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Background: To determine the role of N6-methyladenosine (m6A) modification

in the tumor immune microenvironment (TIME), as well as their association with

lung adenocarcinoma (LUAD).

Methods: Consensus clustering was performed to identify the subgroups with

distinct immune or m6A modification patterns using profiles from TCGA. A risk

score model was constructed using least absolute shrinkage and selection

operator regression and validated in two independent cohorts and LUAD tissue

microarrays. For experimental validation, the regulation of METTL3/m6A axis in

the expression of candidate genes by RIP-qPCR assay in A549 and H460 cell

lines. Co-culture experiments with human T cells were performed to evaluate

the impact of METTL3 on the enhancement of anti-tumor immunity through in

vitro experiments.

Results: We identified 282 m6A regulator genes and 955 immune-related genes,

selecting seven key genes (SFTPC, CYP24A1, KRT6A, PTTG1, S100P, FAM83A, and

ANLN) to develop a risk score model using Lasso regression. High-risk patients,

determined by this model, exhibited poorer prognosis, increased immune

infiltration, higher tumor mutational burden, more neoantigens, and elevated

PD-L1 expression. These findings were validated by two independent databases

and LUAD tissuemicroarrays. METTL3 was found to impact the mRNA expression

of these genes, with METTL3 deficiency abolishing these interactions. Inhibition

of METTL3 enhanced anti-tumor immunity, T cell activation, exhaustion, and

infiltration in vitro.
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Conclusion: This risk score system shows promise for prognostic prediction and

the development of personalized treatment strategies for LUAD patients.
KEYWORDS

lung adenocarcinoma, N6-methyladenosine modification, tumor immune microenvironment,
prognosis, predictive model, multi-omics validation
Introduction

Lung adenocarcinoma (LUAD) is the most prevalent form of

lung carcinoma that has an average 5-year survival rate of 20% (1,

2) . As an immune-sens i t ive mal ignancy , the tumor

microenvironment of LUAD is characterized by multiple types of

immune cell infiltration (3). Contrary to the anticipated outcome of

the immune system to identify and diminish cancer cells owing to

their distinct, and often extensive, mutational characteristics,

tolerance serves as the natural equilibrium between the immune

system and cancer. Various mechanisms involving regulatory

immune cells, immunosuppressive cytokines, and chemokines

work together to maintain the tolerance (4). Considering this, the

use of monoclonal antibodies that block these pathways has

emerged as a potent tool in oncology. Recently, the application of

immune checkpoint inhibitors (ICIs) has yielded impressive

outcomes for pat ients with LUAD (5, 6) . However ,

immunotherapy has demonstrated beneficial outcomes in fewer

than 20% of patients diagnosed with LUAD. Recent clinical studies

have shown that the absence of specific biomarkers that correlate

with prognosis and ICIs response is primarily why approximately

half the patients do not show clinical or survival improvements (7).

Therefore, exploring for biomarkers is essential to identifying the

patients who will be suitable for monotherapy, as well as to provide

timely indications of treatment response, drawing upon our

evolving scientific understanding of the biological mechanisms

underlying immune pathway inhibition.

The N6-methylandenosine (m6A) modification, which is

present in all eukaryotic RNA molecules, is regulated by some

signals, including methyltransferases, signal transducers, and

demethylases (8). Current findings have highlighted the

significant role of m6A modifications in cancer biology,

particularly in tumor progression and response to therapy (9, 10).

Previous research has revealed that m6A methyltransferase

enhances PD-L1 expression after transcription, which indicating

the modification is crucial for the regulation of certain

immunological character is t ics in the tumor immune

microenvironment (TIME) (11). The signal transducer deficiency

improves the efficacy of anti-PD-1 treatment via the m6A–p65–

CXCL axis (12). Therefore, understanding the link between m6A

modification regulators and genes encoding immunological

functions is essential for optimizing cancer treatment outcomes.

In accordance with the m6A regulators, some researchers have
02
developed predictive models for the survival outcomes of LUAD

patients and their association with immune checkpoint inhibition

(13, 14). An m6A-based scoring system has been developed to

differentiate patients who displayed increased infiltration of CD8+

T cells and exhibited heightened sensitivity to immunotherapy (15).

However, no experimental or real-world validation has been

conducted and some models focus solely on genetic or

transcriptomic data without integrating comprehensive immune

profiling, which is essential for understanding the tumor-

immune interplay.

In this study, we conducted a prognostic evaluation for both

m6A regulatory genes and immune-associated genes in LUAD, and

selected seven signatures to develop a scoring system by assessing

risk profiles. Furthermore, we investigated the association among

risk ratings, tumor immunity status, and m6A regulators. The

model was validated using seven LUAD tissue microarrays,

confirming its robustness and applicability in real-world settings.

Experimental validation showed that the expression of these

candidate genes was directly regulated through an m6A-

dependent mechanism, and inhibition of METTL3 enhances anti-

tumor immunity, T cell activation, exhaustion, and infiltration in

vitro. This study highlights the potential of the risk score system for

prognostic prediction and the development of more effective

personalized treatment strategies for LUAD patients.
Materials and methods

Sources and preprocessing of data

This study was conducted using The Cancer Genome Atlas

(TCGA, https://cancergenome.nih.gov/) and Gene Expression

Omnibus (GEO, National Center for Biotechnology Information,

USA)) databases. We acquired transcript sequencing array data as

the training cohort, measured in fragments per kilobase million

(FPKM), for individuals identified as LUAD from TCGA.

Additionally, we downloaded the transcriptome profile expression

levels of two cohorts (GEO: GSE30219 and GSE50081) for external

validation. The cohorts selected for analysis were based on the

following criteria: 1. large-scale human samples of mRNA gene-

expression patterns from untreated primary LUAD tissues with

more than 30 samples; 2. assessed on the same technological

platform that stores raw expression data and clinical information
frontiersin.org
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(such as survival times, censored information, and TNM stage); and

3. Peer reviews or publications in scientific journals proved or

evaluated the data quality. A log2 scale was applied to all raw data

after quantile standardization. Subsequently, we exercised prudence

by excluding genes from the dataset with expression levels of 0

FPKM in at least 50% of the samples.
Cell culture and transfection with small
interfering RNA

The human non–small-cell lung cancer (NSCLC) cell line

(A549 and H460) was acquired from the American Type Culture

Collection (ATCC, USA). The DMEM medium (BI, Israel)

supplemented with 10% fetal bovine serum (BI, Israel) was used

to cultivate the above cells in a temperature of 37°C under 5% CO2.

To knock down METTL3, METTL14, and WTAP, all cells were

transfected with small interfering RNA (siRNA) targeting these

genes or control siRNA using Lipofectamine RNAiMAX

(Invitrogen, USA) as per the manufacturer’s instructions.

Untreated cells served as negative controls, and siRNA-targeting

scrambled sequences were used as a transfection control.

Transfection efficiency was validated using RT-qPCR, confirming

significant knockdown of METTL3, METTL14, and WTAP, as

shown in Supplementary Figure 4. Supplementary Table 1 listed

these siRNA sequences.
Generation of the stable cell lines

For METTL3 knockdown, lentiviral vectors harboring shRNA

for knockdown and overexpression of METTL3 and negative

control underwent syncretization and then cloned into pLKO.1

vector. The plasmids were transfected using lipofectamine LTX and

Plus™ Reagent (Invitrogen, USA) into A549 cells according to the

manufacturer’s protocol. The sequences are presented in

Supplementary Table 1. Briefly, stably transfected cells were

selected with 10 mg/ml puromycin (MCE, USA) for 3 weeks.
Western blot analysis

The proteins of cells were extracted using the RIPA buffer, which

was cooled before use (Beyotime, China). Identical protein samples

were measured, loaded, separated on a 10% SDS-PAGE, and then

transferred to 0.45 mm PVDF membranes (Beyotime, China).

Following a 1.5-hour blocking step with 5% non-fat milk in TBST,

the membranes were subjected to overnight incubation at 4°C with

the primary antibodies (Supplementary Table 2). Later on, the

secondary antibodies were introduced and the concoction was

subjected to incubation at room temperature for one hour. The

proteins in the immunoblots were identified using the GelDoc XR

System (BioRad, SA).
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Co−culture experiments

Human T cells were isolated from three NSCLC patients. After

obtaining informed consent, 20 ml of peripheral venous blood was

collected from the donor and T cells were then isolated via density

gradient centrifugation using Ficoll-Paque solution (Biolegend,

USA). The isolated T cells were subsequently cultured in Roswell

Park Memorial Institute (RPMI)-1640 medium (BioInd, Israel),

supplemented with 10% fetal bovine serum (Gibco, USA) and IL-2

(200 U/mL; SinoBiological, China). PBMCs were added to the A549

cell cultures at a ratio of 1:5 (A549 cells: PBMCs) in fresh complete

medium, with or without 10 mg/ml atezolizumab (Genentech,

USA), and incubated for 48 hours at 37°C in a humidified

atmosphere containing 5% CO2. The supernatant was isolated

from each group and the LDH release assay (Beyotime, China)

was performed based on the instructions from the manufacturer.

Absorbance was detected at 490 nm by Biotek microplate reader. In

addition, the supernatant was also used for the enzyme-linked

immune-sorbent assay (ELISA) for quantifying IFN-g and IL-2

production (R&D System, USA) as per instructions given by the

manufacturer. Processed data from plate readings taken at 450 nm.
LUAD tissue sample and immunochemistry

Commercially available tissue microarray slides (HLugA180Su07)

containing 93 histologically confirmed LUAD tissues were purchased

from Biochip (Shanghai Biochip Co., Ltd., China) for

immunohistochemistry (IHC) analysis. Immunohistochemical

staining was performed on tissue microarrays (TMAs) incubating

with the specific antibodies (Supplementary Table 2) overnight at a

temperature of 4°C. Subsequently, they were incubated with polyclonal

peroxidase-conjugated anti-rabbit IgG (Boster Biological Technology

co.ltd, USA) at room temperature for 20 min, as per the instructions

provided by the manufacturer. Three expert pathologists blind to the

clinical information independently graded each tissue sample. The

intensity of staining was categorized as follows: 0 (negative), 1(weak), 2

(moderate), or 3 (strong). The extent of staining varied according to

the proportion of positive cells (out of 200 cells examination): 0 (less

than 5%), 1 (5%–25%), 2 (26%–50%), 3 (51%–75%), or 4 (>75%). The

IHC expression scores were determined by multiplying the staining

intensity by the staining extent, and then the scores were normalized

by the z-score in order to calculate the risk scores.
RT-qPCR

RNA was isolated from the cells using the TRIzol Reagent

(Invitrogen, USA) according to the manufacturer’s instructions.

Reverse transcription of the isolated RNA was performed using

HiScript II Q RT SuperMix for qPCR (+gDNA wiper) (Vazyme,

China). RT-qPCR was performed using the AceQ qPCR SYBR

Green Master Mix (Vazyme, China). The mRNA levels were
frontiersin.org
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standardized using glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) as the reference gene. The oligonucleotide sequences

are listed in Supplementary Table 1.
RNA-binding protein
immunoprecipitation assay

TheMagna RIP Kit (Millipore, MA, USA) was used to conduct the

RIP assay. Briefly, 5 mg anti-METTL3 (Abcam, USA) or anti-m6A

(Millipore, Germany) and anti-rabbit IgG (Millipore, Germany) were

incubated with 50 mL of magnetic beads before cell lysates were added

(approximately 2 × 107 cells per sample). Following six rounds of

washing, the RNA–protein immunoprecipitation (IP) complexes were

incubated in proteinase K digestion solution to extract the proteins.

Finally, the RNA was purified for RT-qPCR analysis after being

extracted using phenol–chloroform. Normalizing relative enrichment

to the input was done as % input =1/10 × 2Ct [IP] – Ct [input].
Functional investigation and determination
of genes related to m6A and the
immune system

Todiscern the relationshipbetweenm6Aand immune status, the t-

distributed Stochastic Neighbor Embedding (t-SNE) algorithm was

performed (16). Moreover, signature gene sets exhibit consistent

expression and serve as summaries of certain clearly defined

biological states or processes. According to previous publications, we

retrieved expression matrixes of m6A regulators (17). Additionally, 29

immune-related genes were selected, reflecting diverse array of

immune cell types, roles, and pathways (IMMPORT) (18). We

employed the Non-negative Matrix Factorization (NMF) technique

tocluster the expressionpatternsof immune-orm6A-associatedgenes.

We used k-means clustering because it allows for the identification of

distinct subgroups based onm6Amodification patterns, assuming that

the data are relatively homogeneous within each cluster. Using Cox

regression analysis, we assessed the correlation between each potential

gene and overall survival (OS). Three clusters were determined to be

the optimal number when the correlation coefficient decreased. Using

the aforementioned immune/m6A gene mRNA expression data and

the t-SNE algorithm, LUAD subtypes were identified. The

differentially expressed genes (DEGs) were determined with a

criterion of |logFC| > 0.585 and P<0.05, after controlling for false

discovery rate (FDR). In addition, we performed Kyoto Encyclopedia

of Genes and Genomes (KEGG) (https://www.kegg.jp/) and Gene

Ontology (GO) pathway analyses (https://david.ncifcrf.gov//) using

the R Cluster-Profiler. Pathways were considered significant when P

and q values were below the 0.05 threshold.
Development and validation of risk
scoring system

Genes that overlapped between the m6A- and immune-

associated DEGs were selected for further analysis. The risk
Frontiers in Immunology 04
scoring system was established using Cox regression analysis and

the Least Absolute Shrinkage and Selection operator (LASSO) (19).

Using five-fold cross-validation (CV), we were able to find the

optimal parameters while reducing the bias that overfitting the

training samples may induce. The prognostic roles of candidate

genes were subsequently investigated using multivariate Cox

regression analysis. Risk scores were generated by multiplying the

multivariate Cox regression’s coefficient of gene expression. All

patients were categorized as either high- or low-risk according to

the median risk score. The data were analyzed using Kaplan-Meier

survival analysis, and statistical significance was determined by log-

rank tests. We tested the model’s prediction power using a receiver

operating characteristic (ROC) curve.
Analysis of the interrelationships between
DEGs associated with immune function

To assess gene set enrichment in transcriptomes, we conducted

Gene Set Variation Analysis (GSVA). This technique scores gene

sets to convert gene expression levels to pathway levels, thus

determining the biological function of samples (20). We evaluated

the immunological state and m6A levels in risk groups using data

from the Molecular Signature Database, with significant results at

FDR q < 0.25 and P < 0.05. Immunocyte infiltration in the groups

was analyzed via the CIBERSORT algorithm, focusing on 22

distinct immunocyte subunits. The TIMER (version 2.0) database

provided data on tumor-infiltrating immune cell abundance (21).

Spearman’s correlation analysis was employed to study the

relationship between gene expression and immune cell

concentrations. Additionally, using data from the Genomics of

Drug Sensitivity in Cancer database (GDSC), we estimated the

I C 5 0 o f c h emo t h e r a p e u t i c m e d i c a t i o n s t h r o u g h

regression modeling.
Statistical methods

Data analysis was carried out using the R (v.4.2.0) software. The

Chi-square test was used for the analysis of qualitative variables. A

statistically significant result was defined as a significance level of P

< 0.05, unless specified otherwise, in specific conditions as

outlined independently.
Results

Selection of the immune and the m6A-
associated DEGs within LUAD

The processed original mRNA expression data for LUAD were

acquired from the TCGA database. Subsequently, 1811 immunity

genes and 1670 immune regulatory factors were identified from the

IMMPORT database. We further determined three immune

clusters and calculated the Euclidean distance using t-SNE for

each patient (Figure 1A and Supplementary Figures 1A, B).
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Statistically significant disparities were observed across the three

clusters using survival analysis. Notably, C3 exhibited longer

median survival when comparing both C1 and C2 clusters

(Figure 1A). Similarly, three m6A clusters were detected based on

the m6A regulators expression matrices. The results indicated

cluster C2 had a comparatively longer median survival time

(Figure 1B and Supplementary Figures 1C, D). Furthermore, we

identified 955 immune-associated DEGs and 282 m6A -associated

DEGs. Among these, 145 genes were found to be co-expressed in

both the immunological and m6A subtypes, making them potential

candidate DEGs for further investigation.

Using pathway analysis, the possible roles of the co-expressed

DEGs were determined (Fisher’s exact test, P <0.05). GO

enrichment analysis yielded biological process (BP), molecular

function (MF), and cellular component (CC) terms. For BP,

DEGs were predominantly enriched in nuclear division,

regulation of cell-cycle phase transition, regulation of immune

effector processes, and immune responses. In the MF, the

majority of DEGs were involved in antigen binding and cyclin-

dependent protein serine/threonine kinase regulatory activity. The

spindle, immunoglobulin complex, and midbody were most

abundant in CC enrichment (Figure 1C). KEGG pathway

enrichment analysis showed that DEGs had a significant

enrichment mostly in the Cell cycle, p53 signaling, and T cell

receptor signal transduction pathways (Figure 1D). Collectively, the

pathway enrichment results suggested that the DEGs we chose have
Frontiers in Immunology 05
a tight connection to cell proliferation and immune response, which

may not only serve as prognostic indicators for patients with LUAD

but also contribute significantly to the interplay between immune

infiltration and well-established signaling pathways associated with

tumor development and invasion.
Construction and validation of the risk
scoring system

There were 18 immunologically and m6A-linked DEGs that

contributed to OS after conducting the univariate Cox regression

analysis (Supplementary Table 3). We then used LASSO to identify

seven signatures for a risk-based prognostic assessment model

(Figure 2A and Supplementary Figure 2A). We used the following

formula to calculate risk scores: Risk Score = SFTPC*(-0.061883497)

+ CYP24A1*0.086651739 + KRT6A*0.127175139 + PTTG1*0.

146161987 + S100P*0.14825993 + FAM83A*0.164912979 +

ANLN*0.169266477. All patients were classified as the high-risk or

low-risk cohort based on the median risk score. In both the training

and internal test set, the high-risk group exhibited a lower OS

compared to the OS seen in the low-risk group (P < 0.001 and

P=0.026, Supplementary Figure 2B and Figure 2B) and the AUC

values of the risk score for 3-year survival were 0.70 and 0.71

(Supplementary Figure 2C and Figure 2B). Subsequently, two

additional independent cohorts were included for external validation
FIGURE 1

Identification of immune and m6A status and the differentially expressed genes (DEGs). (A) Unsupervised clustering of immune-related genes to
classify patients into different genomic subtypes. (B) Unsupervised clustering of m6A-related genes to classify patients into different genomic
subtypes. (C, D) Functional annotation for overlapping DEGs using GO enrichment analysis (C) and KEGG enrichment analysis (D). The color depth
of the bar plots represented the number of genes enriched.
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(Supplementary Tables 4, 5). As expected, high-risk patients in both

cohorts had shorter OS compared to low-risk individuals (P = 0.002

and 0.045, respectively, Figures 2C, D). The AUCs with regard to 3-

year OS were 0.65 and 0.68, respectively (Figures 2C, D). This further

implied that the risk score system showed excellent repeatability and

stability during validation. Furthermore, we performed Cox regression

analyses and determined that the risk score served as a reliable and

independent prognostic indicator (Figures 2E, F). Moreover, there was

a substantial correlation between the risk scores and the tumor, node,

metastasis (TNM), T, and N stages (Figure 2G). Taken together, the

risk score model we constructed is not only capable in predicting the
Frontiers in Immunology 06
survival but also has a noteworthy connection with

clinical characteristics.
Assessment of TIME status in cohorts with
varying levels of risk

To evaluate the risk cohorts and their correlation with immune

status, we primarily programmed GSVA and suggested the risk

cohorts were enriched in the IL2-STAT5, PI3K/AKT/MTOR, and

Reactive oxygen species pathways (Figure 3A and Supplementary
FIGURE 2

Construction and validation of the risk score system. (A) Least absolute1 shrinkage and selection operator (LASSO) regression was performed,
calculating the minimum criteria and coefficients. (B) Kaplan–Meier analysis between the high-risk subgroup and low-risk subgroup in TCGA dataset.
(C) External validation of risk score system in GEO database (GSE30219). The ROC curves predicting 1/2/3-year survival. (D) External validation of risk
score system in GEO database (GSE50081). The ROC curves predicting 1/2/3-year survival. (E, F) Univariate (E) and multivariate (F) Cox analyses of
clinical parameters and lasso risk for overall survival. The covariables are the N stage, T stage, AJCC (American Joint Committee on Cancer) stage,
and gender of the LUAD patients. (G) Stratified analysis of clinical characteristics for the risk score value. The Kruskal-Wallis test was used to
compare the statistical difference.
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Figures 3A, B). Furthermore, assessment of immune cell infiltration

found that the risk score was positively correlated with T cell CD4 +

memory activation, Macrophages M0, Macrophages M1, activated

NK cells, follicular helper T cells, CD8 + T cells, and activated Mast

cells, but negatively associated with Macrophages M2, Monocytes,

resting CD4 + memory T cells, dendritic cells, and resting mast cells

in patients with different risk levels (Figure 3B and Supplementary

Figure 3C). Interestingly, the expression of PD-L1, CTLA-4, and

IDO1 increased as the risk score elevated (Figure 3C and

Supplementary Figure 3D). Genetic mutation analysis revealed

that individuals considered to be at high risk had higher

incidences of TP53, TTN, and MUC16 mutations (Figure 3D).

Quantitative analysis further confirmed that load of tumor

mutational burden (TMB) and neoantigen levels were increased

in the high-risk group (Figure 3E). In addition, we predicted the

chemosensitivity of each tumor sample and the results indicated

that low-risk individuals showed greater chemosensitivity to

Bleomycin, Cytarabine, Paclitaxel and Docetaxel (Figure 3F).

Taken together, the findings indicate that the low-risk group
Frontiers in Immunology 07
could exhibit increased sensitivity to conventional chemotherapy.

However, patients with high-risk scores exhibited higher immune

cell infiltration and were positively correlated with the expression of

immune checkpoints, indicating that they may potentially receive

therapeutic benefits from immunotherapy.
Clinical experimental validation in LUAD
tissue microarrays

Due to the proteins associated with LUAD and the TIME

perform important biological functions, we conducted further

experimental verification using LUAD tissue microarrays and

IHC (Figure 4A). Following the exclusion of invalid samples, the

risk score for every LUAD patient was determined using the

aforementioned formula and further classified as low- or high-

risk according to the median. Survival analysis revealed that

patients with high risk exhibited worse OS (P<0.001; Figure 4B).

The Cox regression analyses also showed that the risk score was the
FIGURE 3

Characteristics of the risk score system in immune subtypes. (A) GSVA analysis revealing immune-related biological processes correlated with the
signature. (B) Relationships between the risk model and infiltration abundances of immune cells. (C) Correlation between the risk score and immune
checkpoint expression. (D) The water-fall plot of tumor somatic mutation established by those with high-risk score (left) and low-risk score (right).
Each column represented individual patients. (E) The correlation between risk score and TMB or Neoantigen, the comparison was conducted by
Wilcoxon test. (F) Distribution of the estimated IC50 and drug sensitivities comparison between high and low risk score groups.
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only independent prognostic indicator (Figure 4C). Consistent with

prior findings, there was a substantial correlation between the risk

scores and both TNM and T stages, which indicated a robust

relationship between the risk score and tumor invasion

(Figure 4D). Notably, PD-L1 protein expression levels were

significantly higher in the high-risk group of patients (P = 0.002;

Figure 4E). Collectively, these results experimentally verified the

stability and reliability in the scoring system at protein level.
METTL3-mediated m6A modifications
regulate the expression of candidate genes
and enhance immune responses in vitro

As a crucial component for RNAm6Amodification, METTL3 is

essential for the regulation of TME and antitumor immunity in

NSCLC (8, 22). To investigate regulatory role of METTL3 in the risk

score model, we initially found a positive correlation between

METTL3 expression and risk scores using Spearman correlation

(R = 0.137, P<0.05; Figure 5A). Additionally, m6Amodification data

for candidate signatures were retrieved from the m6A target

database (23). We subsequently investigated whether METTL3
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exerts regulatory effects on candidate signatures, given its role as

a key m6A writer in lung cancer. In A549 cells, METTL3

knockdown resulted in significant inhibition of CYP24A1,

KRT6A, S100P, FAM83A, PTTG1, and ANLN expression, while

SFTPC expression was significantly enhanced (Figure 5B). Similar

expression changes were observed in H460 cells, except for ANLN,

which did not show significant alteration (Figure 5C). This

discrepancy likely reflects the distinct genetic backgrounds and

m6A regulatory landscapes of the two cell lines, highlighting the

complexity of m6A modifications. To confirm the role of METTL3

as the potential “writer”, we evaluated the direct binding interaction

between METTL3 and the mRNAs of the seven candidate genes

using RIP-qPCR assays in both cell lines. There was significant

METTL3 enrichment in the mRNAs of all seven candidate genes

(Figure 5D), and this enrichment decreased upon METTL3

silencing (Figure 5E). These findings confirm that METTL3

directly binds to and potentially methylates the mRNAs of the

candidate genes in an m6A-dependent manner.

Subsequently, we explored the functional consequences of

METTL3 modulation. We constructed A549 cell lines with

stable overexpression (oe-METTL3) and knockdown (sh-

METTL3) of METTL3 (Supplementary Figure 4A). The results
FIGURE 4

Clinical experimental validation in LUAD tissue microarrays. (A) IHC assay of the seven candidate signatures. (B) Kaplan–Meier curves for high and
low risk score patient groups in LUAD tissue microarray data. (C) Univariate and multivariate Cox analyses of clinical parameters and lasso risk for
overall survival. The covariables are the N stage, T stage, TNM stage, and gender of the LUAD patients. (D) Stratified analysis of clinical characteristics
for the risk score value. The Kruskal-Wallis test was used to compare the statistical difference. (E) Correlation between risk score and PD-L1
expression in tissue microarray data. Wilcoxon test is shown in the graphs. .
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found that oe-METTL3 increased PD-L1 expression, while sh-

METTL3 decreased PD-L1 expression at both the mRNA and

protein levels (Figures 5F, G). Coculture experiments with A549

cells and PBMCs demonstrated that METTL3 knockdown

significantly enhanced T cell-mediated cytotoxicity, whereas
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METTL3 overexpression inhibited these T cell functions;

notably, the addition of atezolizumab partially restored T cell

antitumor effects with METTL3 overexpression (Figure 5H).

Furthermore, T cell proliferation, indicated by increased IL-2

and IFN-g production, was enhanced following METTL3
FIGURE 5

The METTL3-mediated m6A alteration in lung cancer regulates seven candidate signatures and enhance immune responses in vitro. (A) The
correlation analysis of METTL3 expression and risk scores by Spearman test. (B) The relative mRNA expression of seven candidate genes after
METTL3 knocking down (METTL3-KD) in A549 cells. (C) The relative mRNA expression of seven candidate genes after METTL3-KD in H460 cells.
(D) Enrichment of METTL3 on mRNA compared to IgG was analyzed by RIP-qPCR assay in A549 cells (left) and H460 cells (right). (E) The interaction
between METTL3 and mRNA in A549 cells (left) and H460 cells (right) with METTL3 knockdown. (F) The relative mRNA expression of PD-L1 in
different groups of A549 cells with stable METTL3 overexpression (oe-METTL3) and METTL3 knockdown (sh-METTL3). (G) Western blotting analysis
of PD-L1 in A549 cells with oe-METTL3 and sh-METTL3. (H) LDH release assay was used to measure cytotoxicity after 48 hours of co-culture.
(I, J) The levels of IL-2 (I) and IFN-g (J) in the co-culture medium was determined by ELISA. Data are represented as mean ± SEM of three
independent experiments. Statistical significance was calculated by Student’s t-test. *P<0.05, **P<0.01, ***P<0.001, ns, non-significant.
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knockdown, while METTL3 overexpression inhibited these

functions and atezolizumab also mitigated the inhibitory effects

of METTL3 overexpression on T cell activity to some extent

(Figures 5I, J). Collectively, these results indicate that METTL3-

mediated m6A modifications regulate candidate gene expression

in a cell line-specific manner and modulate the antitumor immune

response, underscoring the potential of targeting METTL3 in

NSCLC therapy.
Discussion

Currently, enhanced understanding will facilitate the

development of novel strategies to identify and eliminate high-

risk groups before they develop cancerous conditions, thereby

avoiding wasteful treatments for lesions with a poor likelihood of

responding to immunotherapy (24, 25). In the present research, the

genomic data of LUAD patients was initially integrated to

comprehensively evaluate the m6A and TIME patterns and then

collected the co-expression signatures between distinct patterns.

Furthermore, we established a risk-scoring system based on seven

candidate signatures (SFTPC, CYP24A1, KRT6A, PTTG1, S100P,

FAM83A, and ANLN) to predict the survival benefits. Patients who

were determined to be low-risk had significantly better OS by

external validation. We also built a nomogram model that

incorporated clinicopathological characteristics and prognostic

risk ratings (Supplementary Figure 2D). The nomograms

outperformed the other methods in predicting 5- and 7-year OS,

as shown in the calibration chart (Supplementary Figure 2E). In

addition, a nomogram that integrates risk scores and other clinical

variables was constructed to provide a quantitative approach for

clinical treatment. Furthermore, 93 surgical specimens were

selected as independent clinical validation cohorts. A prolonged

OS was also seen in those with lower scores. Additionally, risk score

was the only stable and independent factor affecting survival across

multiple cohorts. Taken together, we will get a better knowledge of

tumor treatment by the risk scoring system established based on a

large scale of LUAD cohort.

The TIME is considered a major contributor to the efficacy of

both chemotherapy and immunotherapy in LUAD (26). m6A

modification has a critical role in immune cell infiltration

characterization during the TIME (11, 27, 28). In our model, the

signatures that comprised the risk score model were reported to

have a positive correlation with TIME. PTTG1 has been implicated

in T cell cycle-dependent mechanisms and further activates T cells

(29). Tumor-infiltrating immune cells are stimulated by S100P

through the activation of the receptor for advanced glycation end

products, and this molecule could serve as a promising biomarker

for immunosuppressive microenvironment (30, 31). FAM83A, on

the other hand, stimulates the expression of PD-L1 via ERK

pathway and lowers immunocyte activity in LUAD (32). In

agreement with these findings, the above-mentioned genes

contributed to a positive index for the high-risk–scoring cohort.

We further questioned whether risk signatures play an

important role in TIME. We found that TMB, neoantigens, and
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genetic alterations levels were increased in the high-risk group. For

the analysis of the immune panorama, the risk score was found to

be consistent with a higher proportion of activated CD4 + memory

T cells, Macrophages M1, activated NK cells, and CD8 + T cells in

the TIME. These results suggest that the TIME of high-risk patients

exhibits “hot immune” conditions. They accumulate mutations that

cause tumor cells create surface-bound neoantigens; this makes the

tumor easier for the immune system to recognize and, hopefully,

trigger a robust immune response (33, 34). However, an inverse

relationship was found between the risk score and the HLA-D

family, indicating the presence of a suppressive tumor immune state

(35). Collectively, the high-risk LUAD patients in the present study

appeared to exhibit a high percentage of immune cell infiltration

microenvironment but under an immune dysfunctional condition.

Researchers have mapped the type of immunocyte landscape during

the TIME in advanced LUAD and similarly found a greater

abundance of CD8+ T cells and macrophages infiltrating the

tumor, as well as increased expression of immunosuppressive

markers (36, 37), which indicates an anergic state in immune cell

reactions to tumors. We gathered the expression profiles of

immunosuppressive markers that have been shown to indirectly

foretell the efficacy of immunotherapy. A positive association

between the risk score and various immune checkpoints was

shown by our data. Consistent with these results, increased TMB

levels were associated with immune cell infiltration and higher

expression of immunosuppressive checkpoints, resulting in

increased sensitivity to ICIs in NSCLC (38). However, owing to

the lack of ICI records, we preliminarily speculated the potential

candidates for immunotherapy who are at high risk by comparing

the relationship between risk scores and these verified biomarkers.

In addition, patients with elevated risk scores exhibited reduced

sensitivity to standard chemotherapeutic medicines for LUAD and

were in an immunosuppressive state. Remarkably, the

chemotherapy response is also affected by TIME and the

activation of tumor-infiltrating immunocytes. The current clinical

trials have demonstrated that combining with immunotherapy

shows more effectiveness than chemotherapy alone, as well as any

other combination of immunotherapy or single-agent therapy (39,

40). Therefore, we suggest prioritizing the administration of both

chemotherapy and immunotherapy for patients with LUAD

identified as high-risk in our approach.

In this study, the correlation between METTL3 expression and

lung cancer cells was investigated in vitro. These results suggested that

after knocking down METTL3 in LUAD cells (both A549 and H460

cell lines), the seven candidate genes were directly regulated in the

same manner as in the risk score system. In addition, RIP analysis

revealed enrichment of METTL3 with the mRNAs of these

molecules, and this connection was disrupted by METTL3

deficiency. In addition to its role in gene expression, METTL3

plays a crucial part in immune regulation, particularly in mediating

the mechanisms of immune regulatory signaling molecules.

Specifically, METTL3 enhances the immunosuppressive capacity of

myeloid cells that infiltrate tumors (41). Suppression of METTL3 has

been shown to reduce the immunosuppressive environment, thereby

enhancing immune surveillance. Notably, combining METTL3
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suppression with anti-PD1 treatment has demonstrated promising

effectiveness against tumors (42–44). Based on m6A regulators, the

scoring system we established may be used to predict the

modification pattern in individual patients with LUAD and,

encouragingly, to propose novel treatments for METTL3 as a

possible secondary therapeutic option for the high-risk LUAD

group. Our findings demonstrated that overexpression of METTL3

significantly upregulated PD-L1 in the A549 cell line, inhibiting the

anti-tumor effects of T cells. This aligns with the known function of

PD-L1 in immune evasion by tumors (45). Our previous study has

found that METTL3 knockdown in a breast cancer mouse model

enhanced PD-1 immunotherapy efficacy by improving CD8+ T cell

infiltration and reducing immunosuppressive cells, thereby

promoting an anti-tumor immune environment (11). Interestingly,

the addition of atezolizumab, an anti-PD-L1 antibody, partially

restored the anti-tumor effects of T cells, suggesting that the

immunosuppressive role of METTL3 may be mediated through

PD-L1. Conversely, METTL3 knockdown did not significantly alter

the anti-tumor effects of T cells, regardless of atezolizumab treatment.

This suggests that role of METTL3 in immune regulation is

prominent. Additionally, we examined the other key m6A

regulatory molecules , METTL14 and WTAP (P<0.05;

Supplementary Figure 4C). Although these molecules also showed

regulatory effects on the candidate genes, the trends were not as

significant as those observed with METTL3 (Supplementary

Figures 4D–G). According to these findings, it is evident that the

regulatory effect of m6A modifications is extensive and not solely

attributable to METTL3. The interplay between various m6A

regulatory molecules and their collective impact on gene expression

and immune regulation underscores the complexity of epigenetic

modifications in cancer biology. Further studies are warranted to

delineate the specific roles of other m6A regulators in this context.

There are several limitations to thismodel. First, we lacked data on

the immunotherapy procedures and outcomes. The clinical

information for patients undergoing or scheduled for

immunotherapy is not well represented in our protein databases,

preventing confirmation of these results in immunotherapy-treated

cohorts. Future research should integrate RNA sequences, somatic

mutations, and therapeutic outcomes of LUAD patients treated with

immunotherapy. The databases used in this study did not include

sufficientmulti-locus sampling datawithin single tumors, which limits

the ability to account for geographic heterogeneity in intratumor

immunoreactivity and may reduce model accuracy. Additionally, we

were unable to perform extensive bioinformatic analyses on a larger

validation cohort using RNA-sequence data. Instead, we validated our

results using two large independent cohorts and an external IHC tissue

microarray. Future studies should incorporate data from patients

undergoing immunotherapy to further validate the model’s utility in

predicting treatment outcomes.

In conclusion, we identified a seven-gene risk scoring model to

distinguishing patients with LUAD with high- or low-risk. The risk

score was also a factor that caused heterogeneity and complexity of

individual tumor microenvironments. Further in vitro studies

suggested that the candidate genes were regulated in an METTL3

−dependent m6A manner. An in-depth analysis of risk patterns will
Frontiers in Immunology 11
improve our comprehension of the TIME and help in developing

more efficient therapy approaches for patients with LUAD.
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