)

Tenofovir 5 (2.3%) 0 (0%)

Tenofovir
disoproxil

2 (0.9%) 0 (0%)

Surgery No 149 (69.6%) 39 (65%) .600

Yes 65 (30.4%) 21 (35%)

Interventional_therapy No 55 (25.7%) 20 (33.3%) .313

Yes 159 (74.3%) 40 (66.7%)

Radiotherapy No 178 (83.2%) 49 (81.7%) .936

Yes 36 (16.8%) 11 (18.3%)

Tcellpercent Mean ± SD 68.6 ± 11.7 71.0 ± 11.7 .163

CD8percent Mean ± SD 25.5 ± 9.3 26.5 ± 10.7 .461

CD4percent Mean ± SD 36.6 ± 10.7 38.8 ± 11.7 .166

NKcellpercent Mean ± SD 18.9 ± 11.1 17.3 ± 11.2 .336

Bcellpercent Mean ± SD 9.9 ± 6.8 8.3 ± 5.3 .056

Tregs Mean ± SD 9.1 ± 2.4 9.1 ± 3.0 .969

PD1percent Mean ± SD 8.6 ± 8.3 10.6 ± 9.3 .100

PD1CD3cellpercent Mean ± SD 11.7 ± 11.0 14.8 ± 12.9 .070

PD1CD4cellpercent Mean ± SD 11.8 ± 11.4 14.4 ± 12.9 .140

PD1CD8cellpercent Mean ± SD 12.0 ± 12.7 15.5 ± 14.6 .075

lym Mean ± SD
1476.8
± 716.4

1442.9
± 829.0

.759

Tcells Mean ± SD
1015.8
± 502.5

1076.7
± 686.8

.531

CD4 Mean ± SD
543.4

± 293.6
564.6

± 373.9
.691

(Continued)
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TABLE 1 Continued

Name Levels
G1-
G2

(N=214)

G3-
G4

(N=60)
p

CD3CD8 Mean ± SD
368.4

± 229.9
402.5

± 355.4
.491

NKcells Mean ± SD
296.9

± 229.8
248.1

± 209.2
.146

Bcells Mean ± SD
149.6

± 143.3
109.1
± 78.3

.005

AFP <400 127 (59.3%) 37 (61.7%) .653

>=400 43 (20.1%) 9 (15%)

>400 44 (20.6%) 14 (23.3%)

TB Mean ± SD 21.9 ± 13.4 28.8 ± 42.0 .217

Albumin Mean ± SD 41.3 ± 5.9 39.3 ± 6.1 .023

ALBI Mean ± SD -2.7 ± 0.5 -2.4 ± 0.5 .006

ALBI score Mean ± SD 1.5 ± 0.5 1.7 ± 0.5 .018

ECOG Mean ± SD 1.0 ± 0.6 1.0 ± 0.7 .852

Child-Pugh A 169 (79%) 49 (81.7%) .782

B 45 (21%) 11 (18.3%)

BCLC 16 (7.5%) 7 (11.7%) .496

A 13 (6.1%) 6 (10%)

B 51 (23.8%) 13 (21.7%)

C 134 (62.6%) 34 (56.7%)

ALT Mean ± SD 55.8 ± 54.5 71.2 ± 75.3 .143

AST Mean ± SD 70.9 ± 78.2
80.0

± 104.3
.532

Tumor diameter 30 (14%) 8 (13.3%) .808

<3 63 (29.4%) 18 (30%)

>5 82 (38.3%) 26 (43.3%)

3~5 39 (18.2%) 8 (13.3%)

Liver cirrhosis No 73 (34.1%) 22 (36.7%) .831

Yes 141 (65.9%) 38 (63.3%)

Vascular invasion No 155 (72.4%) 44 (73.3%) 1.000

Yes 59 (27.6%) 16 (26.7%)

PD-1 inhibitor Camrelizumab 150 (70.1%) 40 (66.7%) .354

Camrelizumab
+Sintilimab

5 (2.3%) 1 (1.7%)

Camrelizumab
+Tislelizumab

3 (1.4%) 1 (1.7%)

Nivolumab 2 (0.9%) 3 (5%)

Pembrolizumab 1 (0.5%) 0 (0%)

Pembrolizumab
+Toripalimab

0 (0%) 1 (1.7%)

(Continued)
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Multi-machine learning
model construction

Randomforest and XGBoost regression are commonly used tree-

based machine learning methods for predicting variable importance. In

this study, to identify effective predictors of IRAEs (irAEs), we employed

both random forest (package_version 4.7) and XGBoost

(package_version 2.1.3) models to evaluate the importance of relevant

variables. Using random forest analysis, we selected the top 10 variables

based on importance rankings and illustrated the model’s error rate

(Figures 2A–C). After constructing the XGBoost model, we similarly

extracted and ranked the top 10 variables based on importance

(Figure 2D). Next, we took the intersection of the variables identified

by lasso regression, random forest, and XGBoost, and visualized the

results. Notably, only two variables were consistently predicted by all

three models: HBV DNA and antiviral therapy (Figure 3A). To further

validate the reliability of these models, we applied a ten-fold cross-

validation method. All three models demonstrated high accuracy (lasso

AUC = 0.864, random forest AUC = 0.961, XGBoost AUC = 0.903)

(Figure 4A). The precision-recall (PR) curves also showed satisfactory

precision and recall rates for all models (lasso PR AUC = 0.607, random

forest PR AUC = 0.892, XGBoost PR AUC = 0.768) (Figure 4B).
Frontiers in Immunology 05
SHAP to xgboost model
importance explained

To further provide a clear and intuitive explanation of the

selected variables, SHAP (Shapley Additive explanations) values

were utilized to elucidate the contribution of the variables in

predicting IRAEs (irAEs) within the models. Figure 5A illustrates

the SHAP values of the top 10 most important variables in the model.

In the plot, blue represents high-risk factors, while yellow indicates

low-risk factors. Antiviral therapy was identified as a low-risk factor

for irAE occurrence, whereas high levels of HBV DNA were found to

be a high-risk factor for irAEs. Other variables, such as the percentage

and absolute counts of immune cells, including CD4+ T cells, NK

cells, and B cells, were not significantly predictive of irAEs. Figure 5B

ranks the SHAP absolute values of the top 10 variables identified by

the XGBoost model, with the x-axis indicating the importance of the

variables in predicting irAEs. Additionally, we enhanced the

interpretability of the XGBoost prediction model using a typical

SHAP model (Figure 5C). In this model, antiviral therapy had the

lowest score, indicating its role as a protective factor against irAEs,

while HBV DNA had the highest score, reinforcing the notion that

uncontrolled HBV DNA levels or significant HBV reactivation is a

strong driver of irAE development. This finding further supports that

antiviral therapy can effectively mitigate the risk of irAEs.
Antiviral therapy predicts irAEs

By constructing multiple machine learning models, this study

identified antiviral therapy and low HBV DNA copy numbers as

effective predictors of IRAEs (irAEs). Subsequently, we compared

the incidence of irAEs between two groups: patients receiving

antiviral therapy and those who were not, as well as among

patients with different levels of HBV DNA copies. The results

revealed that irAEs in patients receiving antiviral therapy were

primarily concentrated in Grades 1–2, while patients not receiving

antiviral therapy predominantly experienced Grade 3–4 irAEs

(Figure 3B). This indicates that antiviral therapy effectively

reduces the occurrence of severe irAEs. Among patients with low
TABLE 1 Continued

Name Levels
G1-
G2

(N=214)

G3-
G4

(N=60)
p

Sintilimab 26 (12.1%) 7 (11.7%)

Tislelizumab 25 (11.7%) 7 (11.7%)

Toripalimab
+Sintilimab

2 (0.9%) 0 (0%)

Outcome 4 (1.9%) 3 (5%) .107

CR 7 (3.3%) 0 (0%)

PD 44 (20.6%) 7 (11.7%)

PR 65 (30.4%) 16 (26.7%)

SD 94 (43.9%) 34 (56.7%)
FIGURE 1

LASSO coefficient was used to analyze the risk factors of immune-related adverse events. (A) Lasso regression ten-fold cross validation curve. (B) In
the LASSO model, the non-zero coefficient characteristic curve is extracted from the log (A) series. The vertical dashed lines are drawn at the
minimum mean square error (l = 0.0013) and the minimum distance standard error (l = 0.073).
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FIGURE 2

Machine learning feature screening. (A) Random forest graph model error curve. (B, C) Random forest ranking of clinical features by importance.
(D) Xgboost clinical feature importance ranking. (E) Clinical characteristics of non-zero coefficients in lasso regression.
TABLE 2 Univariate and multivariate logistic regression with non-zero coefficients in lasso regression.

Dependent:level G1-G2 (n=213) G3-G4 (N=59) OR (univariable) OR (multivariable)

Gender Female 60 (28.2%) 23 (39%)

Male 153 (71.8%) 36 (61%) 0.61 (0.34-1.12, p=.112) 0.52 (0.25-1.07, p=.077)

Age <60 123 (57.5%) 30 (50.8%)

>=60 90 (42.3%) 29 (49.2%) 1.32 (0.74-2.36, p=.345)

DNA <500 151 (70.9%) 25 (42.4%)

>=500 62 (29.1%) 34 (57.6%) 3.31 (1.83-6.01, p<.001)

Antivirus_therapy Anti-virus 167 (78.4%) 16 (27.1%)

No-antivirus 46 (21.6%) 43 (72.9%) 9.76 (5.04-18.88, p<.001) 8.21 (4.12-16.37, p<.001)

CD4percent Mean±SD 36.6±10.8 38.5±11.5 1.02 (0.99-1.04, p=.233)

(Continued)
F
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TABLE 2 Continued

Dependent:level G1-G2 (n=213) G3-G4 (N=59) OR (univariable) OR (multivariable)

PD1CD3cellpercent Mean±SD 11.8±11.1 14.7±12.9 1.02 (1.00-1.05, p=.094) 1.03 (1.00-1.06, p=.047)

CD3CD8 Mean±SD 371.8±235.6 399.5±353.0 1.00 (1.00-1.00, p=.479)

Bcells Mean±SD 153.3±146.0 107.6±78.5 1.00 (0.99-1.00, p=.024) 1.00 (0.99-1.00, p=.102)
F
rontiers in Immunology
 07
FIGURE 3

Machine learning model performance analysis. (A) Boostrap resampling verifies the accuracy AUC curve of the machine learning model. (B) ROC
curve of bootstrap resampling to verify the accuracy of machine learning model.
FIGURE 4

SHAP interpretation of xgboost clinical parameters. (A) Xgboost screening clinical parameter shape value importance ranking. (B, C) The shap value
represents the predictive characteristics of each clinical parameter and the contribution of each parameter to the occurrence of immune-related
adverse events. f(x) represents the probability prediction value, red indicates low risk, and yellow indicates high risk.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1516524
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pan and Wang 10.3389/fimmu.2024.1516524
HBV DNA copy numbers, the proportion of Grade 3–4 irAEs was

significantly lower, following a similar trend to that observed in

patients receiving antiviral therapy (Figure 3C). We hypothesize

that antiviral therapy either effectively controls HBV DNA

replication or inhibits the reactivation of HBV DNA triggered by

immune checkpoint inhibitors, thereby reducing the occurrence of

irAEs. DCA (Decision Curve Analysis) further demonstrated that

the predictive performance of antiviral therapy for irAE occurrence

outperformed that of HBV DNA copy number alone. This suggests

that antiviral therapy not only suppresses HBV DNA replication

but also modulates immune factors or immune cells involved in

irAE development. However, the combined prediction of both

factors yielded the best predictive performance (Figure 3D).
Relationship between antiviral therapy and
immune cells

The preceding results indicated that antiviral therapy effectively

reduces the occurrence of irAEs and, when combined with low HBV

DNA copy numbers, serves as a reliable predictor of irAE

development. To further explore the relationship between antiviral
Frontiers in Immunology 08
therapy and immune cells, we analyzed the differences in peripheral

blood immune cell levels between patients receiving and not receiving

antiviral therapy. The findings revealed a significant increase in the

absolute number of B cells in patients undergoing antiviral treatment,

whereas no notable changes were observed in the levels of other

immune cells (Figures 6A–P).
Discussion

This study evaluated the safety and efficacy of PD-1 immune

checkpoint inhibitors in the treatment of HBV-associated

hepatocellular carcinoma. Using multiple machine learning

models, we identified biomarkers that can predict IRAEs (irAEs).

Among HBV positive hepatocellular carcinoma patients received

treatment with anti-PD-1, 60 patients experienced grade 3-4 IRAEs

(irAEs). Of these, 16 patients were undergoing anti-viral. When

comparing patients receiving anti-viral to those who were not, irAEs

in patients treated with antiviral therapy were predominantly grade 1-

2, whereas those without antiviral treatment mainly exhibited grade 3-

4 irAEs. Additionally, the analysis revealed that patients with lowHBV

DNA copy numbers or lower viral activity primarily experienced
FIGURE 5

Relationship between screening indicators and clinical events based on machine learning. (A) Intersection of multiple machine learning screening
indicators. (B) Comparison of the proportion of immune-related adverse events at all levels between the antiviral treatment and non-antiviral
treatment groups. (C) Comparison of the proportion of immune-related adverse events at each level in patients with different HBV DNA copies.
(D) DCA curves for predicting immune-related adverse events by antiviral therapy, HBV DNA alone or in combination.
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grade 1-2 irAEs, while those with high HBV DNA copy numbers or

reactivated HBV exhibited more frequent grade 3-4 irAEs.

Machine learning is a mathematical discipline that primarily

focuses on enabling computers to learn from data (36, 37). In

medical research, machine learning models can process data using
Frontiers in Immunology 09
supervised or unsupervised methods to develop models that identify

effective clinical predictors. These models have been applied in areas

such as drug response prediction, surgical readmission risk, and

patient prognosis (38–41). Common techniques for building

clinical machine learning models include LASSO regression,
FIGURE 6

Analysis of the relationship between antiviral treatment and circulating immune cell levels. The changes in the levels of circulating immune cells in
the peripheral blood of patients receiving antiviral treatment and not receiving antiviral treatment included the percentage of T cells (A), the
percentage of CD8+T cells (B), the percentage of CD4+T cells (C), the percentage of NK cells (D), the percentage of B cells (E), the percentage of
Tregs cells (F), the percentage of PD-1+ cells (G), the percentage of PD-1+CD3+ lymphocytes (H), the percentage of PD-1+CD4+T cells (I), the
percentage of PD-1+CD8+T cells (J), the total number of lymphocytes (K), the total number of T cells (L), the absolute value of CD4 (M), the
absolute value of CD8 (N), the absolute value of NK (O), and the absolute value of B cells (P).
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random forest, and XGBoost, which have already been widely used

for the selection and prediction of various clinical indicators. For

example, machine learning has been used to predict lung cancer

recurrence and assess the risk of postoperative thrombosis (42, 43).

The combined use of multiple machine-learning models can further

enhance the precision of these predictions. Previous studies have

utilized various machine learning methods in tandem to predict

clinically relevant indicators, demonstrating the reliability and

improved performance of these integrated approaches (44, 45).

Here, we first employed lasso-regression to analyze the included

clinical indicators with the aim of identifying biomarkers capable of

predicting the coming up and severity of irAEs. The results indicated

that factors such as age, gender, HBV DNA copy number, antiviral

treatment, absolute B cell count, and CD4 T cell percentage were

associated with irAE occurrence. Subsequent uni/multivariate logistic

regression analyses revealed that HBV DNA copy number, antiviral

treatment, and PD1CD3 lymphocytes may serve as independent risk

factors for predicting the occurrence of irAEs. According to existing

reports, irAEs arise due to ICIs not only blocking immune targets but

also activating the immune system, which can trigger autoimmune

responses. This activation leads to the release of related effector

molecules, which in turn conduce to the development of irAEs (46,

47). HBV-virus infection can recruit a large number of inflammatory

factors within the liver, which in turn attract regulatory immune cells

(48). These regulatory immune cells are involved in the occurrence of

irAEs (46), aligning with our predicted results. Antiviral therapy is

currently the mainstay treatment for HBV infection. It has the

potential to reverse T cell exhaustion and maintain immune
Frontiers in Immunology 10
tolerance (49), which may be the underlying reason why antiviral

treatment can mitigate the occurrence of irAEs.

CD8+T cells make a crucial role in viral clearance and are also

key components of anti-tumor immunity (50, 51). However, in

patients with chronic HBV infection, CD8+T cells exhibit signs of

exhaustion, with elevated expression of inhibitory checkpoints like

PD-1, along with reduced cytotoxic and killing functions. PD-1

inhibitors, by blocking-up the PD-1/PD-L1 singling pathway, can

recover CD8+T cell functionality and assist in clearing HBV.

However, studies have shown that PD-1 inhibitors may lead to

the reactivation of HBV DNA in patients with HBV-related liver

cancer (52), suggesting that high HBV DNA levels are a significant

risk factor for irAEs. This finding aligns with our prediction that

antiviral therapy can effectively reduce the incidence of irAEs.

Additionally, this retrospective study revealed that antiviral

therapy can modulate immune cell activity. In HBV positive

hepatocellular carcinoma patients receiving anti-viral treatment,

there was an evidently increase in the absolute count of circulating B

cells, whereas changes in other circulating immune cells were not as

pronounced. Previous reports have also identified a reduction in

circulating cells as being closely related with the occurrence of

severe irAEs (53). However, the underlying mechanisms warrant

further investigation. Finally, we conducted Decision Curve

Analysis (DCA) to compare the accuracy of predicting irAEs

between antiviral treatment and HBV DNA copy.

B cells, as an important component of humoral immunity,

participate in the process of clearing viruses in the body. Studies

have found that when B cells are cleared by rituximab, HBV
FIGURE 7

Sample collection flow chart.
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replication will be reactivated, leading to aggravated HBV infection

(54, 55). In addition, HBVAg-specific B cells can highly express genes

for cross-presenting dendritic cell recruitment (XCL1 and CD40LG)

and innate immunity (MYD88, IFNA1/13, IFNa2 and IFNB1) to

assist humoral immunity in resisting HBV infection (56). In the

study, we found that after receiving antiviral treatment, the absolute

number of B cells circulating in the patient’s peripheral blood

increased, which may be due to the increased release of B cells

induced by antiviral treatment, or it may be related to the accelerated

promotion of B cells.

The novelty of this study lies in the development of an AI model

specifically designed for predicting irAEs in HBV-positive liver cancer

patients. This study utilized three machine learning algorithms,

incorporating ten-fold cross-validation and bootstrapping for

internal validation. Moreover, the comprehensive analysis of clinical

indicators based on various machine learning models enhances the

precision of the predictions. Nonetheless, this study has inherent

limitations due to the restricted sample size. Firstly, it is a retrospective

analysis based on clinical treatment data. Secondly, the study’s dataset

is limited to patients from a specific geographic region, which may

affect the generalizability to multi-regional populations. Finally,

although the internal validation of the data confirms the reliability

of the predictive model, extensive prospective data are required to

further evaluate its applicability.

Conclusion

In summary, our study developed a novel predictive model using

three machine learning algorithms to forecast irAEs in HBV-positive

liver cancer patients receiving immune checkpoint inhibitors. Among

these, the RSF model demonstrated the best predictive performance.

This provides theoretical and data support for clinicians to

implement early intervention measures to prevent IRAEs.
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