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Background: An increasing body of evidence indicates that dysregulation of

liquid-liquid phase separation (LLPS) in cellular processes is implicated in the

development of diverse tumors. Nevertheless, the association between LLPS and

the prognosis, as well as the tumor immune microenvironment, in individuals

with colon cancer remains poorly understood.

Methods:We conducted a comprehensive evaluation of the LLPS cluster in 1010

colon cancer samples from the TCGA and GEO databases, utilizing the

expression profiles of LLPS-related prognostic differentially expressed genes

(DEGs). Subsequently, a LLPS-related gene signature was constructed to

calculate the LLPS-related risk score (LRRS) for each individual patient.

Results: Two LLPS subtypes were identified. Substantial variations were observed

between the two LLPS subtypes in terms of prognosis, pathway activity,

clinicopathological characteristics, and immune characteristics. Patients with

high LRRS exhibited worse prognosis and poorer response to immunotherapy.

LRRS was found to be correlated with the clinicopathological characteristics,

genomic alterations, and the potential response to immune checkpoint inhibitors

therapy of colon cancer patients. Additionally, the biological function of a key

gene POU4F1 was verified in vitro.

Conclusions: This study highlights the crucial role of LLPS in colon cancer, LRRS

can be used to predict the prognosis of colon cancer patients and aid in the

identification of more effective immunotherapy strategies.
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1 Introduction

Colorectal cancer ranks third for cancer incidence and second

for cancer mortality globally (1). While advancements in surgery,

chemotherapy, and immunotherapy have extended patient survival,

the challenge of recurrence and metastasis persists (2).

Consequently, there is an urgent necessity to continuously

develop novel prognostic models for precise risk stratification and

enhance treatment efficacy.

In addition to membrane-bound organelles, such as

mitochondria, nucleus, and endoplasmic reticulum, cells also

contain a substantial quantity of liquid-like membraneless

organelles that function to compartmentalize proteins and nucleic

acids, enabling the performance of specialized biological processes

(3, 4). The formation of these membraneless organelles relies on

liquid-liquid phase separation (LLPS), which allows for swift

exchange of components with the adjacent cellular matrix or

other organelles due to the absence of membranes, thereby

contributing to the maintenance of a relatively stable intracellular

environment (5, 6).

The intricate process of membraneless organelle formation

involves the coordination of scaffolds, regulators, and clients (7, 8).

Initially, scaffolds establish the structural framework, followed by the

involvement of clients, while regulators play a crucial role in

maintaining the proper functioning of membraneless organelles.

The detrimental effects of aberrant LLPS exhibited by proteins such

as TDP-43, FUS, and Tau in neurodegenerative diseases have been

extensively validated (9–12). Recent studies have also highlighted the

significant role of LLPS in the onset and progression of diverse

cancers (13–15). For instance, the transcription co-activators YAP

and TAZ regulate the transcriptional process during tumor

advancement through LLPS. Pathological fusion of genes leads to

aberrant occurrences or pathological loss of LLPS, thereby promoting

tumor progression (16, 17).

In light of these findings, this study aims to collect gene

expression data and clinical information from the TCGA-COAD

and GEO cohorts, with the objective of constructing an innovative

prognostic model based on LLPS gene expression patterns of these

colon cancer patients. Ultimately, the colon cancer patients were

divided into two LLPS subtypes exhibiting distinct prognosis,

cl inicopathological characteristics and tumor immune

microenvironments. This study, for the first time, established a

LLPS-related gene signature in colon cancer to quantify the LLPS

levels in individual patients. This novel model holds promise for

facilitating personalized prognosis prediction and better treatment

choices for colon cancer patients.
2 Materials and methods

2.1 Overall flowchart

The overall flowchart of this study was shown in Figure 1.

Firstly, we screened out the differentially expressed genes (DEGs)
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between tumor and normal tissues in the TCGA-COAD cohort,

followed by intersecting with LLPS-related genes obtained from

DrLLPS database. Then, prognostic LLPS-related DEGs were

identified by univariate Cox regression. Based on the expression

profiles of these genes, unsupervised clustering analysis was

performed to identify different LLPS patterns in colon cancer

patients. Subsequently, we investigated the heterogeneity of two

LLPS subtypes. In addition, the Least Absolute Shrinkage Selection

Operator (LASSO) Cox regression is used to construct LLPS-related

gene signature to calculate the LRRS. The robustness of signature is

evaluated by multiple dimensions.
2.2 Datasets and preprocessing

RNA sequencing gene expression profile (including count and

TPM value), somatic mutation and clinical information of TCGA-

COAD cohort were downloaded from the Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/). The count value

was used to identify the DEGs between tumor and normal tissues

via “limma” R package (18). The normalized series matrix file of

GSE39582 was directly downloaded from GEO database (https://

www.ncbi.nlm.nih.gov/geo/) (19). The “ComBat” function of the

“sva” R package was used to correct the batch effects of non-

biological technical biases of TCGA-COAD TPM values and

GSE39582 expression data. Patients without survival data were

excluded from further analyses (20). Following the exclusion of

normal tissue samples and data lacking overall survival (OS)

information, the subsequent analysis was conducted on 448

samples from the TCGA-COAD cohort and 562 samples from

the GSE39582 cohort. Data were analyzed with R (version 4.1.0).
2.3 Source of LLPS-related gene data

A total of 4494 LLPS-related genes, of which 90 were scaffolds

(2.00%), 487 were regulators (10.84%), and 3917 were clients

(87.16%) (Supplementary Table S1) in Homo sapiens involving

36 condensates were obtained from the DrLLPS database (http://

llps.biocuckoo.cn/), which is a comprehensive database containing

437887 LLPS related proteins from 164 eukaryotes (21).
2.4 Unsupervised clustering identification
of LLPS subtypes of colon cancer patients

Firstly, the empirical Bayesian method of “limma” R package

was used to identify DEGs between tumor and normal tissues in the

TCGA-COAD cohort based on the screening criteria of P<0.05 and

|log2FC|>1 (22). Then, intersect with 4494 LLPS-related genes,

followed by univariate Cox regression analysis. A total of 253

prognostic LLPS-related DEGs were identified. Based on the

expression of 253 prognostic LLPS-related DEGs mentioned

above, unsupervised clustering analysis was performed using the
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“ConsensuClusterPlus” package to identify different subtypes of

LLPS in colon cancer patients (23).
2.5 Gene set variation analysis

GSVA is a non-parametric, unsupervised method for estimating

variation of gene set enrichment through the samples of an

expression data set (24). To investigate the differences in Kyoto

Encyclopedia of Genes and Genomes (KEGG) signaling pathways

among different LLPS subtypes, we conducted GSVA enrichment

analysis using the “GSVA” R package (24). The gene set “c2. cp.

kegg. v2023.1. Hs. symbols” was download from the MSigDB

database (https://www.gsea-msigdb.org/gsea/msigdb). Adjusted P-

value less than 0.05 is considered statistically significant.
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2.6 Functional enrichment

Gene Ontology (GO) annotates genes to three categories

including biological processes, molecular functions, and cellular

components (25). GO enrichment analysis was performed using the

“enrichGO” function of the “clusterProfiler” R package (26).
2.7 Evaluation of immune cell infiltration
and immune function

Single Sample Gene Set Enrichment Analysis (ssGSEA), which

is an extension of Gene Set Enrichment Analysis (GSEA), is used to

assess the relative abundance of various immune cell infiltrations

and immune functions in patients with colon cancer. Two gene sets,
FIGURE 1

The overall flow diagram of this study.
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containing 23 and 29 types of immune cell markers respectively

(Supplementary Tables S2, S3), are employed to evaluate the tumor

microenvironment and immune functions of different LLPS

subtypes in colon cancer (27, 28). The immune scores, stromal

scores, ESTIMATE scores, and tumor purity of colon cancer

patients was calculated by the “estimate” R package (29). The

xCELL, TIMER, quanTIseq, EPIC, ConsensusTME, and ABIS

methods from the “immunedeconv” R package are utilized to

evaluate the correlation between the LRRS and immune cell

infiltration (30). Expression levels of 45 immune checkpoint-

related genes were analyzed between LLPS clusters (31).
2.8 Prediction of immune checkpoint
inhibitor therapy response

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm (http://tide.dfci.harvard.edu/) was used to evaluate the

tumor immune scape potential of colon cancer patients from their

expression profiles (32, 33). Patients with lower TIDE scores was

more likely to show stronger responses to immune therapy. The

immunophenotypic score (IPS) data was download from The

Cancer Immunome Atlas (TCIA) database (https://tcia.at/home).

Then compared the IPS between different LLPS clusters to evaluate

the responsiveness to anti-PD-1 or anti-CTLA-4 therapy (34).
2.9 Construction and validation of a
LLPS-related gene signature

To construct a LLPS-related gene signature, 253 prognostic

LLPS-related DEGs were used to build a LASSO Cox regression

model. LRRS was calculated as follows:

LRRS =o
n

i=1
(Coef i ∗  Expi)

where Coefi and Expi represent the LASSO coefficient and the

corresponding gene expression level, respectively. Patients with

colon cancer were stratified into low and high LRRS groups

according to the median value of LRRS. Univariate and

multivariate Cox regression analyses were conducted on LRRS in

conjunction with clinical characteristics to identify independent

prognostic factors. A nomogram was constructed utilizing these

independent prognostic factors. Receiver operating characteristic

(ROC) curve analysis were applied to assess the accuracy of

nomogram, LRRS, and clinical characteristics in predicting OS of

colon cancer patients. The concordance index (C-index) was

employed to assess the prognostic capability of nomogram, LRRS,
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and clinical characteristics. The calibration curves were used to

evaluate the precision of the nomogram in terms of the agreement

between the observed and predicted OS outcomes at the 1st, 3rd,

and 5th years.
2.10 Analyses of genomic alterations

The mutation profiles and frequencies were visualized using the

“maftools” R package. The tumor mutation burden (TMB) was

defined as the number of mutations per megabase (mut/Mb) (35).

The copy number variation (CNV) data was acquired from UCSC

Xena (https://xena.ucsc.edu/) database. Then identify the copy

number amplifications or deletions of model gene in the cohort.
2.11 Cell culture

HCT-8 cells were purchased from Wuhan Pricella

Biotechnology Co., Ltd. The cells were cultured in RPMI-1640

medium (Gibco, USA) supplement with 10% Fetal Bovine Serum

(FBS, Invitrogen Corporation, USA) and 1% penicillin/

streptomycin (Gibco, USA) and incubated in humidified

incubator containing 5% CO2 at 37 °C.
2.12 Lentivirus transfection

Cells (5 × 105 cells/well) were seeded in the six-well plate. After

cell attachment, lentivirus carrying overexpression plasmid was

added to the culture medium, supplemented with polybrene to

reach a final concentration of 1 μg/mL. The lentivirus was removed

and replaced with normal growth medium at 12 h transfection. 48 h

after transfection, 1 mg/mL puromycin was added to screen for

stable cells for one week.
2.13 Quantitative real-time polymerase
chain reaction

Total RNA was extracted using RNA Extraction Reagent TRIzol

(Invitrogen, USA). Then RNA concentration was determined with a

spectrophotometer. The RNA was further reverse-transcribed to

cDNA using cDNA synthesis kit (Bio-Rad, USA). cDNA was

amplified with SYBR Green Supermix (Bio-Rad, USA). The

2−DDCt method (DDCT = DCt control−DCt sample) was used to

calculate the amplification fold. Primer sequences are shown

in Table 1.
TABLE 1 Primer sequences.

Gene Forward Reverse

POU4F1 GAGCACCACCATTATTACCACCTC AACACGCAGACAGAACAACTAGC

GAPDH GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA
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2.14 CCK8 assay

The cells were seeded at 1×105 cells/100 ml in 96 well plates (100

mL/well) and incubated for 24 hours. Add 10 mL of CCK-8 solution

(Dojindo, China) to each well and incubate at 37°C for 1-4 hours.

The absorbance was determined at 450 nm using the absorbance

microplate reader (Bio-Rad, USA).
2.15 Clone formation assay

Cell suspension was diluted to the final concentration of 103

cells/mL. Then the cells were seeded into six-well plates (1 mL/well)

and incubate for 10 days. After the clones were formed, the cells

were fixed with 4% paraformaldehyde for 30 min and stained with

crystal violet staining solution for 20 min. Finally, the cells were

washed with PBS and photographed. The experiment was repeated

at least three times.
2.16 Wound healing assay

5x105 cells were seeded in each well of a six-well plate and when

the cells were grown to 90% confluency, a straight line was

scratched across the cell monolayer with a 200 mL pipette tip.

Then, add medium containing 1% serum to each well after

washed with PBS. Cell migration was observed and photographed

at 0 h and 24 h under the microscope. The experiment was repeated

at least three times.
2.17 Transwell assay

2 × 104 cells were added to the upper chamber with serum-free

medium (Gibco, USA). 600 mL of complete medium was added to

the lower chamber. After 24 hours of incubation, the cells in the

upper chamber were removed with cotton swabs, and the cells on

the lower surface of the chamber were fixed with 4%

paraformaldehyde for 30 minutes, and then stained with crystal

violet for 30 minutes. Finally, five visual fields were randomly

selected to be photographed with the microscope (Olympus, Japan).
2.18 Statistical analysis

The Kruskal-Wilcoxon test was used to compare statistical

differences between two groups. While statistical differences

among more than two groups was compared using the Kruskal-

Wallis test. The correlation between expression of model genes was

assessed through the Spearman correlation analysis. The survival

curves for the prognostic analysis were generated via the Kaplan-

Meier method and the significance of differences were identified by

log-rank tests. All statistical p value were two-side, with p < 0.05 as

statistically significance. All data processing was done in R

4.1.0 software.
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3 Results

3.1 Identification of LLPS subtypes in colon
cancer patients based on prognostic LLPS-
related differentially expressed genes

To identify the LLPS-related DEGs, we conducted the following

screening. Firstly, according to the screening criteria of adj. p<0.05

and | log2FC |>1, 8002 DEGs between tumor samples and normal

samples were obtained from the TCGA-COAD cohort. Among them,

3584 were upregulated and 4418 were downregulated in tumor

samples compared with normal samples (Supplementary Table S4).

Subsequently, after intersecting with 4494 LLPS-related genes, 980

LLPS-related DEGs were identified, of which 444 were upregulated

and 536 were downregulated in tumor samples (Supplementary

Table S5). Then, these LLPS-related DEGs were subjected to

univariate Cox regression analysis to identify 253 prognostic LLPS-

related DEGs (Figure 2A), of which 3 were scaffolds, 26 were

regulators, and 224 were clients (Supplementary Table S6).

Based on the expression levels of the 253 prognostic LLPS-

related DEGs mentioned above, we performed unsupervised

clustering analysis on the merged TCGA-COAD and GSE39582

cohorts, and ultimately divided 1010 colon cancer patients into two

subtypes: LLPS cluster A (n=744) and cluster B (n=266)

(Figure 2B). The significant differences in the expression of 253

prognosis LLPS-related DEGs between the two subtypes were

observed in the heatmap (Figure 2C). Prognostic analysis

indicated a significant survival difference between the two

subtypes of LLPS. Cluster A had a better overall survival outcome

than cluster B (Figure 2D).

To explore the potential molecular mechanisms underlying the

LLPS subtype of colon cancer, we performed GSVA to evaluate the

differential KEGG gene sets between the two subtypes. The results

showed that cluster A exhibited associations with cell cycle, DNA

replication and mismatch repair, whereas cluster B demonstrated

associations with the MAPK signaling pathway and JAK-STAT

signaling pathway (Figure 2E). Additionally, we performed

GO enrichment analyses on 253 prognosis LLPS-related

DEGs (Figure 2F).
3.2 Clinicopathological and immune
characteristics between different
LLPS subtypes

We attempted to compare the cl inicopathological

characteristics of colon cancer patients in two different LLPS

clusters. Compared to cluster B, cluster A had more patients with

age greater than 65 years and higher proportion of stage I and stage

II, which may explain why the overall survival outcome of cluster A

is better. No statistically significant variances were observed

between the two clusters in terms of gender and MSI status

distribution (Figure 3).

Subsequently, we conducted a comparative analysis of immune

cell infiltration among the two subtypes of LLPS. Results derived from
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two distinct gene sets consistently indicated that cluster B exhibited a

higher degree of immune cell infiltration (Figures 4A, B). Employing

the ESTIMATE algorithm, we predicted the abundance of stromal

and immune cells across different subtypes. The analysis revealed that

cluster A exhibited lower ESTIMATE, immune, and stromal scores

compared to cluster B, indirectly reflecting a higher tumor purity in
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cluster A (Figures 4C, D). Then, we compared the immune functions

between the two LLPS subtypes. Notably, cluster B demonstrated

significantly elevated functions, particularly in aspects such as

immune check-point (Figure 4E). A detailed differential analysis

highlighted that the expression levels of key immune checkpoint

molecules, including CD274 (PD-L1), CTLA4, LAG3, and TIGIT,
FIGURE 2

Identification of LLPS subtypes in colon cancer patients based on prognostic LLPS-related differentially expressed genes. (A) Venn diagram identified
253 prognostic LLPS-related DEGs in colon cancer. (B) Consensus matrix of unsupervised clustering of the TCGA-COAD and GSE39582 cohorts for
k = 2. (C) Heatmap showed the expression levels of 253 prognostic LLPS-related DEGs among LLPS subtypes. (D) Survival curves of OS in two LLPS
clusters based on 1010 colon cancer patients from the TCGA-COAD and GSE39582 cohorts. (E) Heatmap of KEGG gene sets by GSVA. (F) GO
enrichment analyses for 253 prognosis LLPS-related DEGs.
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were markedly higher in cluster B compared to cluster A (Figure 4F).

Finally, we compared the IPS between the two LLPS clusters. Cluster

A demonstrated a significantly elevated IPS, suggesting a more

promising immunotherapeutic response potential (Figure 4G).

TIDE analysis indicated that cluster A had a lower TIDE score,

further corroborating its enhanced likelihood of responding favorably

to immunotherapeutic interventions (Figure 4H).
3.3 Construction and evaluation of the
LLPS-related gene signature

Next, 253 prognostic LLPS-related DEGs were subjected to

LASSO Cox regression to construct a LLPS-related gene signature

for predicting the prognosis of colon cancer. According to the ratio

of 1:1, 1010 colon cancer patients were randomly divided into a

train group and a test group. The detailed clinical information of the

train group, test group and total group is shown in Table 2.

Ultimately, 14 genes were identified (Figures 5A, B), comprising 7

protective genes and 7 risk genes, with their respective risk

coefficients detailed in Table 3. The LRRS of each colon cancer

patient can be calculated by summing the product of the expression

levels of each gene and the corresponding risk coefficients. The area

under the curve (AUC) values were evaluated by ROC curve. The

LRRS had the highest AUC value in the 3rd year, reaching 0.730.

Additionally, AUC values of 0.677 and 0.697 were observed in the

first and fifth years, respectively (Figure 5C). According to the

median value of LRRS, colon cancer patients in the train and test
Frontiers in Immunology 07
group were divided into high and low risk groups, respectively. The

distribution of LRRS, survival time, status, and expression heatmaps

of risk model genes among high- and low-risk patients in the total,

train, and test groups were displayed (Figures 5D–F). The

prognostic analysis of the overall survival time of CRC patients

revealed that those with high LLPS scores exhibited poorer

prognoses in all the three groups (Figure 5G). Furthermore, a

comparative analysis of progression free survival in the TCGA-

COAD cohort (Figure 5H) and recurrence-free survival in the

GSE39582 cohort (Figure 5I) demonstrated that individuals with

higher LRRS experienced inferior prognoses in the total, train and

test groups.
3.4 Development and evaluation
of nomogram

We want to build a survival prediction model for colon cancer

patients that can be applied in clinical practice. To this end, we first

conducted univariate and multivariate Cox regression analyses of

LRRS and clinical information with overall survival. The results

indicated that the LRRS is an independent prognostic factor for OS.

In univariate Cox regression analyses, the hazard ratio (HR) of

LRRS was 1.154 with a 95% confidence interval (CI) of 1.122-1.187

(p<0.001, Figure 6A). In multivariate Cox regression analyses, the

HR of LRRS was 1.127 with a 95% CI of 1.087-1.169 (p<0.001,

Figure 6B). In addition, age and TNM stage were also independent

prognostic factors. Subsequently, a nomogram was developed by
FIGURE 3

Clinicopathological characteristics between different LLPS clusters. Comparisons of age, gender, survival status, MSI status, stage, T, N and M stage
among LLPS subtypes. *P < 0.05, ***P < 0.001.
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integrating age, TNM stage, and LLPS risk (Figure 6C). By

calculating the score of each variable, the 1-, 3-, and 5-years

survival of colon cancer patients can easily estimate by drawing a

vertical line. The ROC curve demonstrated that the LRRS had
Frontiers in Immunology 08
excellent accuracy in predicting OS, with an AUC of 0.680,

surpassing the predictive ability of any other clinical feature.

Furthermore, the nomogram showed an even higher AUC of

0.792 (Figure 6D). Meanwhile, the concordance index indicated
FIGURE 4

Immune characteristics between different LLPS clusters. (A, B) The levels of immune cell infiltrations in two LLPS clusters. (C) Comparisons of
immune, stromal, and ESTIMATE scores among two LLPS clusters. (D) Comparison of tumor purity among two LLPS clusters. (E) The scores of
immune functions between two LLPS clusters. (F) Comparisons of IPS between two LLPS clusters. (G) Expression levels of immune checkpoint genes
between two LLPS clusters. (H) TIDE score between two LLPS clusters. *P < 0.05, **P < 0.01, ***P < 0.001. ns, not significant.
frontiersin.org
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that the nomogram had the highest predictive accuracy, followed by

LRRS (Figure 6E). The calibration curves also illustrate that there is

a good agreement between the observed and predicted OS outcomes

at the 1st, 3rd, and 5th years for the nomogram (Figure 6F).
3.5 Clinicopathological and immune
characteristics between the two
LRRS groups

We conducted a comparison of the LRRS among various LLPS

clusters, revealing that cluster B exhibited a significantly higher
Frontiers in Immunology 09
LRRS compared to cluster A (Figure 7A). The relationship between

LLPS clusters, LRRS, clinical stage, and survival status is shown in

Figure 7B. Notably, a majority of patients within Cluster B were

categorized into the high LRRS group, consistent with the results in

Figure 7A. Then, the Wilcoxon test was used to calculate the

correlation between LRRS and clinicopathological features

including age, gender, clinical stage, and survival status. The

results showed that high LRRS was associated with high clinical

stage and poor prognosis, but not with age and gender. The LRRS

gradually increased from stage I to stage IV (Figure 7C).

Subsequently, employing a panel of methodologies including

xCELL, TIMER, quanTIseq, EPIC, ConsensusTME, and ABIS, we

investigated the correlation between LRRS and immune cell

infiltration. The findings indicated that T cell NK, macrophage,

dendritic cell, cancer associated fibroblast, and monocyte were

positively correlated with LRRS, while basophil and T cell CD4+

memory were negatively correlated with LRRS (Figure 7D). An

immune functional correlation analysis revealed that LRRS was

positively correlated with immune functions such as immune

checkpoint and T cell co-inhibition (Figure 7E). Consistently,

LRRS was positively correlated with the expression of immune

inhibitory molecules such as CD274, LAIR1, and NRP1 (Figure 7F).

In our final analysis, we assessed the relationship between LRRS and

comprehensive immunological scores, including immune, stromal,

ESTIMATE scores, and tumor purity. The results demonstrated

that LRRS was positively correlated with immune, stromal, and

ESTIMATE scores, but negatively correlated with tumor purity

(Figure 7G). In summary, these analyses underscore that while the

high LRRS group shows enhanced immune cell infiltration, it

paradoxically exhibits a higher state of immune suppression.
3.6 Genomic alterations of two
LRRS groups

Next, we analyzed the top 20 mutated genes in the two different

groups (Figure 8A). The gene mutation frequencies were found to

be similar between the two groups. APC, TP53, and TTN are the

three genes with the highest mutation frequency. Additionally, the

TMB was evaluated between the high and low LRRS groups,

revealing no significant difference in TMB levels (Figure 8B).

However, survival analysis showed that the prognosis of the high

TMB group was significantly worse than that of the low TMB group

(Figure 8C). Therefore, we wonder whether it is possible to combine

TMB and LRRS to stratify patients, and the results showed that this

combination could better predict patient prognosis. The group with

high TMB and high LRRS had the worst prognosis, followed by the

group with low TMB and high LRRS (Figure 8D).
3.7 Landscape of LLPS-related risk genes in
colon cancer

A total of 14 genes were utilized in the construction of the

LLPS-related gene signature. Among these genes, AGAP3,
TABLE 2 Clinical information of total, train and test groups.

Covariates Total Train Test P Value

Age 0.6346

<=65 406(40.2%) 199(39.41%) 207(40.99%)

>65 603(59.7%) 306(60.59%) 297(58.81%)

unknown 1(0.1%) 0(0%) 1(0.2%)

Gender 0.6136

Female 467(46.24%) 229(45.35%) 238(47.13%)

Male 543(53.76%) 276(54.65%) 267(52.87%)

Stage 0.31

Stage 0 4(0.4%) 1(0.2%) 3(0.59%)

Stage I 107(10.59%) 55(10.89%) 52(10.3%)

Stage II 438(43.37%) 226(44.75%) 212(41.98%)

Stage III 328(32.48%) 164(32.48%) 164(32.48%)

Stage IV 122(12.08%) 51(10.1%) 71(14.06%)

unknown 11(1.09%) 8(1.58%) 3(0.59%)

T 0.2114

Tis 4(0.4%) 1(0.2%) 3(0.59%)

T1 21(2.08%) 14(2.77%) 7(1.39%)

T2 120(11.88%) 62(12.28%) 58(11.49%)

T3 669(66.24%) 326(64.55%) 343(67.92%)

T4 175(17.33%) 97(19.21%) 78(15.45%)

unknown 21(2.08%) 5(0.99%) 16(3.17%)

N 0.5609

N0 565(55.94%) 291(57.62%) 274(54.26%)

N1 235(23.27%) 122(24.16%) 113(22.38%)

N2 178(17.62%) 84(16.63%) 94(18.61%)

unknown 32(3.17%) 8(1.58%) 24(4.75%)

M 0.0919

M0 879(87.03%) 447(88.51%) 432(85.54%)

M1 123(12.18%) 52(10.3%) 71(14.06%)

unknown 8(0.79%) 6(1.19%) 2(0.4%)
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FIGURE 5

Construction and evaluation of the LLPS-related gene signature. (A, B) LASSO Cox regression analysis to construct a LLPS-related gene signature.
(C) Time-dependent ROC curve analysis in the total group. (D–F) The distribution of LRRS, survival time, status, and heatmaps of risk model genes
among high- and low-risk patients in the total, train, and test groups. (G) Survival curves of OS in the total, train, and test groups. (H) Survival curves of
PFS in the total, train, and test groups in the TCGA-COAD cohort. (I) Survival curves of RFS in the total, train, and test groups in the GSE39582 cohort.
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CDK2, DMKN, PRMT1, PSMA7, POU4F1, RAB15 and SNAI1

were up-regulated in tumor tissue compared with normal tissue

in TCGA-COAD cohort, while the remaining genes were down-

regulated in tumor tissue (Figure 9A). Hazard ratios (95% CI) of

these genes were calculated by univariate Cox hazard analysis

(Figure 9B). In terms of gene types, these 14 genes consisted of 11

clients, 2 regulators, and 1 scaffold. Except for the scaffold SYN2,

there existed an expression correlation among other genes

(Figure 9C). Next, we summarized the incidence of somatic

mutations of 14 LLPS-related genes in TCGA-COAD cohort.

Among 399 tumor samples, only 64 (16.04%) exhibited

mutations in the model genes. The gene with the highest

mutation frequency was NRG1, but only 5%, indicating that

these LLPS-related model genes are conserved in the progression

of colon cancer (Figure 9D). The statistical results of CNV

alteration frequency showed that the CNV alteration was

prevalent in 14 model genes. Specifically, copy number

amplification was more pronounced in CACNB1, CDK2,

DMKN, and SNAI1, while CLMN, NRG1, OGDHL, PRMT1,

and SYN2 mainly exhibit copy number deletion, consistent with

their mRNA expression (Figure 9E). The location of CNV

changes of these genes on chromosomes was shown in Figure 9F.
TABLE 3 LASSO coefficients of 14 LLPS-related risk genes.

Gene coefficients

AGAP3 1.636

AKR1C1 1.107

CACNB1 1.514

CDK2 -2.137

CLMN 1.620

DMKN 0.446

NRG1 -1.501

OGDHL -0.787

POU4F1 2.759

PRMT1 -4.322

PSMA7 -2.110

RAB15 1.962

SNAI1 1.189

SYN2 1.101
FIGURE 6

Development and evaluation of nomograms. (A, B) Univariate and multivariate Cox regression analyses of LRRS and clinical information with overall
survival. (C) Nomogram was developed by integrating age, TNM stage, and LLPS risk. (D) ROC curve analysis of nomogram, LRRS and clinical
information. (E) Concordance index of LRRS and clinical information. (F) Calibration plots to assess the accuracy of nomogram. **P < 0.01, ***P < 0.001.
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FIGURE 7

Clinicopathological and immune characteristics between the two LRRS groups. (A) Cluster B exhibited a significantly higher LRRS compared to
cluster (A, B) Sankey diagram of LLPS clusters, LRRS, clinical stage, and survival status. (C) Comparisons of age, gender, clinical stage, and survival
status between the high and low LRRS groups. (D) Correlation between LRRS and immune cell infiltration. (E) Correlation between LRRS and
immune function. (F) Correlation between LRRS and expression levels of immune checkpoint genes. (G) Correlation between LRRS and immune,
stromal, ESTIMATE scores, and tumor purity. *P < 0.05, **P < 0.01, ***P < 0.001. ns, not significant.
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3.8 POU4F1 promoted proliferation and
migration of HCT-8 cells

Given that POU4F1 is a regulator which may play a key role in the

LLPS process, we conducted an overexpression study of POU4F1 in

HCT-8 cells to elucidate its effects on cell proliferation and migration.

POU4F1 overexpression were achieved by lentivirus transfection

(Figure 10A). Further investigations were conducted to determine

the proliferation and migration of HCT-8 cells. The CCK8 assay

showed cell proliferation increased after POU4F1 overexpression

(Figure 10B). Meanwhile, an elevated number of clones were

observed followed by POU4F1 upregulation (Figure 10C).

Subsequently, wound healing assay was performed and the results

showed that the overexpression of POU4F1 resulted in a significant

enhancement of the cell migration (Figure 10D). Transwell migration

assay also showed that the number of migrated cells in the POU4F1-

overexpressing group was greater than that in the control group

(Figure 10E). The findings above suggested that POU4F1 facilitated

both proliferation and migration of HCT-8 cells.

4 Discussion

Numerous studies have shown that the LLPS process of proteins

is closely related to the occurrence and development of various
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diseases, especially neurodegenerative diseases and tumors. Given

that the majority of research has concentrated on the LLPS of single

protein in disease progression, a comprehensive exploration of

LLPS-associated genes holds significant importance in the

identification of novel tumor subtypes and the prediction

of prognosis.

In this study, we attempted to explore the role of LLPS-related

genes in colon cancer, which has a high incidence and mortality rate

in the world. Based on the expression levels of 253 prognostic LLPS-

related DEGs, an unsupervised clustering was used to classify 1010

colon cancer patients from the TCGA-COAD and GSE39582

cohorts into two different LLPSS subtypes . The two

LLPS subtypes have different prognosis, pathway activity,

clinicopathological features, and immune infiltration. To our

knowledge, this is the first study to characterize the LLPS-related

gene signature in colorectal cancer. In order to better conduct

personalized comprehensive evaluation, all 1010 patients were

divided into a train group and a test group in a 1:1 ratio. A

LLPS-related risk score, namely LRRS including 14 genes was

constructed using LASSO Cox regression. By calculating the

LRRS for each patient in the cohort, patients were divided into

high and low risk groups. LRRS was associated with the prognosis,

clinicopathological features and genomic changes of colon

cancer patients.
FIGURE 8

Genomic alterations of two LRRS groups. (A) The mutation frequency of the top 20 genes in the high and low LRRS group. (B) The TMB value
showed no significant difference between the high and low LRRS group. (C) Survival curves of OS in high and low TMB groups. (D) Survival curves of
OS in four groups (high-TMB + high-LRRS, high-TMB + low-LRRS, low-TMB + high-LRRS, low-TMB + low-LRRS). ns, not significant.
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FIGURE 9

Landscape of LLPS-related risk genes in colon cancer. (A) Volcano plot of DEGs between tumor and normal tissues in TCGA-COAD cohort.
(B) Univariate COX regression analysis of the hazard ratio between14 model genes and overall survival in TCGA-COAD cohort. (C) The interaction
between 14 model genes in colon cancer. (D) The mutation frequency of 14 model genes in 399 colon cancer patients from TCGA-COAD cohort.
(E) The CNV variation frequency of 14 model genes in TCGA-COAD cohort. (F) The location of CNV alteration of 14 model genes on
23 chromosomes.
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Currently, multiple studies have shown that the LLPS of

intracellular molecules can affect tumor progression through

various biological processes. The SUMOylated RNF168 catalyzed

by SENP1 prevents the occurrence of LLPS, allowing RNF168 to be

recruited to DNA damage sites for nonhomologous DNA end-

joining, thereby maintaining genomic stability and even making

tumor cells resistant to chemotherapy (36). The LLPS of YAP and

TAZ compartmentalizes key cofactors to regulate tumor

development by activating the transcription of target gene (37,

38). The LLPS of YBX1 enhanced by circASH2 promotes the decay

of TPM4 transcripts, effectively inhibiting the metastasis of

hepatocellular carcinoma by mediating cytoskeleton remodeling

(39). The LLPS of an aberrant chimera NUP98-HOXA9,

generated by recurrent chromosomal translocation of NUP98, can

bind to and enhance the activation of target genes, promoting the

development of acute leukemia (40).

The high LRRS group showed higher levels of immune cell

infiltration and immune related functional scores, indicating that it

has higher immunogenicity. We attempt to explain this phenomenon

from the perspective of genomic alterations. We analyzed the top 20

mutated genes in the high and low LRRS groups. TP53, MUC16 and

USH2A have higher mutation frequencies in the high LRRS group,

while the mutation frequencies of RYR2 and OBSCN are higher in

the low LRRS group. Growing evidence suggests that TP53, one of the

most famous tumor suppressor genes in various cancers, contributes

to the regulation of tumor immune response (41, 42). It has been

found that TP53 mutations can significantly activate the innate

immune pathway in CRC (41). MUC16, which encodes the well-

known cancer antigen 125 (CA-125), has a very high mutation
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frequency in multiple tumors. A study involving 10195 patients

across 30 solid tumors in the TCGA database showed that MUC16

mutations resulted in higher abundance of immune cells in the tumor

microenvironment and increased expression of multiple inhibitory

checkpoints (43). The above researches support for the higher

immunogenicity in the high LRRS group. It is necessary to conduct

further research to investigate the specific mechanism by which these

gene mutations regulate the tumor immune microenvironment.

LRRS consists of 14 prognostic LLPS-related differentially

expressed genes, including 1 scaffold, 2 regulators and 11 clients.

Synaptin II, as a scaffold, is encoded by SYN2, which is one of the

three genes encoding synaptic proteins. Synaptin II is involved in

droplet and postsynaptic density, playing a crucial role in

controlling synapse formation and growth, neuron maturation

and renewal, as well as the mobilization, docking, fusion, and

recycling of synaptic vesicles (44). In addition, there have been

reported that the expression level of SYN2 is significantly related to

the prognosis of breast cancer, suggesting that it may play a role

(45). The regulator POU4F1, a transcription factor of the POU gene

family, is mainly expressed in neuronal cells and can activate the

transcriptional activity of the antiapoptotic gene bcl-2 to protect

neuronal cells from apoptosis (46). Its role has been validated in

breast cancer, melanoma, thyroid cancer and glioma (47–50).

Several studies suggest that POU4F1 may be a hub gene in

certain signature of colorectal cancer, yet its specific role has not

been experimentally validated (51–53). We successfully

overexpressed the transcription factor POU4F1 in HCT8 cells and

observed a significant enhancement in both cell proliferation and

migration. These findings underscore the pivotal role of POU4F1 in
FIGURE 10

POU4F1 promoted proliferation and migration of HCT-8 cells. (A) qRT–PCR analysis of POU4F1 in OE-POU4F1 and control groups. (B) Assessment
of the proliferation of HCT-8 cells transfected with OE-POU4F1 and vector by CCK8 assay. (C) Representative images and quantitative analysis of
clone formation in OE-POU4F1 and vector cells. (D) Representative images and quantitative analysis of wound healing assay of HCT-8 cells
transfected with OE-POU4F1 and vector. (E) Assessment of the migration of HCT-8 cells transfected with OE-POU4F1 and vector by Transwell
assay. Error bars denote means ± standard deviation (SD). n = 3 biological repeats for each group. OE-POU4F1: POU4F1 overexpression group;
vector: control group; *P < 0.05, ***P < 0.001.
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the oncogenic process of CRC, thereby broadening our

understanding of its contribution to tumorigenesis. However, the

particular function of POU4F1 in the LLPS process has not been

thoroughly investigated, and we believe this will be an entirely new

field. The other regulator PRMT1 is one of the major protein

arginine methyltransferases in mammals. Due to the substrate of

PRMT1 regulate various biological functions, the dysregulation of

arginine methylation caused by PRMT1 may lead to the progression

of cancer (54). A total of 6 out of 11 clients can participate in

postsynaptic density. Among them, AKR1C1 and OGDHL can also

participate in nucleolus. The other two members of Nucleolus are

NRG1 and PSMA7. DMKN participates in p-body. CDK2 is quite

comprehensive and participates in various membraneless organelles

including nucleolus, centrosome/spindle pole body and stress

granule. SNAI1 is a unique protein that cannot be classified, and

further research is needed to determine the localization of the

droplets it forms. Although we understand the types of

membraneless organelles involved in these model genes, further

exploration is still needed on the specific roles played by some

model genes in tumor progression.

Anyway, there are several limitations in our study. First, all

analyses were performed based on the retrospective data of TCGA

and GEO databases, using prospective data would be more

convincing. Second, due to the lack of the treatment-related

information in GSE39582 cohort, all of the relevant analyses only

used data from TCGA database. Finally, our study did not elucidate

the specific molecular mechanisms of model genes in the

progression of colon cancer, and further experiments evidence are

needed in the future.
5 Conclusion

In summary, we divided colon cancer patients into two subtypes

of LLPS, which have different prognosis, pathway activity,

clinicopathological features and immune cell infiltration. In

addition, we constructed an LLPS-related gene signature to

predict the prognosis of colon cancer patients. Patients with high

LRRS have worse prognosis and poorer response to

immunotherapy. Our findings might contribute to personalized

prognosis prediction and better treatment options for colon cancer

patients, but further studies are needed to confirm this point.
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