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CD73, an important metabolic and immune escape-promoting gene, catalyzes

the hydrolysis of adenosine monophosphate (AMP) to adenosine (ADO). AMP has

anti-inflammatory and vascular relaxant properties, while ADO has a strong

immunosuppressive effect, suggesting that CD73 has pro-inflammatory and

immune escape effects. However, CD73 also decreased proinflammatory

reaction, suggesting that CD73 has a positive side to the body. Indeed, CD73

plays a protective role in diabetes, while with age, CD73 changes from anti-

atherosclerosis to pro-atherosclerosis. The upregulation of CD73 with agents,

including AGT-5, Aire-overexpressing DCs, Aspirin, BAFFR-Fc, CD4+ peptide,

ICAs, IL-2 therapies, SAgAs, sCD73, stem cells, RAD51 inhibitor, TLR9 inhibitor,

and VD, decreased diabetes and atherosclerosis development. However, the

downregulation of CD73 with agents, including benzothiadiazine derivatives and

CD73 siRNA, reduced atherosclerosis. Notably, many CD73 agents were

investigated in clinical trials. However, no agents were used to treat diabetes

and atherosclerosis. Most agents were CD73 inhibitors. Only FP-1201, a CD73

agonist, was investigated in clinical trials but its further development was

discontinued. In addition, many lncRNAs, circRNAs, and genes are located at

the same chromosomal location as CD73. In particular, circNT5E promoted

CD73 expression. circNT5E may be a promising target for agent development.

This mini-review focuses on the current state of knowledge of CD73 in diabetes,

atherosclerosis, and its potential role in agent development.
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1 Introduction

CD73 [also named ecto-5’-nucleotidase (5NTE), a cell surface-

bound nucleotidase, is an important metabolic and immune escape-

promoting gene. CD73 catalyzes the hydrolysis of adenosine

monophosphate (AMP) to adenosine (ADO). AMP has anti-

inflammatory and vascular relaxant properties, while ADO has a

strong immunosuppressive effect by adenosine A2A receptor (A2AR)

and A2BR, suggesting that CD73 promotes tumor cells to achieve

immune escape (1–3). However, CD73 also has a positive side to the

body. CD73 decreased proinflammatory reaction by promoting M2

macrophage phenotype (anti-inflammatory), enhancing endothelial

barrier function, and inhibiting leukocyte trafficking (4). CD73 is a

mesenchymal stem cell (MSC) and Breg-specific marker (5–8). CD73 is

associated with a variety of diseases, including atherosclerosis, cancer,

cirrhotic cardiomyopathy, diabetes, graft-versus-host disease (GVHD),

periodontitis, rheumatoid arthritis, and systemic lupus erythematosus

(SLE) (1–3, 9–12). Especially in cancer, the role and mechanism of

CD73 have been reviewed and studied by multiple laboratories (1–3).

However, few reviews exist on the agent development of CD73 and its

role in diabetes and atherosclerosis. The main aims of this mini-review

are to describe the current state of knowledge of CD73 in diabetes,

atherosclerosis, and its potential role in agent development.
2 The role and mechanism of CD73 in
diabetes and atherosclerosis

2.1 Diabetes

CD73 was increased in the kidneys of diabetic mice. The absence

of CD73 was positively associated with the severity of diabetic

nephropathy, suggesting that CD73 is a potential biomarker of

diabetic nephropathy (13). B lymphocytes promote the

development of type 1 diabetes mellitus (T1DM) by promoting the
Abbreviations: A2AR, Adenosine A2A receptor; AAV5, Adeno-associated viral

type 5; ADO, Adenosine; AHR, Aryl hydrocarbon receptor; Aire, Autoimmune

regulator; ALI, Acute lung injury; AMP, Adenosine monophosphate; ATP,

Adenosine triphosphate; ARDS, Acute respiratory distress syndrome; BAFFR,

BAFF receptor; calcitriol, 1a,25-dihydroxy vitamin D3; ChgA, Chromogranin a;

CPSCs, Cow-derived placental stem cells; Cx40, Connexin40; DCs, Dendritic

cells; DM, Diabetes mellitus; FluoAHRL, Fluorescent AHR ligands; Foxp3,

Forkhead box P3; FR4, Folic acid receptor 4; GBM, Glioblastoma; GVHD,

Graft-versus-host disease; HF, Heart failure; hUSCs, Human urine-derived

stem cells; ICAs, Islet-like cell aggregates; IL-2, Interleukin-2; IPCs, Islet-

producing cells; IRI, Ischemia-reperfusion injury; KLRG1, Killer cell lectin-like

receptor G1; LAG-3, Lymphocyte activation Gene-3; MAC, Medial arterial

calcification; MI, Myocardial infarction; MSC, Mesenchymal stem cell; 5NTE,

Ecto-5’-nucleotidase; NOD, Nonobese diabetic; NSCLC, Non-small cell lung

cancer; PDPCs, Periosteum-derived progenitor cells; PEDF, Pigment epithelial-

derived factor; SAgAs, Soluble antigen arrays; sCD73, Soluble CD73; SLE,

Systemic lupus erythematosus; STZ, Streptozotocin; T1DM, Type 1 diabetes

mellitus; TLR9, Toll-like receptor 9; VD, Vitamin D3; VSMCs, Vascular smooth

muscle cells.
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expansion of pathogenic T cells. Anti-CD20, a B lymphocyte-targeted

therapy, promoted B lymphocyte depletion. However, they failed to

halt b cell demise. Suppressing RAD51 with CRISPR/cas9 and

inhibitors (such as 4,4’-diisothiocyanatostilbene-2, 2’-disulfonic

acid) decreases the diabetes process by reducing diabetogenic T cell

responses via expanding CD73+ B lymphocytes that exert regulatory

activity in T1DM-susceptible nonobese diabetic (NOD) mice (14).

Soluble BAFF receptor (BAFFR)-Fc (BAFFR-Fc), a fusion protein

that fuses with the extracellular part of BAFFR to the Fc domain of

mouse IgG1, was developed by MedImmune. BAFFR-Fc decreases

T1DM procession by expanding CD73+ B lymphocytes and reduces

side effects of anti-CD20 (15), suggesting that CD73 plays a key role

in reducing side effects of B lymphocyte-targeted therapies. Indeed,

many studies have shown that CD73 plays a protective role in

diabetes. For example, AGT-5 (oral compound), a new class of

fluorescent aryl hydrocarbon receptor (AHR) ligands (FluoAHRL),

suppressed the severity of streptozotocin (STZ)-induced T1DM by

enhancing AHR and CD73 expression inmice (16). Vitamin D3 (VD,

25-(OH)D3) reduced diabetes mellitus (DM)-related cognitive

dysfunction by enhancing CD39 and CD73 expression in

streptozotocin-induced T1DM rats (17). Autoimmune regulator

(Aire)-overexpressing dendritic cells (DCs) delayed T1DM

processing by reducing CD4+ IFN-g+ T cells level and enhancing

CD73, lymphocyte activation Gene-3 (LAG-3), and folic acid

receptor 4 (FR4) expression and CD4+ T cells apoptosis in

splenocytes in STZ-T1DM mouse (18). The islet-like cell aggregates

(ICAs) decreased diabetes procession by expressing CD73 in STZ-

induced diabetic mice (19). Interleukin-2 (IL-2) therapies with anti-

IL-2 antibodies decrease the T1DM process by enhancing CD25,

CD39, and CD73 expression in regulatory T cells (Treg cells) in NOD

mice (20). Liposomes encapsulating the CD4+ peptide [BDC2.5mim,

has a high affinity for islet autoantigen chromogranin a (ChgA)] and

1a,25-dihydroxy vitamin D3 (calcitriol) suppressed diabetes

progression by activating ChgA-specific forkhead box P3 (Foxp3)+

and Foxp3- programmed cell death 1 (PD1)+ CD73+ inducible T cell

costimulator (ICOS, also named CD278)+ IL-10+ peripheral

regulatory T cells (21), suggesting that CD4+ peptide combination

with calcitriol decreased diabetes progression by enhancing CD73+

expression. Soluble CD73 (sCD73) decreased diabetic nephropathy

(13). Soluble antigen arrays (SAgAs) were able to bind more

effectively to antigen-specific T cells, such as CD73, IL-10, PD-1,

and killer cell lectin-like receptor G1 (KLRG1), alleviating disease

progression in non-obese diabetic mouse models of T1DM (22). Toll-

like receptor 9 (TLR9) deficiency and inhibitor decreases diabetes

development by reducing proinflammatory cytokines and promoting

anti-inflammatory cytokine release via enhancing CD73 expression

in T cells in NOD mice. The increase in CD73-expressing immune

cells is specific for TLR9 deficiency (23), suggesting that CD73 plays a

key role in TLR9 inhibitors in reducing diabetes development. In

summary, CD73 may be a promising target for treating diabetes.

Overexpressing CD73 with agents, such as AGT-5, Aire-

overexpressing DCs, BAFFR-Fc, CD4+ peptide, ICAs, IL-2

therapies, SAgAs, sCD73, RAD51 inhibitor, TLR9 inhibitor, and

VD decreases diabetes development (Figure 1A). However, the role

of CD73 knockdown (such as siRNA) and knockout in diabetes

is unclear.
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Many studies have shown that MSC transplantation, such as

adipose tissue-derived MSCs, bone MSCs (BMSCs), human gingiva

MSCs (GMSCs), pancreatic MSCs, human islet-MSCs (HI-MSCs),

human umbilical cord MSCs (HUMSCs), Islet MSCs, pigment

epithelial-derived factor (PEDF) gene-modified HUMSCs (PEDF-
Frontiers in Immunology 03
HUMSCs), umbilical cord (UC) MSCs (UC-MSCs), Wharton’s

jelly-derived MSCs (WJMSCs) suppressed diabetes development

(13, 16, 17, 22, 24–36). Human urine-derived stem cells (hUSCs)

and their exosomes (hUSC-Exos) also suppressed diabetes

development (37–39). Cow-derived placental stem cells (CPSCs)
FIGURE 1

The role of CD73 agents in diabetes and atherosclerosis and the lncRNAs and genes at the same chromosomal location as CD73. (A) Diabetes, (B)
atherosclerosis, (C) This information was modified from gene (NIH).
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and periosteum-derived progenitor cells (PDPCs) promoted insulin

secretion by differentiating into islet-producing cells (IPCs) (40, 41),

suggesting that CPSCs and PDPCs have the potential to treat

diabetes by differentiating IPCs. CD73 is expressed in hUSCs,

hUSC-Exos, CPSCs, and PDPCs. As mentioned earlier, CD73 is a

marker of MSCs. However, the role and mechanism of CD73 in

MSCs, hUSCs, and USC-Exos in suppressing diabetes is unclear.

Notably, MSCs, hUSCs, and USC-Exos can hydrolyze inflammatory

extracellular ATP to anti-inflammatory adenosine via expressing

CD73 and CD39 (42). In addition, GMSCs require CD39/CD73

signals to inhibit T1DM (43). GMSCs delayed the onset of diabetes

by downregulating IL-17 and IFN-g levels in CD4+ and CD8+ T

cells in spleens, pancreatic lymph nodes (pLN), and other lymph

nodes via expressing CD39 and CD73 (43). Thus, CD73 plays an

anti-inflammatory role and immunoregulatory function in MSCs

for treating diseases.
2.2 Atherosclerosis

Serum CD73 activity is upregulated in patients with

atherosclerotic burden (44). Deficiency CD73 in patients

exhibited extensive medial arterial calcification (MAC) which is

an atherosclerosis risk, suggesting that CD73 may be a biomarker of

MAC and atherosclerosis (45–47). Many studies have shown that

CD37 is an enemy of atherosclerosis. For example, deficiency CD73

caused arterial calcification in patients, suggesting that

overexpression CD73 suppressed arterial calcification (45–47). In

ECs, CD73 suppressed inflammation and thrombosis and enhanced

endothelial permeability by activating the adenosine/P1 receptor

signaling pathway, (48). ECs CD73 can reduce leukocyte adhesion

to the endothelium. Deletion of ECs connexin40 (Cx40) increases

atherosclerosis by increasing CD73-dependent leukocyte adhesion

via reducing CD73 expression (49), suggesting that ECs CD73 is an

antiatherosclerotic factor. Aspirin reduces atherosclerotic plaque

and immuno-inflammation by rebalancing Treg/Th17 cells via

enhancing CD73 expression in ApoE-/- mice (50). However,

CD37 is a friend of atherosclerosis. Suppressing CD73 with

siRNA decreased atherosclerosis and plaque formation by

reducing migration, proliferation, and foam cell transformation of

vascular smooth muscle cells (VSMCs) via reducing CyclinD1

expression and serum lipid levels in ApoE-/- mice (51). However,

the mechanism of CD73 on serum lipid levels is unclear. Inhibition

of CD73 can reduce the increase of heart rate caused by hypoxia

(52). Benzothiadiazine derivatives, the CD73 inhibitors, were

investigated for treating atherosclerosis and ischemia-reperfusion

injury (53). These results suggest that CD73 is double-sided in

atherosclerosis. ECs CD73 is an antiatherosclerotic factor, while

VSMCs CD73 is a proatherosclerotic factor. In fact, whether CD73

is a friend or foe in atherosclerosis may be age-related (Figure 1B).

In early atherosclerosis, CD73 knockout promoted plaque area in

apoE-/- mice at 12 weeks of age. However, the pattern shifts with

age. CD73 knockout did not plaque area in apoE-/- mice at 20 weeks

of age. In apoE-/- mice at 32 weeks and 52 weeks of age, CD73

knockout decreased plaque area by reducing lipolysis (54). ADO
Frontiers in Immunology 04
suppresses lipolysis, suggesting that CD73 promoted plaque

accumulation by suppressing lipid catabolism via catalyzing the

conversion of AMP to ADO with aging (54). Thus, with the increase

of age, CD73 gradually changed from inhibiting atherosclerosis to

promoting atherosclerosis.
3 The agent development in
preclinical and clinical trials by
targeting CD73

3.1 Targeting CD73

Given the important role of CD73 in diabetes mellitus and

atherosclerosis, we searched for agents that target CD73 with

AdisInsight, Bing, Chinadrugtrials, ClinicalTrials, Glgoo, ICTRP,

Pharmacodia, Pharnexcloud, Pubmed, Yaozh, and Zhihuiya.

Indeed, many agnets were developed in preclinical and clinical

trials by targeting CD73 (Table 1), including A000830 (also named

A-001190, A-001202, A-001421, AB-421) (55, 56), Adeno-associated

viral type 5 (AAV5)-CD39/CD73 (57), ABSK051 (58–60), AG-2170

(61), AK131 (also named AK123) (62), ATN-037 (also named ATG-

037, CB-708) (63–65), AP401 (67–69), APB-A2 (also named Anti-

CD73 IgG4) (66), APCP (70), BB-1709 (71), BC010 (72), BP-1200

(73, 74), BPI-472372 (75, 76), BR101 (also named Ansipastobart)

(77), BsAb CD73xEGFR (78), BMS-986179 (79), CBO421 (also

named CBO-212, CD-421) (80–83), CC-5 (84), CD39/CD73

bifunctional fusion protein (85), CD39/CD73 transgenic exosomes

and recombinant fusion protein (86, 87), CD73/PD-1 targeting DFC

(88, 89), CD73 inhibitor (BioArdis) (90), CD73 inhibitor (Arcus Bios)

(91), CD73 ASO (92), CHS-7304 (93), Compound 12f (94),

Dalutrafusp alfa (also named AEGN-1423, GS-1423) (95), DN-018

(also named DN-019, DN-020, DN-052, DN-A1) (96),

Dresbuxelimab (also named ak-119) (97), FP-1201 (also named

ATC code L03AB07, Avonex, BG9418, Rebif, FP-1201-lyo,

MR11A8, Traumakine) (98–101), 68GA-DOTA-dPNE, GB-7002

(also named GB-7002-01, GB-7002-04) (102), GI-108 (103, 104),

HB-0039 (105), HB0045 (106), HB0046 (107), HB-0052 (106),

HBM1007 (108), HLX23 (109), IBI325 (110), INCA-00186 (also

named INCA-0186) (111), IOA-237 (112), IPH5301 (113), JAB-

X1800 (also named CD73-STING iADC) (114, 115), JAB-BX102

(116), LY-3475070 (84), mAb19 (117), Mupadolimab (also named

CPI-006, CPX-006) (118–121), Oleclumab (also named MEDI9447)

(122–124), OP-5558 (125), OP-5244 (126, 152), OPN-CD73 (also

named OPN-9627) (127), ORIC-533 (also named OP-5244, OR-558)

(128–130), PBF2828 (131), PM-1015 (132), PSB-12379 (133), PSB-

18332 (134, 135), PSB-19416 (134, 135), PT199 (136), Quemliclustat

(also named AB680, A-0002396) (137–139, 152–155), S095024 (also

named Sym024) (140), SHR170008 (141), siRNA-CD73 (70), SRF-

373 (also named NZV930) (142), TRB-010 (143), Uliledlimab (also

named TJD5, TJ004309, I-Mab Biopharma) (144–146), VE-3771

(147), VE-5953 (147), X-6350 (148), ZM514 (149), ZM552 (150),

ZM553 (150), ZM557 (150), and ZS-1001 (151). However, no agents

have been approved for sale. Notably, most of these agents are used to
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TABLE 1 Agents that target CD73 in preclinical and clinical trials.

Developer Refs

Arcus Biosciences, Inc. (55, 56)

Arthrogen B. V; Academic Medical
Center/University of Amsterdam

(57)

n 03 Abbisko CTR20233817,
(58–60)

Angarus Therapeutics, Inc (61)

on 17 Akeso, Inc NCT06166888, (62)

ing on 30 Antengene Therapeutics Limited,
Merck Sharp & Dohme LLC

NCT05205109,
(63–65)

ed on 31 Aprilbio Co. Ltd (66)

Alphageneron Pharmaceuticals Inc (67–69)

The University of Texas Health
Science Center at Houston

(70)

on 05 Bliss Biopharmaceutical (Hangzhou)
Co., Ltd

NCT06241898,
CXSL2200580, (71)

Dragonboat Biopharmaceutical (72)

BrightPath Biotherapeutics (73, 74)

on 21 Betta Pharmaceuticals (75, 76)

on 21 BioRay Pharmaceutical Co., Ltd NCT06001580,
CXSL2101026,
ChiCTR2100049016,
(77)
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Name Target Introduce/Administration Diseases Status/Date

A000830 CD73
inhibitor

Small molecule inhibitor, SC Cancer, such as CRC Preclinical trials

AAV5-CD39/CD73 CD39
agonist,
CD73
agonist

AAV5 vector-mediated expression of CD39 and CD73 Inflammatory disease,
such as APSI

Preclinical trials

ABSK051 CD73
antagonist

Small molecule inhibitor. ABSK051 (IV) +- Tislelizumab Solid tumors Phase 1 (Ongoing o
January 2024)

AG-2170 CD73
inhibitor

Unknown Oncology Preclinical trials

AK131 anti-PD-1
and
CD73 BsAb

An humanized IgG1 subtype BsAb that targeting CD73 and PD-1,
AK131 alone (IV)

Advanced solid tumors Phase 1 (Recruiting
January 2024)

ATN-037 CD73
inhibitor

Small molecule inhibitor. ATN-037 (Oral) plus Keytruda (also
named Pembrolizumab, MK-3475)

Locally advanced or
metastatic solid tumors

Phase 1/1b (Recruit
April 2024)

APB-A2 CD73
inhibitor

A humanized anti-CD73 mAb Solid tumors Phase 1 (Discontinu
March 2023)

AP401 CD155
inhibitor,
CD73
inhibitor

An iPSC Bi-specific CAR NK cell targeting CD155 and CD73 Solid tumors IND (Plan on 2024

APCP CD73
inhibitor

Small molecule inhibitor Pancreatic cancer Preclinical trials

BB-1709 ADC
CD73
inhibitor

IV Locally advanced/
metastatic solid tumors

Phase 1 (Recruiting
February 2024)

BC010 CD73
inhibitor

A humanized anti-CD73 mAb Solid tumor Preclinical trials

BP-1200 CD73
inhibitor

A humanized anti-CD73 mAb Cancer Preclinical trials

BPI-472372 CD73
inhibitor

Small molecule inhibitor. BPI-472372 (Oral) Advanced solid tumors Phase 1a (Recruitin
August 2023)

BR101 CD73
inhibitor

A fully humanized anti-CD73 mAb, BR101 (IV) Advanced solid tumors Phase 1a (Recruitin
August 2023)
)
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TABLE 1 Continued

Status/Date Developer Refs

Preclinical trials University of Groningen, University
Medical Center Groningen

(78)

Phase 1/2a (Completed on 05
April 2023)

Bristol Myers Squibb Co NCT02754141, (79)

IND application (Approved by
FDA on 31 July 2024)

Cidara Therapeutics, Inc (80–83)

Preclinical trials Wenzhou Medical University (84)

Preclinical trials Beth Israel Deaconess Medical Center
and Harvard Medical School

(85)

Preclinical trials Arthrogen B. V; Academic Medical
Center/University of Amsterdam

(86, 87)

Preclinical trials Cidara Therapeutics Inc (88, 89)

Preclinical trials BioArdis LLC (90)

(Continued)
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Name Target Introduce/Administration Diseases

BsAb CD73xEGFR CD73
inhibitor,
EGFR
inhibitor

A humanized anti-CD73/EFGR BsAb Cancer

BMS-986179 CD73
inhibitor

A humanized anti-CD73 mAb, BMS-986179 alone (IV) +-
Nivolumab or +- rHuPH20

Solid cancers

CBO421 CD73
inhibitor

A first-in-class DFC that targets CD73. ,

This information was modified from Ref (80)

Solid tumors

CC-5 CD73
inhibitor
PD-
L1 inhibitor

Cancer

CD39/CD73 BFP CD39
agonist
CD73
agonist

BFP Inflammatory diseases

CD39/CD73 transgenic
exosomes and
recombinant
fusion protein

CD39
agonist
CD73
agonist

A soluble CD39/CD73 transgenic exosomes and RAIN
fusion protein

Inflammatory disease,
such as APSI

CD73/PD-1
targeting DFC

CD73
inhibitor,
PD-
1 inhibitor

Dual-acting CD73/PD-1 targeting DFC candidate Solid tumors

CD73
inhibitor (BioArdis)

CD73
inhibitor

Small molecule inhibitor Cancer
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TABLE 1 Continued

Developer Refs

Arcus Biosciences, Inc (91)

Arcus Biosciences, Inc (91)

Secarna Pharmaceuticals GmbH &
Co. KG

(92)

Coherus BioSciences, Inc (93

East China University of Science
and Technology

(94)

ibuted on 21 Gilead Sciences NCT03954704, (95)

(Continued)
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Name Target Introduce/Administration Diseases Status/Date

CD73 inhibitor
(Arcus Bios)

CD73
inhibitor

CD73: IC50, 12 nM

Cancer Preclinical trials

CD73 inhibitor
(Arcus Bios)

CD73
inhibitor

CD73: IC50, 19 nM

Cancer Preclinical trials

CD73 ASO CD73
inhibitor

Antisense oligonucleotides Cancer Preclinical trials

CHS-7304 CD73
inhibitor

Small molecule inhibitor Solid tumors Preclinical trials

Compound 12f CD73
inhibitor

CD73, IC50, 60 nM

Cancer Preclinical trials

Dalutrafusp alfa CD73
inhibitor,
TGFb
inhibitor

An anti-CD73-TGFb-Trap Bifunctional Antibody. Dalutrafusp
alfa (IV) +- mFOLFOX6

Advanced solid tumors Phase 1 (Discont
November 2023)
r
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TABLE 1 Continued

Developer Refs

g on 13 Bruno Bockorny; Agenus Inc;
Dana-Farber Cancer Institute

NCT05632328

g on 12 Agenus Inc; Weill Medical College of
Cornell University

NCT06300463

Shanghai De Novo Pharmatech (96)

d on 25 Akeso Biopharma, Tianjin Medical
University Cancer Insitute &
Hospital, Shanghai
Zhongshan Hospital

NCT05173792

iting on 30 Akeso Biopharma, Tianjin Medical
University Cancer Insitute & Hospital

NCT05559541

ot recruiting
3)

Akeso Biopharma NCT04572152

iting on 20 Akeso Biopharma; Peking Union
Medical College Hospital

NCT05689853

d on 20 Akesobio Australia Pty Ltd NCT04516564, (97)

ting on 09 Akeso Biopharma; Guangdong
Provincial People’s Hospital

NCT05636267

et recruiting Akeso Biopharma, Cancer Hospital
Affiliated to Harbin
Medical University

NCT05846867

tinued on 12 Faron Pharmaceuticals Ltd NCT05936229

ued on 14 Faron Pharmaceuticals Ltd NCT03119701, (98)

(Continued)
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Name Target Introduce/Administration Diseases Status/Date

Dalutrafusp alfa CD73
inhibitor,
TGFb
inhibitor

Dalutrafusp alfa (IV) + Botensilimab +- Chemotherapy
(gemcitabine and nab-paclitaxel)

Advanced
pancreatic cancer

Phase 2 (Recruitin
August 2024)

Dalutrafusp alfa CD73
inhibitor,
TGFb
inhibitor

Dalutrafusp alfa (IV) + Botensilimab + Balstilimab CRC liver metastases Phase 2 (Recruitin
April 2024)

DN-018 CD73
inhibitor,
TLR8
agonist

Small molecule inhibitor Cancer Preclinical trials

Dresbuxelimab CD73
inhibitor

A humanized anti-CD73 mAb. Dresbuxelimab (IV) Advanced or metastatic
solid tumors

Phase 1 (Complet
April 2024)

Dresbuxelimab CD73
inhibitor

Dresbuxelimab (IV) plus AK104 (an anti-PD-1 and CTLA-4
bispecific antibody)

Advanced solid tumors Phase 1b/2 (Recru
December 2022)

Dresbuxelimab CD73
inhibitor

Dresbuxelimab (IV) + AK104 Advanced or metastatic
solid tumors

Phase 1 (Active, n
on 06 January 202

Dresbuxelimab CD73
inhibitor

Dresbuxelimab (IV) + AK112 (an anti-VEGF and PD-1
bispecific antibody)

Advanced solid tumors Phase 1b//2 (Recr
April 2023)

Dresbuxelimab CD73
inhibitor

Dresbuxelimab alone (IV) COVID-19 Phase 1 (Complet
April 2023)

Dresbuxelimab CD73
inhibitor

Dresbuxelimab (IV) + AK112 +- Pemetrexed + Carboplatin NSCLC Phase 1//2 (Recru
March 2023)

Dresbuxelimab CD73
inhibitor

Dresbuxelimab (IV) + AK112 +- mFOLFOX6 or +- FOLFIRI Advanced pMMR/
MSS CRC

Phase 1b//2 (Not
on 06 May 2023)

FP-1201 CD73
agonist,
IFNb-
1a agonist

A recombinant human IFN b-1a. FP-1201 (IV) Prevent toxicities after
CD19-directed CAR T-
Cell therapy

Phase 1/2 (Discon
July 2024)

FP-1201 CD73
agonist,
IFNb-
1a agonist

FP-1201 (IV) Prevention of multi-organ
failure in patients after
open surgery for RAAA

Phase 2 (Disconti
January 2021)
e

u

e

i

y

n
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TABLE 1 Continued

ate Developer Refs

ompleted on 27 Faron Pharmaceuticals Ltd NCT00789685,
(99, 100)

continued due to
30 March 2020)

Faron Pharmaceuticals Ltd NCT02622724, (101)

continued due to
of the epidemic
023)

Faron Pharmaceuticals Ltd NCT04860518

t yet recruiting on
)

Peking Union Medical
College Hospital

ChiCTR2400083919

ials Biotheus; Shanghai Genechem (102)

ials GI Innovation, Inc (103)

tion (Plan GI Innovation, Inc (104)

ials (Discontinued
ber 2023)

Huabo Biopharm (Shanghai) Co., Ltd (105)

ruiting on 23
3)

Shanghai Huaota Biopharmaceutical
Co., Ltd; Gabrail Cancer Center
Research;
Dana-Farber Cancer Institute;
M.D. Anderson Cancer Center

NCT06056323, (106)

proved on 10 Shanghai Huaota Biopharmaceutical
Co., Ltd

(107)

ecruiting on 04
024)

Shanghai Huaota Biopharmaceutical
Co., Ltd

CTR20242618, (106)

proved on 19
)

Harbor BioMed (108)

(Continued)
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Name Target Introduce/Administration Diseases Status/D

FP-1201 CD73
agonist,
IFNb-
1a agonist

FP-1201 (IV) ALI and ARDS Phase 1/2 (C
May 2015)

FP-1201 CD73
agonist,
IFNb-
1a agonist

FP-1201 (IV) ARDS Phase 3 (Di
inefficacy on

FP-1201 CD73
agonist,
IFNb-
1a agonist

FP-1201 (IV)
VS Dexamethasone

COVID-19 Phase 2 (Di
the decrease
on 21 July 2

68GA-DOTA-dPNE CD73
inhibitor

A 68GA-labeled CD73 targeting probe Breast cancer (Diagnosis) Phase 1 (No
10 May 202

GB-7002 CD73
inhibitor

A humanized anti-CD73 mAb GC Preclinical t

GI-108 CD73
inhibitor,
IL-
2RA
inhibitor

A BFP that targets CD73 and IL-2RA Cancer Preclinical t

GI-108 Cancer IND applica
on 2024)

HB-0039 CD73
inhibitor

Drug conjugates Solid tumors Preclinical t
on 07 Nove

HB0045 CD73
inhibitor

A humanized anti-CD73 mAb. HB0045 alone (IV) Advanced solid tumors Phase 1 (Re
October 202

HB0046 CD39
inhibitor,
CD73
inhibitor

A humanized anti-CD39/CD73 BsAb Cancer Phase 1 (Ap
July 2024)

HB-0052 CD73
inhibitor

ADC Advanced solid tumors Phase 1/2 (R
September 2

HBM1007 CD73
inhibitor

A humanized Anti-CD73 mAb Solid tumors Phase 1 (Ap
January 202
s

s

4

r

r

r
m

c

3
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Developer Refs

due to
design

Shanghai Henlius Biotech NCT04797468, (109)

n 18 Innovent Biologics (Suzhou) Co. Ltd NCT05119998, (110)

tus on Shandong Cancer Hospital
and Institute

NCT05246995

on 30 Hunan Province Tumor Hospital,
Xiangya Hospital of Central
South University

NCT06081907

cruiting Incyte Corporation NCT04989387

on 02 Incyte Corporation (111)

iOnctura SA (112)

20 Institut Paoli-Calmettes NCT05143970, (113)

ly 2023) Jacobio Pharmaceuticals Group
Co., Ltd

(114)

Jacobio Pharmaceuticals Group
Co., Ltd

(115)

(Continued)
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Name Target Introduce/Administration Diseases Status/Date

HLX23 CD73
inhibitor

A fully humanized recombinant anti-CD73 mAb. HLX23 (IV) Advanced or metastatic
solid tumors

Phase 1 (Discontinued
reevaluating the study
on 17 January 2023)

IBI325 CD73
inhibitor

A fully humanized anti-CD73 mAb. IBI325 (IV) +- sintilimab Advanced solid tumors Phase 1 (Completed o
August 2023)

IBI325 CD73
inhibitor

A humanized anti-CD73 mAb. IBI325 (IV) +- sintilimab Advanced solid tumors Phase 1 (Unknown st
18 February 2022)

IBI325 CD73
inhibitor

IBI325 (IV) or +- IBI363 Advanced solid tumors Phase 1/2 (Recruiting
May 20240)

INCA-00186 CD73
inhibitor

A humanized anti-CD73 mAb. INCA-00186 (IV) +- retifanlimab
+- INCB106385

Advanced solid tumors Phase 1 (Active, not r
on 06 June 2024)

INCA-00186 CD73
inhibitor

Gastrointestinal cancer;
solid tumors; SCC

Phase 1 (Discontinued
May 2023)

IOA-237 CD73
inhibitor

A humanized anti-CD73 mAb Solid tumors Preclinical trials

IPH5301 CD73
inhibitor

A humanized anti-CD73 mAb. IPH5301 (IV) +- paclitaxel
and trastuzumab

Advanced solid tumors Phase 1 (Recruiting o
March 2024)

JAB-BX100 CD73
inhibitor,
STING
inhibitor

A humanized anti-CD73 mAb Cancer Phase 2 (Plan on 26 J

JAB-X1800 CD73
inhibitor,
STING
agonist

A conjugating potent STING agonist to CD73 mAb

This information was modified from Ref (115)

Cancer Preclinical trials
a

e

n

u
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Developer Refs

on 22 Jacobio Pharmaceuticals Co., Ltd. NCT05174585, (116)

n 05 Eli Lilly & Co; Merck Sharp &
Dohme LLC

NCT04148937, (84)

Boehringer Ingelheim GmbH (117)

n 21 Corvus Pharmaceuticals, Inc. NCT03454451,
(118–120)

n 21 Corvus Pharmaceuticals, Inc. NCT04464395, (121)

on 21 Corvus Pharmaceuticals, Inc. NCT04734873

n 08 AstraZeneca NCT03736473

n 11 MedImmune LLC NCT02503774,
(122, 123)

n 13 AstraZeneca; Dana-Farber
Cancer Institute

NCT03773666

AstraZeneca; Jules Bordet Institute NCT03616886

t
st 2024)

MedImmune LLC NCT03381274

n 11 Nordic Society of Gynaecological
Oncology - Clinical Trials Unit;
GCIG;
ENGOT

NCT03267589

on 17 AstraZeneca; University Health
Network (Toronto); Princess
Margaret Cancer Centre

NCT04262375

(Continued)
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Name Target Introduce/Administration Diseases Status/Date

JAB-BX102 CD73
inhibitor

A humanized anti-CD73 mAb. JAB-BX102 (IV) +-
pembrolizumab (anti-PD-1 mAb)

Advanced solid tumors Phase 1/2a (Recruiting
March 2024)

LY-3475070 CD73
inhibitor

PubChem CID: 152262911.
LY-3475070 (Oral) +- pembrolizumab

Advanced cancer Phase 1 (Completed o
April 2024)

mAb19 CD73
inhibitor

A humanized anti-CD73 mAb Solid tumors Preclinical trials

Mupadolimab Anti-
CD73 mAb

A humanized anti-CD73 mAb. Mupadolimab (IV) +- ciforadenant
or pembrolizumab

Advanced cancer Phase 1 (Completed o
December 2023)

Mupadolimab Anti-
CD73 mAb

Mupadolimab (IV) +- SOC COVID-19 Phase 1 (Completed o
July 2021)

Mupadolimab Anti-
CD73 mAb

Mupadolimab (IV) +- SOC COVID-19 Phase 3 (Discontinued
September 2022)

Oleclumab Anti-
CD73 mAb

Anti-CD73 mAb. Oleclumab (IV) Advanced
solid malignancies

Phase 1 (Completed o
July 2019)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 (also named Durvalumab, IMFINZI,
PD-L1 inhibitor)

Advanced solid tumors Phase 1 (Completed o
July 2023)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) +- MEDI4736 MIBC Phase 1 (Completed o
September 2022)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + Paclitaxel + Carboplatin + Durvalumab Locally recurrent
inoperable or
metastatic TNBC

Phase 1/2 (Active, not
recruiting on 21
September 2023)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + osimertinib or AZD4635 mPDAC Phase 1b/2 (Active, no
recruiting on 20 Augu

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) +- MEDI4736 Relapsed OC Phase 2 (Completed o
September 2023)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 Multi-cancer Phase 2 (Discontinued
November 2020)
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e Developer Refs

, not recruiting
)

Assistance Publique Hopitaux
De Marseille

NCT03833440

ting on 08 University Health Network (Toronto) NCT06060405

tinued due to

)

University Health Network (Toronto);
Princess Margaret Cancer Centre

NCT04262388

ting on 28 AstraZeneca; Gustave Roussy, Cancer
Campus, Grand Paris

NCT05221840

leted on 16 AstraZeneca NCT04089553

ting on 03 M.D. Anderson Cancer Center;
National Cancer Institute (NCI)

NCT04668300

, not recruiting
)

Jules Bordet Institute; AstraZeneca NCT03875573

ting on 06 M.D. Anderson Cancer Center NCT04940286

leted on 24 MedImmune LLC NCT03794544

e, not
July 2024)

AstraZeneca; UCSD Morres Cancer
Center; National Taiwan
University Hospital

NCT03819465

tinued due to
tandard of
ember 2020)

MedImmune LLC NCT04145193

continued due
fficacy on 17

MedImmune LLC NCT04068610

ve, not
August 2024)

AstraZeneca, Barts Cancer Institute NCT03742102

ting on 31 National Cancer Institute (NCI);
NRG Oncology

NCT03801902

ting on 28 AstraZeneca; Parexel; MD Anderson
Cancer Center Houston

NCT05061550

(Continued)
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Name Target Introduce/Administration Diseases Status/Dat

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 Advanced NSCLC with
PD-1 inhibitor resistance

Phase 2 (Active
on 03 May 202

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 Resectable PDAC Phase 2 (Recru
January 2024)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 HNSCC, PDAC,
NSCLC

Phase 2 (Discon
inefficacy on 17
November 2020

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 Stage III
unresectable NSCLC

Phase 3 (Recru
August 2024)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + AZD4635 PSa Phase 2 (Comp
April 2024)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 Recurrent, refractory, or
metastatic sarcoma

Phase 2 (Recru
July 2024)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 + Stereotactic Body Radiotherapy Luminal B BC Phase 2 (Active
on 17 June 202

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 + nab-paclitaxel + gemcitabine Resectable/borderline
resectable primary PC

Phase 2 (Recru
May 2024)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 Resectable NSCLC Phase 2 (Comp
February 2022)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 +- chemotherapy NSCLC Phase 1b (Activ
recruiting on 16

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 + mFOLFOX6 MSS-CRC Phase 2 (Discon
changes in the
care on 21 Sept

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + FOLFOX + Bevacizumab + Durvalumab MSS-CRC Phase 1b/2 (Dis
to no superior
February 2022)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 + paclitaxel Metastatic TNBC Phase 1/2 (Acti
recruiting on 14

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 + standard RT NSCLC Phase 1 (Recru
July 2024)

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 + Platinum doublet
chemotherapy (CTX)

NSCLC Phase 2 (Recru
August 2024)
4

i

i

i

4

i

s

e

i

i
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TABLE 1 Continued

us/Date Developer Refs

2 (Active, not recruiting
June 2024)

AstraZeneca; The University of Texas
MD Anderson Cancer Center

NCT03334617

2 (Completed on 12
ber 2023)

MedImmune LLC NCT03822351, (124)

2 (Completed on 26
023)

AstraZeneca; SCRI Development
Innovations, LLC

NCT02740985

nical trials Oric Pharmaceuticals, Inc (125)

nical trials Oric Pharmaceuticals, Inc (126)

nical trials Opna Bio SA (127)

1b (May comlpete
24)

Oric Pharmaceuticals, Inc NCT05227144,
(128, 129)

nical trials (Discontinued
May 2024)

Oric Pharmaceuticals, Inc (130)

nical trials (Discontinued
May 2019)

Palobiofarma SL (131)

1 (Recruiting on 18
023)

Biotheus Inc NCT05950815, (132)

(Continued)
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Name Target Introduce/Administration Diseases Stat

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 + AZD4635 NSCLC Phase
on 12

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 NSCLC Phase
Dece

Oleclumab Anti-
CD73 mAb

Oleclumab (IV) + MEDI4736 Advanced
solid malignancies

Phase
May

OP-5558 CD73
inhibitor

Small molecule inhibitor that is an analog of ORIC-533 MM Precl

OP-5244 CD73
inhibitor

Oral

Cancer, such as PC Precl

OPN-CD73 CD73
inhibitor

Small molecule inhibitor, oral Cancer Precl

ORIC-533 CD73
inhibitor

Oral

Relapsed or
refractory MM

Phase
on 20

ORIC-533 Solid tumors Precl
on 11

PBF2828 CD39
inhibitor,
CD73
inhibitor

A humanized anti-CD39/CD73 BsAb Cancer Precl
on 14

PM-1015 CD73
inhibitor

A humanized anti-CD73 mAb Advanced solid tumors Phase
July 2
m

2

i

i

i

i

i
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Developer Refs

University of Bonn (133)

University of Bonn (134, 135)

University of Bonn (134, 135)

on 13 Phanes Therapeutics, Inc NCT05431270, (136)

on 2024- Arcus Biosciences, Inc NCT04575311

on 2024- Arcus Biosciences, Inc NCT03677973, (137)

on 2024- Arcus Biosciences, Inc NCT04104672

on 2024- Big Ten Cancer Research
Consortium; Arcus Biosciences, Inc;
Gilead Sciences;
University of Wisconsin

NCT06048133

not
9-20)

Arcus Biosciences, Inc;
Gilead Sciences

NCT04660812

(Continued)
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Name Target Introduce/Administration Diseases Status/Date

PSB-12379 CD73
inhibitor

Cancer Preclinical trials

PSB-18332 CD73
inhibitor

Cancer Preclinical trials

PSB-19416 CD73
inhibitor

Cancer Preclinical trials

PT199 CD73
inhibitor

A humanized anti-CD73 mAb. PT199 (IV) +- tislelizumab (PD-
1 inhibitor)

Advanced solid tumors Phase 1 (Recruiting
June 2024)

Quemliclustat CD73
inhibitor

Quemliclustat (Oral)

Healthy volunteers Phase 1 (Completed
05-24)

Quemliclustat CD73
inhibitor

Quemliclustat (IV) Healthy volunteers Phase 1 (Completed
05-24)

Quemliclustat CD73
inhibitor

Quemliclustat (IV) +-Zimberelimab (also named AB122, a fully
human anti-PD-1 mAb) + nab-paclitaxel(NP) &
gemcitabine (Gem)

Advanced PCa Phase 1 (Recruiting
09-19)

Quemliclustat CD73
inhibitor

Quemliclustat (IV) + zimberelimab + + gemcitabine + cisplatin Advanced BTCs Phase 2 (Recruiting
09-19)

Quemliclustat CD73
inhibitor

Quemliclustat (IV) + Etrumadent (also named AB928, a dual
A2aR/A2bR antagonist) + Zimberelimab

Metastatic CRC Phase 1b/2 (Active,
recruiting on 2024-
0
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Developer Refs

2024- Columbia University; Arcus
Biosciences, Inc

NCT06048484

2024- Columbia University; Arcus
Biosciences, Inc

NCT05915442

on Gilead Sciences; Arcus
Biosciences, Inc

NCT04381832

2024- Gilead Sciences; Arcus
Biosciences, Inc

NCT05676931

2024- Gilead Sciences; Arcus
Biosciences, Inc

NCT05329766

d on Jonsson Comprehensive Cancer
Center; Arcus Biosciences, Inc

NCT05688215

024) Arcus Biosciences, Inc (138, 139)

Arcus Biosciences; Gilead Sciences;
UCLAs Jonsson Comprehensive
Cancer Center

(139)

on 14 Servier Bio-Innovation LLC NCT06162572

cruiting Symphogen A/S NCT04672434, (140)

Eternity Bioscience, Inc; Shanghai
Hengrui Pharmaceutical Co. Ltd

(141)

Universidade Federal de Ciências da
Saúde de Porto Alegre (UFCSPA)

(70)

ue to Surface Oncology, Inc (Acquired by
Coherus BioSciences);
Novartis Pharmaceuticals

NCT04237649, (142)

(Continued)
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Name Target Introduce/Administration Diseases Status/Date

Quemliclustat CD73
inhibitor

Quemliclustat (IV) + Stereotactic body radiotherapy (SBRT) +
Zimberelimab +
Etrumadenant

Localized PDAC Phase 2 (Recruiting on
02-28)

Quemliclustat CD73
inhibitor

Quemliclustat (IV) + Stereotactic body radiotherapy (SBRT) +
Zimberelimab +
Etrumadenant + Modified FOLFIRINOX

HSOPC Phase 2 (Recruiting on
05-07)

Quemliclustat CD73
inhibitor

Quemliclustat (IV) +- Zimberelimab +
Etrumadenant

mCRPC Phase 1b/2 (Complete
2024-09-19)

Quemliclustat CD73
inhibitor

Quemliclustat (IV) + Zimberelimab +- Docetaxel or +-
Platinum Doublet Chemotherapy +-Domvanalimab

Advanced NSCLC Phase 2 (Recruiting on
09-20)

Quemliclustat CD73
inhibitor

Quemliclustat (IV) +Zimberelimab Advanced UGTM Phase 2 (Recruiting on
09-19)

Quemliclustat CD73
inhibitor

Quemliclustat (IV) + Zimberelimab +
Chemotherapy (Fluorouracil, Irinotecan, Leucovorin, Leucovorin
Calcium, and Oxaliplatin)

Borderline resectable and
locally advanced
pancreatic
adenocarcinoma

Phase 1/2 (Discontinu
2024-02-01)

Quemliclustat CD73
inhibitor

Quemliclustat (IV) +- Chemotherapy mPDAC Phase 3 (Planned on 2

Quemliclustat CD73
inhibitor

PCa Discontinued

S095024 CD73
inhibitor

A humanized anti-CD73 mAb. S095024 (IV) + cemiplimab Advanced NSCLC Phase 1b/2 (Recruiting
August 2024)

S095024 CD73
inhibitor

S095024 (IV) +- Sym021 (Anti-PD-1) Advanced solid
tumor malignancies

Phase 1 (Active, not r
on 02 May 2024)

SHR170008 CD73
inhibitor

Cancer Preclinical trials

siRNA-CD73 CD73
inhibitor

CD73 siRNA Cancer Preclinical trials

SRF-373 CD73
inhibitor

A humanized anti-CD73 mAb. SRF-373 (IV) + KAZ954 Advanced solid tumors Phase 1 (Terminated d
Business reasons on 1
July 2024)
d

e

e

2
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us/Date Developer Refs

nical trials Trican Biotechnology (143)

1 (Unknown status on
ril 2022)

Tracon Pharmaceuticals Inc NCT03835949, (144)

1 (No longer available
April 2023)
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treat cancer. Whether CD73 as a target for treating atherosclerosis

and diabetes is worth developing remains to be investigated. Notably,

CD73 may be a delivery target for atherosclerotic plaques. As

mentioned earlier, CD73 is a specific marker of MSC. Many studies

have shown that umbilical cord (UC) MSC transplantation

suppressed atherosclerosis development. However, MSCs have

limited homing ability to atherosclerotic plaque sites. Integrin beta

3 (ITGB3)-modified MSCs successfully retained CD73 expression

and enhanced the plaque-homing ability of MSCs, suggesting that

ITGB3 is a good material for MSCs to deliver to plaques (7). CD73

combination with ITGB3 may be worth developing as the delivery

target for atherosclerotic plaques.
3.2 Targeting CD73 antisense RNA

According to the gene (NIH), CD73 was encoded by NT5E.

There are multiple long noncoding antisense RNAs (lncRNAs) and

genes in the same region of NT5E. The same position of NT5E in

human includes lncRNAs and genes in the same direction

(inlcuding LOC121132697, LOC127406705, LOC127406706,

LOC127406707, LOC127406708, LOC127406709, LOC129661796,

LOC129996774, LOC129996775, LOC129996776, LOC129996777,

and LOC129996778) and those in the opposite direction (including

DUTP5, SNX14, SYNCRIP, and TPT1P6) (Figure 1C). The NT5E

in house mouse in the same direction includes LOC131376145,

LOC131376146, LOC132440797, LOC132440798, LOC132440799,

and Gm10163, while the opposite direction includes miR12205,

SNX14, SYNCRIP, and Gm5066. The norway rat in the same

direction includes Gabarapl3 and LOC134480214, while the

opposite direction includes Rps15-ps11, SNX14, and SYNCRIP.

Notably, the DNA region of NT5E in humans contains both

LOC129996774 and LOC129996775. The same position of NT5E

in human, house mouse, and norway rat includes SNX14 and

SYNCRIP. Targeting LOC129996774, LOC129996775 SNX14,

and SYNCRIP may be a novel agent development strategy by

regulating CD73 expression and immune homeostasis. However,

the role of LOC129996774, LOC129996775, SNX14, and SYNCRIP

on CD73 is unclear. In addition, the DNA region of NT5E in house

mouse and norway rat did not contain LOC129996774 and

LOC129996775. Notably, lncRNA NT5E (lncNT5E) was located

on human chromosome 6q14.3. LncNT5E promotes pancreatic

cancer (PC) development and may be a poor prognosis

b i oma r k e r o f PC ( 1 5 6 ) . C i r cNT5E ( a l s o n amed

hsa_circ_0077232), a novel circRNA derived from NT5E,

promoted the development of multiple tumors, including bladder

cancer (157), glioblastoma (GBM) (158), and non-small cell lung

cancer (NSCLC) (159). CircNT5E promoted NT5E expression in

U87 and U251 cells (158). Targeting CD73 with lncNT5E and

circNT5E, specifically, circNT5E, may be a novel strategy for agent

development. However, the role of lncRNA NT5E on NT5E is

unclear. CircNT5E did not change NT5E expression in A549 cells

(159). Research on lncNT5E and circNT5E is also scarce, with only

four references in PubMed. More research is needed to confirm the

feasibility of lncNT5E and circNT5E development.
Frontiers in Immunology 18
4 Summary

Serum CD73 is a potential biomarker of diabetes and

atherosclerosis. However, the selection of biomarkers should

consider disease status, predisease status, or prognosis and should

be more sensitive, specific, and easier to detect than existing markers.

The upregulation of CD73 with agents, including AGT-5, Aire-

overexpressing DCs, Aspirin, BAFFR-Fc, CD4+ peptide, ICAs, IL-2

therapies, SAgAs, sCD73, stem cells, RAD51 inhibitor, TLR9

inhibitor, and VD, decreased the development of diabetes and

atherosclerosis in preclinical trials. However, the downregulation of

CD73 with agents, including benzothiadiazine derivatives and CD73

siRNA, decreased atherosclerosis. ECs CD73 is an antiatherosclerotic

factor, while VSMCs CD73 is a proatherosclerotic factor, suggesting

that the role of CD73 in atherosclerosis may depend on its

localization. However, CD73 may change from anti-atherosclerosis

to pro-atherosclerosis with age. More studies were needed to confirm

the role of CD73 in atherosclerosis. In addition, CD73 has a

cardioprotective function in heart failure (HF) and myocardial

infarction (MI). CD73 has a protective effect on the liver and

kidney during ischemia-reperfusion injury (IR/I). The function of

CD73 in multiple organ systems and cell types is reviewed by Minor

et al. (160). Notably, many agents, including ABSK051, AK131, ATN-

037, AP401, APB-A2, BB-1709, BPI-472372, BR101, BMS-986179,

CBO421, Dalutrafusp alfa, Dresbuxelimab, FP-1201, 68GA-DOTA-

dPNE, GI-108, HB0045, HB0046, HB-0052, HBM1007, HLX23,

IBI325, INCA-00186, IPH5301, JAB-BX100, JAB-BX102, LY-

3475070, Mupadolimab, Oleclumab, ORIC-533, PM-1015, PT199,

Quemliclustat, S095024, SRF-373, and Uliledlimab, was investigated

in clinical trials. However, most of these agents were CD73 inhibitors

and were used to treat acute lung injury (ALI), acute respiratory

distress syndrome (ARDS), cancer, and COVID-19. Only FP-1201

was a CD73 agonist and was investigated in phase 1/2/3 clinical trials.

However, the further development of FP-201 was discontinued.

CD39/CD73 BFP and recombinant fusion protein CD39/CD73

transgenic exosomes, the CD73 agonist were investigated for the

treatment of inflammatory disease. However, more studies are

needed to confirm whether clinical trials are warranted. Whether

CD73 agonists are worth developing remains to be seen. In addition,

many lncRNAs, circRNAs, and genes are located at the same

chromosomal location as CD73. In particular, circNT5E promoted

CD73 expression. circNT5E may be a promising target for agent

development. However, circRNAs usually have many target genes, so

how to reduce off-target effects also needs more research.

In summary, CD73 is a potential biomarker of diabetes and

atherosclerosis. Targeting CD73 could improve the success rate of

drug development. As research continues and technology advances,

we believe that new agents will be developed to combat diseases.
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