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Tumor mutation burden (TMB), defined as the number of somatic mutations of

tumor DNA, is a well-recognized immunotherapy biomarker endorsed by

regulatory agencies and pivotal in stratifying patients for clinical decision-

making. However, measurement errors can compromise the accuracy of TMB

assessments and the reliability of clinical outcomes, introducing bias into

statistical inferences and adversely affecting TMB thresholds through

cumulative and magnified effects. Given the unavoidable errors with current

technologies, it is essential to adopt modeling methods to determine the optimal

TMB-positive threshold. Therefore, we proposed a universal framework,

TMBocelot, which accounts for pairwise measurement errors in clinical data to

stabilize the determination of hierarchical thresholds. TMBocelot utilizes a

Bayesian approach based on the stationarity principle of Markov chains to

implement an enhanced error control mechanism, utilizing moderately

informative priors. Simulations and retrospective data from 438 patients reveal

that TMBocelot outperforms conventional methods in terms of accuracy,

consistency of parameter estimations, and threshold determination. TMBocelot

enables precise and reliable delineation of TMB-positive thresholds, facilitating

the implementation of immunotherapy. The source code for TMBocelot is

publicly available at https://github.com/YixuanWang1120/TMBocelot.
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Introduction

Immune checkpoint inhibitors (ICIs), exemplified by

Programmed Cell Death-1 (PD-1)/Programmed Death-ligand 1

(PD-L1) inhibitors, have conferred significant clinical benefits

across various cancer types (1–7). However, these benefits are not

universal; only a subset of patients respond favorably to ICIs.

Accurately identifying patients who are most likely to benefit

from immunotherapy is crucial for optimizing treatment

strategies and improving patient outcomes.

Tumor mutation burden (TMB), quantifies the number of

somatic mutations per megabase of tumor DNA and has emerged

as a key biomarker for predicting responses to ICIs. A higher TMB

suggests a greater likelihood of producing neoantigens—novel

proteins recognized as foreign by the immune system—which can

enhance immune detection and elimination of cancer cells (11–13).

Regulatory agencies worldwide have endorsed TMB as the sole

guiding biomarker for pan-cancer immunotherapy applications (8–

10). Determining the optimal TMB threshold that defines a “TMB-

positive” patient is of paramount therapeutic importance for clinical

decision-making (14, 15). An appropriate threshold assists

clinicians in effectively screening potentially superior patients,

ensuring effective treatment while avoiding unnecessary side

effects in patients less likely to benefit. Optimizing this threshold

is critical for maximizing therapeutic efficacy and personalizing

cancer care.

Nevertheless, standardizing TMB thresholds is complicated by

two significant computational challenges. First, the benefits of

immunotherapy are multifaceted, encompassing measurable tumor

shrinkage and prolonged survival (16). Effective patient selection

should consider all relevant clinical outcomes. Integrating multiscale

clinical endpoints—such as tumor response rates and survival times

—into a single predictive model requires advanced statistical methods

capable of handling different data types and relationships. Secondly,

accurate measurement of TMB and assessment of clinical outcomes

involve inherent uncertainties and potential errors (17–19). For TMB,

factors such as tumor heterogeneity, variations in sequencing

technologies, computational algorithm differences, and tumor

purity can introduce inaccuracies (20–22). As a result, the

measured TMB (labeled with TMB*) is an approximation of the

true value, expressed as TMB* = TMB + e1, where e1 represents

measurement error may not conventionally adhere to parametric

statistical distributions. Correspondingly, clinical endpoints paired

with TMB, especially tumor response, also entail a high risk of

measurement error. The assessment of objective tumor response is

often based on imaging criteria like the Response Evaluation Criteria

in Solid Tumors (RECIST 1.1) (21), determined by a single

measurement of the maximum tumor diameter in the axial plane

(29) and is categorized into different statuses. The precision of

response labels can be affected by measurement precision, reader

interpretation, image quality, and patient-specific factors (30, 31).

These noises may likewise introduce error perturbations to endpoint

observations, R* = R + e2. Errors are transmitted and amplified to the

patient screening stage with downstream estimation derivations,

further destroying the consistency of inference and meddling with

thresholds. The formula derivations and schematic diagrams in the
Frontiers in Immunology 02
Supplementary Material illustrate the impact of pairwise error in

immunotherapy. These measurement errors can distort the true

relationship between TMB and patient outcomes, leading to

unreliable thresholds and potentially suboptimal treatment

decisions. Ignoring or mischaracterizing these errors compromises

the accuracy of statistical inferences and affects clinical decision-

making (17, 23–27).

To effectively address the pairwise errors, we present

TMBocelot—an Omnibus statistical Control model Optimizing

the TMB Thresholds with systematic measurement errors. The

presented methodology can adopt targeted methods to meet the

requirements of the error specification, demonstrating the ability to

effectively design a judicious pairwise error control mechanism for

joint models that incorporate multiscale clinical endpoints.

TMBocelot leverages a Bayesian statistical approach, utilizing the

properties of Markov chains and incorporating moderately

informative priors to model and correct measurement errors in

both TMB assessments and clinical outcomes.

Our methodology provides tailored solutions adaptable to

different cancer types, measurement error characteristics, and

clinical scenarios. The simulations provided empirical evidence

supporting our proficiency in accurate estimation and reliability

in threshold determination. Additionally, we applied TMBocelot to

4 retrospective cohorts of non-small cell lung cancer (NSCLC) to

demonstrate the performance. Results suggest that the proposed

model can achieve more comprehensive and robust TMB

thresholds, offering valuable insights to enhance the treatment of

cancer patients. The code for TMBocelot is available at https://

github.com/YixuanWang1120/TMBocelot.
Materials and methods

In clinical practice, errors in data can arise in many forms,

ranging from almost negligible in high-quality, expensive

techniques to partially observable with the addition of further

data. Therefore, it is essential to develop a general framework that

can handle different types of errors across these various conditions.

The methods described below are tailored to specific scenarios in

this study.
Modeling without measurement errors

First, we state a method that does not take into account any

error. To accurately determine the TMB-positivity thresholds from

multifaceted efficacy analyses, previous work (27, 28) has integrated

two types of clinical outcomes: binary tumor response (e.g.,

responder or non-responder) and continuous time-to-event

(TTE) endpoints (e.g., survival or progression-free survival). This

integration accounts for the within-subject dependency between

these two types of endpoints. For simplicity, we refer to this method

as the Bayesian Naïve Method (Bayes-NM).

Specifically, for patient i, Ri denotes the tumor response status

(Ri = 1,  0 for response and non-response, respectively), Zi denotes

clinical covariates (e.g., age, gender, stage of cancer), and TMBi
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denotes the error-free biomarker. The tumor response Ri depends

on both the covariates Zi and TMBi. We model this using a logistic

regression model, which relates the probability of response to these

factors:

logit(Ri jZi,  TMBi,   bi;   q) = a   T
z Zi + amTMBi + bi (1)

where q represents a vector of unknown parameters.; az   and am

denotes regression coefficients for the covariates Zi and TMBi; bi is a

random effect for patient i (accounting for unmeasured

individual variations).

Next, for time-to-event analysis, the event time Ti represents the

observed time until the occurrence of an event (e.g., tumor

recurrence, progression, or death), which is taken as the

minimum of the actual event time Ui and the censoring time Ci.

Define the event indicator as Di = I(Ui ≤ Ci), where I( · ) is the

indicator function that equals 1 if the event occurs and 0 if censored.

For the time-to-event (TTE) data, we use the Cox proportional

hazards (Cox-PH) model, which focuses on classifying patients by

their survival risks:

hi(t jZi,  TMBi,   bi;   q) = h0(t)exp(b
  T
z Zi + bmTMBi + bi) (2)

where hi(t) describes the instantaneous risk for patient i at time t;

h0(t) is known as the baseline hazard, typically modeled using the

Weibull distribution; bz and bm is effect coefficients for the

covariates Zi and TMBi; the shared term bi is a random effect

term accounting for correlation between event times and responses.

The random effect bi is assumed to follow a normal distribution

N(0,  s 2
b ), which represented the intra-subject correlation between

event times and individual response.

The observed dataset for Bayes-NM is denoted as Dn =

Ri,Ti,Di,Zi,TMBif gni=1. Multiscale endpoints (response and

survival) can be jointly modeled by incorporating random effects

and adjusting for the dependencies between the response

probabilities and event times. Formally, the joint likelihood for

the data is given by:

p(Ri,  Ti,  Di,  bi;  q) = p(Ri j bi;  q) · p(Ti,  Di j bi;  q) · p(bi;  q)
The joint log-likelihood function is then:

‘(q) =o
i
log ∫p(Ri j bi;  q)p(Ti,  Di j bi;  q)p(bi;  q)dbi (3)

Inference about parameters q is typically based on the

maximization of this log-likelihood. Since the likelihood involves

random effects, we use Markov Chain Monte Carlo (MCMC)

sampling to estimate the posterior distribution of the parameters A.

To begin Bayesian inference, we must specify prior distributions

for the unknown parameters. For the regression coefficients and

variance components, we use non-informative priors as follows:

az ,  am,  bz ,  bm ∼N(0,  102)

l ∼ gamma(0:001,  0:001)

s   −2
b ∼ gamma(0:001,  0:001)

(4)

These priors reflect weak prior knowledge and allow the data to

predominantly drive the posterior estimates.
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Once the priors are defined, we use MCMC to sample from the

posterior distribution of the parameters. The parameters are

estimated as the average of the posterior sample:

q̂ ≈
1
Ko

K
k=1q

0
k

where q 0
k is the k-th sample from the posterior distribution and K is

the number of MCMC iterations.

Equations 1, 2, and 4 comprise the core of Bayes-NM, assuming

the absence of measurement errors, with further elaboration

available in the Supplementary Material.
Modeling under TMB error control

In practice, the measured TMB (i.e. TMB*) is an approximation

of the true TMB, due to inherent measurement errors, i.e., TMB* =

TMB + e, where both TMB and e are unobserved potential variables

and mutually independent. While external or internal validation

sets can sometimes provide information on error characteristics,

they may not always be available. This complexity in real-world data

necessitates different strategies for handling errors. Below, we

describe several methods for addressing these errors in the

context of TMB measurement.

Corrected-score for normal TMB error
In certain cases, the error ei in the measurement of TMB follows

a normal distribution with known variance se. To address this, we

use the Corrected-Score Method (CSM), which is an estimation

technique that adjusts for the measurement error in TMB (27). The

CSM ensures that the first-order derivative of the likelihood

(denoted as  Y*
c ) is unbiased for the true score function, given

the true TMB. This property can be written as:

E Y*
c (Ri,  Ti,  Di,  Zi,  TMB*i ;  Q) jTMBi

n o
= Y(Ri,  Ti,  Di,  Zi,  TMBi jQ)

This property means that the expected value of the corrected

score is equal to the score based on the true TMB values. The

method is conditionally unbiased, meaning it provides a reliable

estimate of the parameters when the true TMB is known (32).

Despite its advantages, the CSM has limitations. It assumes that

the measurement error eie_iei follows a normal distribution with

known variance and cannot handle situations where there is

misclassification in the clinical endpoints (e.g., incorrect tumor

response classification). If such assumptions are not met, this

approach may not perform optimally. In these cases, alternative

methods like a non-parametric deconvolution approach (33) could

be used to estimate the measurement error distribution.

Robust correction for unspecified TMB error
When there is no prior information about the error distribution,

the CSM becomes impractical. To address this limitation, we

expand upon the original Bayesian model by treating both TMB

and the measurement error   ei as random variables. This extension

leads to the Bayesian Error Correction Method (Bayes-ECM),

which does not rely on a normal distribution assumption for the
frontiersin.org
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measurement error. The Bayes-ECM models the measurement

error and the true TMB using Dirichlet Process (DP) priors.

Specifically:

fe ∼DP(Me,  Ge)

fTMB ∼DP(MTMB,  GTMB)

where DP stands for Dirichlet Process, a distribution that allows for

flexible modeling of uncertainty and is used here to model the

uncertainty in the error distribution and the true TMB values (34).

The parameters Me and  Ge define the base measure and

concentration parameter for the error distribution, and similarly,

MTMB and  GTMB define those for the true TMB.

While the Dirichlet Process allows for robust modeling of

measurement error and TMB, it yields a random, discontinuous

distribution, making continuous density estimation challenging. To

overcome this limitation, we convolve the Dirichlet Process with a

continuous kernel or treat the Dirichlet Process as a mixing measure

over parametric forms (35). Take f as a typically finite-dimensional

parameter space and let fj be a continuous probability distribution

function for each j ∈ f. Then fe(e) with j = (m,  s 2) may be:

fe(e) =
Z

fj(e)dG(j)

G∼DP(Me,  Ge)

fj(e) = N(e jm,  s 2)

This approach leads to a Gaussian Mixture Model (GMM),

which can approximate any distribution with sufficient flexibility

(35, 36).

The error distribution for TMB measurement can be expressed

as a Gaussian Mixture:

fe(e) =o
K

i
piN(mei,  s

   2
ei ) (5)

where K is the number of mixture components, determined by the

data; pi is the mixing weight for each component, mei and sei are the

mean and variance of each Gaussian component, respectively.

Similarly, the true TMB values are modeled as:

fTMB(TMB) =o
K

i
piN(mTMBi,  s

   2
TMBi

) (6)

Where the mixture model allows flexibility in modeling both the

true TMB and the measurement errors. The number of components

K is determined by the data, providing a robust way to estimate the

error distribution without needing external validation sets or prior

assumptions. The Supplementary Material will discuss the Gaussian

distribution-to-stochastic process conversion and parameter

adjustments. Equations 1 and 2 describe the basic regression

models for response and survival data, incorporating TMB.

Equations 5, 6 describe the Gaussian Mixture Models for the

measurement error and the true TMB.
Frontiers in Immunology 04
In summary, the Bayes-ECM is a more general and robust

approach compared to the CSM. It allows for the modeling of TMB

measurement errors without relying on specific distributional

assumptions and offers flexibility in cases where no external error

information is available.
Modeling under response error control

In addition to errors arising from TMB measurements, paired

endpoints, such as clinical response, may also suffer from

measurement inaccuracies. While errors in continuous TTE

endpoints typically do not have a significant effect on the

consistency of the analysis, response misclassification in discrete

endpoints can substantially affect model accuracy and predictions.

To address this, we propose the Bayesian Misclassification

Correction Method (Bayes-MCM), which aims to account for

misclassification errors in the observed response.

In this case, the observed Ri  is no longer an accurate reflection

of the true tumor state but may be a misclassified version of the

actual response Yi. To address this, we define the following

misclassification parameters:

h = P(Ri = 1 jYi = 1)

the probability of correctly classifying a true response (tumor

shrinkage) as a positive response.

d = P(Ri = 0 jYi = 0)

the probability of correctly classifying a true non-response (no

tumor shrinkage) as a negative response.

To incorporate these parameters, the standard mixed-effects

logistic regression model for the true response endpoint:

logit(Yi jZi,  TMBi,   bi;  q) = aT
z Zi + amTMBi + bi

The corresponding model for the observed response is:

P(Ri = 1 jZi,  TMBi,   bi;  q) = hP(Yi = 1) + (1 − d)(1 − P(Yi = 1)) (7)

where P(Yi = 1) is derived from the logistic regression model.

Previous research (37) has demonstrated that without additional

constraints or information, the misclassification parameters h and d  
are not practically identifiable. To overcome this limitation, we

updated the Bayesian framework by incorporating informative

priors and imposing constraints on these parameters. Specifically,

the priors are modeled as Beta distributions:

h∼Beta(ϵ1,   ϵ2)

d ∼Beta(ϵ3,   ϵ4)
(8)

where ϵ1, ϵ2, ϵ3, ϵ4 are constants chosen based on prior knowledge

or assumptions about misclassification rates. For example, h∼Bet

a(9,  1) assumes that the probability of correctly identifying a

response is high, but not certain, with a mean of 0.9 and a 95%

credible interval of [0.664, 0.997]. Conversely, d ∼Beta(72:5,  2:5)

reflects a strong belief in the reliability of non-response
frontiersin.org
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classification, with a mean of 0.98 and a 95% credible interval of

[0.917, 0.995]. These priors are constructed to reflect existing

knowledge or reasonable assumptions about misclassification rates.

Furthermore, misclassification probabilities may vary across

subpopulations, depending on factors such as tumor type, disease

stage, or patient demographics. To address this, Bayes-MCM will

incorporate hierarchical structures for h and d, enabling the model

to estimate separate parameters for different subgroups. This

flexibility allows for tailored misclassification rates that reflect

variations based on patient characteristics, such as prior

treatments or response patterns.

The core of the Bayes-MCM includes Equations 2, 4, 7, and 8.

Full mathematical details and derivations are provided in the

Supplementary Material.
Modeling under pairwise error control

While misclassification errors can occur in individual

components (like TMB and response endpoints), real-world

errors often involve both types of measurements simultaneously.

The Bayesian Pairwise Error Correction Method (Bayes-PECM)

extends the Bayes-MCM by simultaneously modeling both TMB

errors and response misclassification.

In this comprehensive model, Equations 2, 4–8 jointly account

for both sources of error. The model is flexible enough to adapt to

the uncertainties in both TMB measurements and response

misclassification, with details in the Supplementary Material.
Framework for localizing TMB-
positive thresholds

The Bayesian framework and pairwise error correction in

TMBocelot enable a convergent and comprehensive estimate of ICI

benefits for individual patients. By utilizing the joint likelihood to

characterize a patient’s factual condition post-treatment and

employing TMB as a biomarker, we used TMBcat to identify a

stratification threshold based on the cut-off value with the minimum

p-value (38, 39). Patients could be categorized into two categories for

treatment prognosis comparison based on such a threshold.

We developed a robust framework for determining TMB-

positive thresholds, ensuring broad applicability across diverse

error scenarios. Depending on the specific context, the

corresponding methods outlined above can be applied for

parameter estimation, followed by the use of joint probabilities to

identify precise TMB thresholds. The complete framework is given

in pseudocode in Algorithm 1 and Figure 1A. To facilitate adoption

and reproducibility, we provide implementation resources. The

source code for TMBocelot, including the full implementation of

the Bayesian framework, pairwise error correction, and threshold

determination methods, is publicly accessible at https://github.com/

YixuanWang1120/TMBocelot. This open-access repository serves

as a practical guide for researchers and clinicians. By making the

codebase available, we aim to bridge the gap between technical
Frontiers in Immunology 05
complexity and practical usability, ensuring TMBocelot can be

readily integrated into clinical decision-making workflows.
I n p u t : O b s e r v e d s a m p l e i n f o r m a t i o n Dn =

Ri ,  Ti ,  Di ,  Zi ,TMB*i ,  i = 1,  2,…,n
n o

Output: TMB-positive threshold

1. Define TMB errors and true response, denoted by e and Y,

respectively

2. Select a model and correction method based on

error circumstance

if e = 0 && R = Y then

Model and estimate q̂ according to Bayes-NM

end

if e ≠ 0 && R = Y then

if eeN(0,  s 2) then

Model and estimate q̂ according to CSM

else

Model and estimate q̂ according to Bayes-ECM

end

end

if e = 0 && R ≠ Y then

Model and estimate q̂ according to Bayes-MCM

end

if e ≠ 0 && R ≠ Y then

Model and estimate q̂ according to Bayes-PECM

end

3. Compute the joint probability p(Yi = 1,    Ti > T0; q̂ ),

where Yi is the true value for Ri

4. Employ TMBcat to find the group with the minimum p-

value

5. Choose the threshold based on the above grouping
Algorithm 1. Framework for localizing TMB-positive thresholds.
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https://github.com/YixuanWang1120/TMBocelot
https://github.com/YixuanWang1120/TMBocelot
https://doi.org/10.3389/fimmu.2024.1514295
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lai et al. 10.3389/fimmu.2024.1514295
Results

Experimental patient cohorts

To validate the applicability of TMBocelot, we assembled four

cohorts of 438 different patients from publicly available studies,

encompassing 57, 68, 73, and 240 patients with NSCLC (26, 40–42).

Our primary efficacy endpoints were tumor response and

progression-free survival (PFS) evaluated according to the

RECIST criteria. Figure 1B illustrates the data collection process.

The specific patient information is listed in Supplementary

Table S1.

The decision to focus exclusively on NSCLC cohorts was driven

by the extensive availability of publicly accessible datasets for this

cancer type and the well-established clinical relevance of TMB as a
Frontiers in Immunology 06
biomarker in NSCLC. Additionally, NSCLC represents a

heterogeneous disease with varying response patterns to immune

checkpoint inhibitors, making it a valuable model for evaluating the

performance of TMBocelot.

Furthermore, we assessed the performance of TMBocelot in

addressing various errors in oncology trials through a series of

simulations. The simulations involved 200 individuals, each

characterized by an individual-specific random effect bi across

multiple endpoints. bi was drawn from a normal distribution with

a mean of zero and variance s 2
b . Tumor response states were

categorized as response (Yi = 1) and non-response (Yi = 0). Ri =

Yi when misclassifications did not occur; otherwise, adjustments

were made based on misclassification parameters h and d . Actual
response states were generated based on logistic probability, and

patient event times were derived from a survival density following
FIGURE 1

(A) The flow chart for the TMB threshold identification framework. (B, C) The process of generating simulation data and collecting experimental data.
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the Weibull distribution with a shape parameter of 1.0. Censoring

time C was randomly generated from a uniform distribution U

(0, 10).

We se t az = −0:8,  am = 0:4,   l = 1:0,   bz = 1:0,   bm = −0:4

and sb = 0:5. Zi was generated from the uniform distribution U

(0, 1). Various error scenarios were designed, including error-free,

TMB errors only, endpoints misclassification only, and both. We

used the corresponding approaches described above. In

experiments focusing on TMB errors, we assigned different

distributions to the true TMB and measurement errors to

demonstrate the methods’ efficiency. We separately set h, d to

(0.70, 0.95) and (0.75, 0.98) for experiments considering response

misclassification. Detailed settings can be found in the

Supplementary Table S2. Figure 1C roughly depicts the

generation of the simulation data.
Pairwise error control enables accurate
statistical inference

In the simulations, we report fitted values, average bias,

standard deviation (SD), and standard error (SE) for each

parameter. SD measures variability in the estimates across 500

simulations, while SE represents their average error.

Table 1 summarizes parameter estimates, with extensive

simulations detailed in Supplementary Table S2. These results

highlight the robust performance of TMBocelot across various

error scenarios. While TMBocelot performs slightly worse

than the true-data estimator under measurement errors or
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misclassification, it significantly outperforms the naive estimator,

which ignores such errors. This strongly supports TMBocelot’s

effectiveness in handling diverse error types.

Additionally, distinguishing between the corrected-score and

Bayesian robust methods is crucial when considering only TMB

errors. The results indicate: i) Regardless of the distribution of

actual TMB, the corrected-score outperforms the Bayesian method

when TMB errors follow a normal distribution with a standard

deviation of 1.0. However, the Bayesian method performs better for

errors with a larger deviation. The corrected-score may be more

effective for minor errors, while the Bayesian robust method is

preferable for more significant errors. ii) If TMB errors follow the

extreme value distribution, the corrected-score’s performance

deteriorates compared to the normal distribution, while the

Bayesian method remains stable. This suggests that the corrected

scoring method’s normality assumption may mis-specify the error

distribution, especially in asymmetric distributions. Conversely, the

Bayesian method demonstrates robustness concerning TMB error

and truth value distribution. iii) The SE and SD for the Bayesian

robust method exceeded those for the corrected-score method,

attributed to a lack of a priori information. These limitations

become more pronounced when accurately and robustly

estimating the distribution of TMB actual values. The corrected-

score is recommended for minor errors and a known variance; the

Bayesian robust method is preferable for more significant errors or

asymmetric distributions.

To evaluate the effect of errors on TMB thresholds and

TMBocelot’s stability, we simulated treatment efficacy across

different thresholds, considering 500 patients with actual TMBs
TABLE 1 Comparisons of bias and standard errors of estimators among various estimators.

Model and estimator Coef Fitted value Average bias SE SD

TMB ~ Laplace (mean = 1, var = 1:52)

True-data
Bayesian estimator

l 1.015 0.015 0.076 0.099

b 1.011 0.011 0.193 0.215

bm -0.404 -0.004 0.065 0.074

a -0.853 -0.053 0.328 0.304

am 0.426 0.026 0.116 0.116

sb 0.476 -0.024 0.135 0.208

TMB with errors

e ~ Normal (0, 1:02)
Naive estimator

l 0.963 -0.037 0.070 0.082

b 0.760 -0.240 0.177 0.199

bm -0.270 0.130 0.051 0.054

a -0.637 0.163 0.303 0.292

am 0.286 -0.114 0.089 0.089

sb 0.447 -0.053 0.123 0.204

TMB with errors

e ~ Normal (0, 1:02)
Bayesian estimator

l 1.030 0.030 0.089 0.101

b 1.021 0.021 0.272 0.291

bm -0.467 -0.067 0.133 0.124

(Continued)
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TABLE 1 Continued

Model and estimator Coef Fitted value Average bias SE SD

TMB ~ Laplace (mean = 1, var = 1:52)

a -0.783 0.017 0.388 0.331

am 0.443 0.043 0.186 0.159

sb 0.462 -0.038 0.140 0.223

TMB with errors

e ~ Normal (0, 1:02)
Corrected-score estimator

l 1.001 0.001 0.056 0.092

b 0.945 -0.055 0.152 0.233

bm -0.385 0.015 0.054 0.093

a -0.783 0.017 0.316 0.349

am 0.384 -0.016 0.108 0.144

sb 0.479 -0.021 0.044 0.207

TMB with errors

e ~ Extreme (0, 1:02)
Naive estimator

l 0.963 -0.037 0.070 0.086

b 0.737 -0.263 0.177 0.195

bm -0.264 0.136 0.050 0.057

a -0.653 0.147 0.306 0.303

am 0.293 -0.107 0.090 0.093

sb 0.452 -0.048 0.125 0.198

TMB with errors

e ~ Extreme (0, 1:02)
Bayesian estimator

l 1.022 0.022 0.087 0.099

b 0.992 -0.008 0.265 0.271

bm -0.449 -0.049 0.127 0.128

a -0.792 0.008 0.384 0.341

am 0.447 0.047 0.183 0.149

sb 0.460 -0.040 0.136 0.220

TMB with errors

e ~ Extreme (0, 1:02)
Corrected-score estimator

l 1.017 0.017 0.056 0.102

b 0.933 -0.067 0.149 0.268

bm -0.369 0.031 0.049 0.103

a -0.796 0.004 0.319 0.381

am 0.387 -0.013 0.112 0.161

sb 0.528 0.028 0.045 0.203

Response with misclassification
(h, d ) = (0:75, 0:98)
Naive estimator

l 0.985 -0.015 0.045 0.054

b 0.973 -0.027 0.115 0.123

bm -0.395 0.005 0.039 0.042

a -1.250 -0.450 0.205 0.188

am 0.229 -0.171 0.064 0.063

sb 0.429 -0.071 0.083 0.125

Response with misclassification
(h, d ) = (0:75, 0:98)
Bayesian estimator

l 1.015 0.015 0.052 0.066

b 1.015 0.015 0.126 0.146

bm -0.406 -0.006 0.042 0.047

a -0.877 -0.077 0.357 0.342

am 0.464 0.064 0.135 0.128

(Continued)
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positively correlated to favorable outcomes. The coefficientswere set to

 az = −1:8,  am = 0:4,  l = 1:0,   bz = 2:2,   bm = −0:4 and sb = 0:5.

TMBerrorswere generated by the normal distributionwith a standard

deviation of 1.0 and misclassification parameters h = 0:75,  d = 0:98.

Wederived different thresholds for classifying patients and comparing

the treatment efficacy of TMB-based subgroups.

It is worth noting that the selection of TMBi and Ri in the

thresholding process and the efficacy comparison. When

accounting for TMB errors or tumor response misclassification,

we used the corresponding posterior estimates. For scenarios

ignoring errors, the observed values were used. The comparison

outcomes are depicted in Figure 2.

Significant efficacy disparities between TMB-low and TMB-

high groups reflect the correlation between higher TMB and

increased antitumor immunogenicity. Specifically, results show: i)

Thresholds considering response misclassification result in greater

disparities in tumor response (Figure 2D, p < 0.001) compared to
Frontiers in Immunology 09
the naive method (Figure 2B, p = 0.118), with similar survival curve

disparities (Figures 2A, C). ii) The threshold considering TMB

errors results in more significant disparities in both the survival

curve and response (Figures 2E-H) compared to the threshold based

on the naive method (Figures 2A, B) though tumor response

disparities (Figures 2F, H, p = 0.011, 0.010) are slightly smaller

than those considering only misclassification (Figure 2D, p < 0.001).

iii) Thresholds considering both TMB errors and response

misclassification yield the most significant disparities in survival

and tumor response (Figures 2I, J) compared to all other methods

(Figures 2A–H). These findings indicate that TMB errors impact

survival and tumor response, while response misclassification

primarily affects tumor response. The framework effectively

establishes robust TMB thresholds, supporting clinical decision-

making even with pairwise errors.

To emphasize posterior TMB’s role in patient classification, we

used accurate response labels. Logistic predictors based on
TABLE 1 Continued

Model and estimator Coef Fitted value Average bias SE SD

TMB ~ Laplace (mean = 1, var = 1:52)

sb 0.501 0.001 0.101 0.160

TMB with errors and response
with misclassification

e ~ Normal (0, 1:02)
(h, d ) = (0:75, 0:98)
Naive estimator

l 0.949 -0.051 0.068 0.081

b 0.721 -0.279 0.172 0.181

bm -0.266 0.134 0.050 0.052

a -1.127 -0.327 0.312 0.262

am 0.158 -0.242 0.086 0.076

sb 0.407 -0.093 0.119 0.189

TMB with errors and response
with misclassification

e ~ Normal (0, 1:02)
(h, d ) = (0:75, 0:98)
Bayesian estimator

l 1.035 0.035 0.091 0.112

b 1.025 0.025 0.277 0.287

bm -0.465 -0.065 0.131 0.126

a -0.802 -0.002 0.599 0.389

am 0.449 0.049 0.297 0.180

sb 0.483 -0.017 0.155 0.244

TMB with errors and response
with misclassification

e ~ Extreme (0, 1:02)
(h, d ) = (0:75, 0:98)
Naive estimator

l 0.955 -0.045 0.069 0.081

b 0.743 -0.257 0.173 0.194

bm -0.263 0.137 0.049 0.052

a -1.124 -0.324 0.314 0.266

am 0.165 -0.235 0.086 0.081

sb 0.434 -0.066 0.122 0.183

TMB with errors and response
with misclassification

e ~ Extreme (0, 1:02)
(h, d ) = (0:75, 0:98)
Bayesian estimator

l 1.048 0.048 0.093 0.124

b 1.021 0.021 0.272 0.305

bm -0.452 -0.052 0.129 0.133

a -0.808 -0.008 0.602 0.397

am 0.434 0.034 0.289 0.179

sb 0.508 0.008 0.157 0.260
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observed, posterior, and true TMB generated ROC curves in

Figure 3, where Figures 3A–D derive from the same data set, and

the differences stem from the randomness of the MCMC algorithm.

Results showed posterior and true TMB yielded similar AUC values,
Frontiers in Immunology 10
both significantly higher than those for observed TMB. Variability

between posterior and true TMB AUCs arises from MCMC

algorithm randomness and posterior TMB’s tendency toward

maximum likelihood, which cannot fully match true TMB. While
FIGURE 2

Efficacy Comparisons of Patients Grouped Based on Different TMB Thresholds. (A, B) Comparison of response and survival curves based on the
threshold derived from Bayes-NM ignoring TMB errors and misclassification of response. (C, D) Comparison of response and survival curves based
on the threshold derived from Bayes-MCM ignoring TMB errors. (E, F) Comparison of response and survival curves based on the threshold derived
from Bayes-ECM ignoring misclassification of response. (G, H) Comparison of response and survival curves based on the threshold derived from
Bayes-CSM ignoring misclassification of response. (I, J) Comparison of response and survival curves based on the threshold derived from Bayes-
PECM considering both TMB errors and misclassification of response.
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posterior TMB sometimes outperforms true TMB through

parameter combination, it may also perform slightly worse.

Overall, posterior TMB surpasses observed TMB in classification

performance, underscoring its importance in patient stratification.
Pairwise error control prompts robust
efficacy stratification

Incorporating error considerations, the multi-endpoint joint

analysis marks a significant advancement by addressing real-world

measurement challenges and surpassing previous studies. To validate

TMBocelot, we applied the Bayes-ECM to each experimental cohort,

considering TMB errors as recommended by the framework.

Subsequently, we determined the TMB threshold by dividing

patients into two subgroups using TMBcat and comparing it with

the medians. The comparison outcomes are presented in Figure 4.

The threshold calculated by the proposed method surpasses the

medians in all cohorts. This superiority leads to more significant

efficacy disparities, notably in nsclc_cohort1_57 (Figure 4A) and

nsclc_cohort2_68 (Figure 4B), nsclc_cohort3_73 (Figure 4C) and

nsclc_cohort4_240 (Figure 4D). Furthermore, to validate the

proposed Bayes-PECM, we introduced artificial perturbations in

tumor response for nsclc_cohort2_68 and nsclc_cohort4_240. This

included a 25% error rate for patients with PR/CR and a 2% error

rate for patients with PD/SD. The Bayes-PECM was tested on these
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two cohorts; the outcomes are depicted in Figure 5. Figure 5 clearly

shows pronounced efficacy disparities for nsclc_68 and nsclc_240,

grouped by the Bayes-PECM-based threshold. Notably, the

disparities in efficacy for experimental cohorts with added tumor

response misclassification are similar to those achieved by

experimental cohorts without misclassification, validating the

effectiveness of the Bayes-PECM proposed in the framework.

A joint model with pairwise error control facilitates a more

comprehensive and robust TMB subgrouping. This approach

reveals more significant discrepancies between the efficacies of the

TMB-low and TMB-high groups, showcasing the potential of the

proposed framework in enhancing the precision and reliability of

TMB subgroup classifications.
Discussion

Tumor mutational burden (TMB) has recently garnered

significant interest with its recognition by regulatory bodies as a

biomarker, given the association of high TMB with improved

responses to ICIs. However, defining clinically actionable TMB-

positive thresholds remains contentious due to variations in

evaluation metrics and the complexity of error sources, including

TMBmeasurement errors and endpoint misclassification. Although

recent studies have integrated multi-endpoints into TMB threshold

analysis, error considerations have been relatively simplistic.
FIGURE 3

Comparison of ROC Curves and AUC under Observed TMB, Posterior TMB, and True TMB. (A, C) ROC curves for observed TMB, posterior TMB, and
true TMB. (B, D) AUC values for observed TMB, posterior TMB, and true TMB.
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In response, we present a generalized framework, TMBocelot,

capable of handling the complexity and diversity of real-world

situations, accommodating various errors, including paired TMB

errors and endpoint misclassification. Our simulations and applied

experiments endorse this framework, enabling robust assessment of

patient efficacy even amidst TMB errors and misclassified endpoints.

Additionally, this study yields valuable insights into the

differential effects of errors on outcomes. While TMB errors exert a

more pervasive influence on both survival and tumor response

efficacy, endpoint misclassification primarily affects tumor response

efficacy. These findings emphasize the need for tailored error

correction methods. For instance, when measurement error is

believed to be small and symmetrical, corrected-score methods

leveraging auxiliary data or deconvolution approaches may suffice.

In contrast, for complex or poorly understood error sources, Bayesian

robust methods are recommended for error correction.
Frontiers in Immunology 12
Despite its strengths, it is important to acknowledge the

limitations of TMBocelot to provide a balanced perspective. First,

the framework demands significant computational resources and

large datasets, posing challenges for implementation in resource-

constrained settings. High-dimensional Bayesian models, such as

TMBocelot, require substantial processing power and expertise in

Bayesian inference, potentially limiting their accessibility for

smaller clinical or research institutions. Moreover, the reliance on

high-quality datasets for accurate parameter estimation may reduce

the framework’s applicability in scenarios where data availability or

quality is limited. These resource-intensive requirements could

hinder the widespread adoption of TMBocelot.

Another limitation lies in the scope of its validation, which was

restricted to non-small cell lung cancer (NSCLC) cohorts. While the

findings offer robust insights into the applicability of TMBocelot for

NSCLC, their generalizability to other cancer types remains
FIGURE 4

Efficacy Comparisons in NSCLC Patient Cohorts Based on Different TMB Thresholds. (A) NSCLC_cohort1 (n = 57): Observed TMB and true objective
response rate (ORR). The top panels depict survival and response rates using median TMB thresholds, while the bottom panels utilize Bayes-ECM-
derived thresholds. (B) NSCLC_cohort2 (n = 68): Similar setup as (A), showcasing efficacy outcomes based on different TMB thresholds.
(C) NSCLC_cohort3 (n = 73): Displays efficacy comparisons, similar to previous cohorts, highlighting survival curves and response rates.
(D) NSCLC_cohort4 (n = 240): Largest cohort illustrating the impact of TMB thresholding on patient survival and response rates, analyzed through
observed TMB and true ORR.
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uncertain. Different cancer types may exhibit distinct biological

characteristics and treatment response mechanisms, potentially

leading to variations in TMB thresholds and response profiles.

This limitation introduces potential biases and underscores the

need for further validation across diverse tumor types. Expanding

the framework’s application to a broader range of cancers would

enhance its generalizability, enabling the development of cancer-

specific refinements and ensuring its broader relevance.
Conclusion

Measurement error is an unavoidable challenge in practical

applications. However, the current approach to analyzing TMB

thresholds tends to oversimplify error considerations. Our study is
Frontiers in Immunology 13
grounded in real-world scenarios and systematically accounts for

various error scenarios to optimize the positive threshold.

Theoretically, our method can result in a more comprehensive

and robust TMB threshold. From the simulation and experimental

results, we reasonably conclude that 1) our proposed joint model

with the parameter estimation procedure can more robustly assess

patient efficacy even under the interference of TMB errors and

endpoints misclassification. 2) The error scenarios are complex and

diverse, and we recommend choosing the scheme in the generalized

framework according to the actual situation. 3) The TMB-positive

threshold derived from multi-endpoint joint analysis considering

errors can classify patients into two groups with more apparently

stratified efficacy. Our model is applicable to clinical datasets with

multiple endpoints and has the potential to significantly enhance

physicians’ decision-making processes in clinical practice.
FIGURE 5

Efficacy Comparison of Patients Grouped Based on Different TMB Thresholds on Experimental NSCLC_cohort2&4 (n = 68, 240) under Observed
TMB and Response with Perturbation. (A, B) Comparison of response and survival curves based on the threshold derived from Bayes-PECM for
nsclc_68. (C, D) Comparison of response and survival curves based on the threshold derived from Bayes-PECM for nsclc_240.
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