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Effects of NK cell-related
lncRNA on the immune
microenvironment and
molecular subtyping
for pancreatic
ductal adenocarcinoma
Jinze Li1†, Chuqi Xia1†, Yuxuan Li1†, Hanhan Liu2*,
Cheng Gong3* and Daoming Liang1*

1Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical
University, Kunming, Yunnan, China, 2Department of Pathology, Maternal and Child Health Hospital of
Hubei Province, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China, 3Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan
University, Wuhan, China
Background: Patients with pancreatic ductal adenocarcinoma (PDAC) face a

highly unfavorable outcome and have a poor response to standard treatments.

Immunotherapy, especially therapy based on natural killer (NK) cells, presents a

promising avenue for the treatment of PDAC.

Aims: This research endeavor seeks to formulate a predictive tool specifically

designed for PDAC based on NK cell-related long non-coding RNA (lncRNA),

revealing new molecular subtypes of PDAC to promote personalized and

precision treatment.

Methods:Utilizing the Tumor Immune Single-cell Hub 2 platform, we discovered

genes associated with NK cells in PDAC. We employed the TCGA-PAAD dataset

to ascertain the expression profiles of these NK cell-related genes and to screen

for lncRNAs correlated with NK cells. Subsequently, we utilized Cox regression

analysis for hazard ratios and LASSO regression analysis to identify three NK cell-

related lncRNAs that were used to develop a prognostic assessment model. The

forecasting accuracy of this model was appraised using the ROC curve and

validated using a test set and the complete dataset.

Results: Successful construction of a prognostic model comprising three

lncRNAs was achieved, demonstrating good predictive efficiency in the training

set, validation dataset, and the entire dataset. NK cells display robust interactions

with malignant cells, CD8 T cells, and fibroblasts in the PDAC tumor

microenvironment and participate in the transport of various signaling

molecules and following immune responses in PDAC. According to the

expression patterns of NK cell-related lncRNA, we labeled PDAC patients as

four molecular subtypes, exhibiting significant differences in immune cell

infiltration, drug sensitivity, and other aspects.
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Conclusion: This study Uncovered the activity of NK cells within PDAC, proposed

an NK cell-related lncRNA model, and delineated new molecular subtypes,

thereby providing targets for personalized therapy.
KEYWORDS

tumor immune single-cell hub 2, pancreatic ductal adenocarcinoma, NK cell-related
lncRNAs, tumor immune microenvironment, molecular subtyping
1 Introduction

Pancreatic cancer is the sixth most frequent cause of death

attributed to cancer worldwide, responsible for approximately 5% of

all cancer deaths. In 2022, approximately 511,000 individuals were

diagnosed with new pancreatic cancer cases, and 467,000

succumbed to the disease, characterized by the most unfavorable

prognosis among all tumors (1). Pancreatic ductal adenocarcinoma

(PDAC) represents the majority of pancreatic cancer diagnoses,

exceeding 90% (2). It exhibits an exceptionally high degree of

malignancy, as 80% to 85% of patients are already in an

advanced, unresectable period at the date of clear diagnosis.

Moreover, PDAC generally exhibits resistance to most

chemotherapy drugs (3). Resistance to conventional therapeutic

approaches has resulted in a persistent lack of improvement in

survival rates over the past few decades. The advancing field of

immuno-oncology may offer a breakthrough for enhancing the

prognosis and potentially curing PDAC. Immunotherapies

primarily comprise checkpoint inhibitors and adoptive cell

therapies, which function primarily through modulating the

immune reaction to perceive and battle cancer cells. Studies have

indicated that the combination of chemotherapy and PD-1

antibodies has improved the overall survival rate among PDAC

individuals (4).

Although the use of immunotherapy in PDAC patients faces a

few challenges, including the “cold” tumor microenvironment

(TME), which is marked by myeloid cell aggregation, a dearth of

CD8+ T cells, and minimal activation marker expression, these

factors suggest a significant impairment or absence of adaptive T

cell immunity (5). Research indicates that targeted strategies,

including the enhancement of co-stimulatory signals, the

application of checkpoint inhibitors, and the use of cytokines to

augment the activity and longevity of NK cells, may substantially

improve survival rates among PDAC patients (6). An intense focus

on T cells has resulted in the undervaluation of other immune cells’

potential within the TME. Despite their integral role in the body’s

defenses, NK cells have not been as thoroughly investigated in

tumor immunotherapy. Nonetheless, NK cells possess distinctive

benefits in combating tumors, thereby cementing their importance

in this domain. Their capacity for swift response and immediate

attack initiation, lack of major histocompatibility complex (MHC)
02
restrictions, broad target recognition, reduced autoimmunity risk,

and their availability for genetic engineering highlight their

therapeutic potential. The efficacy of NK cell immunotherapy,

both as a monotherapy and in conjunction with other treatment

modalities, has been demonstrated (7). Thus, further investigation

into the distinctive function of NK cells in PDAC and their

synergistic interactions with other immune cells is essential,

holding substantial promise for the reprogramming of the tumor

immune microenvironment and for advancing PDAC

treatment strategies.

Long non-coding RNAs (lncRNAs), surpassing 200 nucleotides,

belong to the non-coding RNA family, and function as pivotal

regulatory elements. They exhibit diverse roles in the critical

biological processes of PDAC (8). Research has demonstrated that

prognosis models predicated on lncRNAs associated with immune

responses have accurately forecasted survival outcomes in patients

with ovarian cancer (9). lncRNA biomarkers that are associated with

immune functions are invaluable for assessing the survival rates of

patients with hepatocellular carcinoma (HCC) (10). Immune-

infiltration-associated lncRNA models hold prognostic significance

and can predict therapeutic responses among individuals affected by

non-small cell lung cancer (NSCLC) (11). However, the study of NK

cell-associated lncRNA in PDAC immunotherapy has not been

reported. The NK cell-associated lncRNAs may offer a novel target

for developing immunotherapeutic strategies against PDAC.

In our investigation, gene enrichment analysis revealed the

multifaceted immunomodulatory functions of NK cells in PDAC.

Utilizing the Tumor Immune Single-Cell Hub 2 (TISCH2)

database, we pinpointed distinguishingly expressed NK cell-

related genes (NKGs) in PDAC. We then leveraged The Cancer

Genome Atlas Pancreatic Adenocarcinoma Collection (TCGA-

PAAD) to ascertain the expression profiles of these NKGs, and

through correlation analysis, identified lncRNAs correlated with

NK cells. Subsequently, we employed a univariate Cox regression

model, which was then complemented with the least absolute

shrinkage and selection operator(LASSO) regression to refine the

selection of variables. These were complemented with multivariate

Cox regression analysis to meticulously construct a prognostic

model incorporating three NK-related lncRNAs. The efficacy of

this model was substantiated by applying both a validation cohort

and the complete set. Further independent prognostic analyses
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verified that the risk score derived from our NK-related lncRNA

prognostic model serves as a separate indicator of prognosis

for PDAC.

Our independent prognostic analysis, complemented by ROC

curves, demonstrated that the risk score, as a solitary variable for

prognosis evaluation, markedly surpassed other clinical indicators

in predictive accuracy. Through functional enrichment analysis, we

unveiled the potential regulatory mechanisms of NK cell-related

lncRNAs in PDAC. Analysis of tumor mutational burden

illuminated the variance in mutated gene frequency among

disparate risk groups. Furthermore, our immune-related analyses

elucidated the likely immune regulatory roles of NK cell-related

lncRNAs in PDAC. Not only that, we established four novel

molecular subtypes of PDAC based on the NK cell-related

lncRNA prognostic model. This stratification is instrumental in

advancing precise and personalized clinical therapies, offering

tangible guidance for clinical decision-making.
2 Materials and methods

2.1 Data collection and preprocessing

The scRNA details for PDAC were acquired from the

GSE162708 dataset of the Gene Expression Omnibus website

(GEO), consisting of 22,133 cells. For the analysis of this single-

cell data, we employed the TISCH2 platform (12). We utilized

Principal Component Analysis (PCA) to diminish the data’s

dimensionality, the formula is: 1. euclidean Distance: (x,Xi) =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
od

j=1 xj − Xij

� �2q
. 2. the Manhattan Distance: d(x, y) =on

i=1

xi − yij j.Followed by the application of K-nearest neighbors and

Louvain algorithms for the recognition and classification of distinct

cell populations, the formula is: 1. Modularity Gain: DQ = 1
2moi∈C

k2i,in
m − g k2i

m2

� �
. 2. modularity gain of directed graph: DQ = 1

m (ki,in −

g ki,out) � (otot,in + ki,in �otot,out). To annotate cell types, we relied

on specific marker genes. The Wilcoxon test was subsequently

employed to identify genes that were significantly differentially

expressed within the NK cell population relative to all other cell

populations. We set a log fold change threshold of at least 1.5 and a

target FDR of less than 0.05 as the criteria for screening (13).
2.2 Cell-to-cell communication analysis

We employed the version1.0.0 Cell Chat tool on the TISCH2

(14) platform to scrutinize the gene patterns of identified ligand-

receptor (L-R) pairs across various cell populations, thereby

evaluating cellular interactions. The tool is based on a mass

interaction model via the Hill function: f (x) = xn

Kn+xn . The default

critical value for the interaction score is 0.01. To quantify and

visualize the number of substantial L-R interactions and the

connection probabilities between distinct cellular communities.

By using the netVisual_circle tool provided by the R.pheatmap
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package in tandem with R.CellChat, we proceeded with the

visualization. Each community was analyzed for significant L-R

pairs, which were classified as donors or recipients, with a

significance threshold of P-value less than 0.05 (12).
2.3 Functional enrichment analysis of
multiple cell populations

To explore the enrichment characteristics of each group of cells,

we performed gene set enrichment analysis (GSEA) utilizing the

TISCH2 platform (12), we sorted the genes according to their fold

change from the differential analysis. Utilizing Kyoto Encyclopedia

of Genes and Genomes (KEGG) analysis, Gene Ontology (GO)

enrichment analysis, and GSEA, significantly altered biological

pathways were identified and demonstrated across cell

populations (designating 0.05 as the cutoff for FDR), which

helped us to acquire a further insight into the functional

enrichment of different cell populations (12).
2.4 Collection of PDAC transcriptome and
clinical data

We assembled gene expression information, clinical profiles,

and data on somatic mutations from 179 tumor samples and 4

normal pancreatic tissues within the TCGA database. Following

this, we carried out a differential expression analysis comparing

mRNA expression levels in tumor versus non-tumor tissues. By

integrating the NK cell-related differential genes previously filtered

and applying a correlation coefficient threshold of 0.4, we identified

3,491 lncRNAs correlated with NK cells. For the gene expression

data analysis, we employed the “R.limma” package (15), We

identified 304 lncRNAs associated with NK cells that exhibited

significant differential expression between the tumor and non-

tumor groups.
2.5 Model construction and validation

Within this research, patients with PDAC were evenly divided

into two groups at a ratio of 1:1, designated as the training dataset

and the validation set. We utilized a single-variable Cox model to

pinpoint 42 NK cell-related lncRNAs associated with PDAC

prognosis within the training set. The COX regression formula is:

h(t) = h0(t) exp (b1x1 + b2x2 +… + bkxk) : To mitigate the risk of

model overfitting, LASSO regression analysis was applied. The

formula i s : min
b

1
2n

y − Xbj22 + l
�� ��bj1

� 	
. Subsequent ly , a

predictive model for PDAC prognosis was constructed utilizing

multivariate Cox regression on the training set. The model-assigned

coefficients for each NK cell-related lncRNA allowed us to derive

the risk score formula: risk score = 0.456120265000581 *

LINC00519 expression - 1.12039497572332 * PAN3-AS1

expression + 0.479223014745653 * LINC02004. Based on risk

scores, patients were segregated into two groups: high-risk and
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low-risk. The Kaplan-Meier method was then applied to compare

survival between these risk groups. The efficacy of the model was

tested using the ROC curve method, and the test set’s performance

was further validated against the validation set and the entire

dataset (16).
2.6 Comparative expression and functional
profiling analyses across risk groups

With the help of the R. limma package, we discern genes with

differential expression (DEGs) across various risk groups, applying

stringent selection criteria of (|logFC| > 1, FDR < 0.05). The

differential gene analysis outcomes were graphically represented

through volcano plots and heat maps for clear visualization. To

probe more deeply into the functional aspects of these DEGs, we

exploited the clusterProfiler R package to carry out Gene Ontology

(GO) analysis, which encompassed the three domains: biological

process (BP), cellular component (CC), and molecular function

(MF). Furthermore, we analyzed the KEGG pathway, which

pathways that were significantly enriched were graphically

depicted using bubble charts for intuitive understanding.

Furthermore, GSEA was applied to evaluate the disparities in

biological functions between different risk groups, with the

thresholds set at (|normalized enrichment score| > 1, FDR < 0.05).
2.7 Tumor mutational burden and tumor
immune infiltration correlation analysis

Within the scope of this study, we harnessed the maftools

package in R for the visualization and analytical assessment of

tumor mutational burden (TMB). This robust tool facilitated the

visualization and quantification of mutation frequency and

quantities within tumor samples. Furthermore, we utilized a suite

of computational tools, including EPIC, TIMER, XCELL,

MCPCOUNTER, QUANTISEQ, CIBERSORT-ABS, and

CIBERSORT, to quantify the levels of immune cells present in the

tumor tissue in the TCGA-PAAD samples. These analyses provided

insights into the immunological microenvironment and its

potential implications for therapeutic strategies (17).

Concurrently, an immune checkpoint analysis between different

risk groups was performed by R. limma and R. reshape 2. Finally, we

conducted immune-related functional analysis employing the

ssGSEA method through the R.GSVA package, which allowed us

to assess the enrichment of immune-related pathways and functions

across various risk groups.
2.8 Tumor subtyping based on the model

We employed consensus clustering analysis within an

unsupervised learning framework, utilizing the ConsensusClusterPlus

package (18), to delineate molecular subtypes of PDAC. The package

generated critical visualizations: the consensus cumulative distribution

function (CDF) plot, the consensus matrix (CM), and the consensus
Frontiers in Immunology 04
heatmap. These tools were instrumental in establishing the ideal cluster

count for PDAC subtypes, while the CDF plot ensured the stability of

diverse clustering setups, the CM detailed the frequency of sample

clustering in a matrix format across multiple iterations, and the

consensus heatmap offered a visual synopsis of the CM, simplifying

the interpretation of clustering outcomes. Collectively, these analyses

facilitated the identification of the most appropriate number of

classifications for PDAC subtypes, as per the prognostic risk model.
2.9 Cell culture

Human pancreatic cancer cell lines BXPC-3, PANC-1, SW1990,

ASPC1, COLO357, and human pancreatic normal cell line HPDE6-

C7 were purchased from Shanghai Yaji Bio. All cell lines were

cultured in RPMI-1640 medium (Sigma-Aldrich, St. Louis, MO,

USA) supplemented with 10% fetal bovine serum (Gibco, USA) and

1% penicillin-streptomycin-glutamine (PSG; Thermo Fisher

Scientific, Dreieich, Germany), at a temperature of 37°C with 5%

CO2 to eliminate the interference of culture conditions.
2.10 Real-time quantitative PCR

Total RNA was extracted using the Trizol method (T9108,

Takara, Dalian, China), and reverse transcription was performed

using an enzyme kit. Subsequently, qRT-PCR was conducted using

2 × ChamQ Universal SYBR qPCR Master Mix (Q711-02, Vazyme,

Nanjing, China). The primer sequences used are as follows:

LINC00519 Forward: ATGGAAAGTGAGGGCAGACAC;

Reverse: GCCCTTTGAAGCATTTCTCCAG. LINC02004

Forward: AGAGCAGCACAGTGAGTCAG; Reverse: CAGTG

CTGGGCTATCCTGAA. PAN3-AS1 Forward: AAATTCTG

CCTCCACTCGCTC; Reverse: CTACCCATAAGCCCTCGCGT.

GAPDH Forward: GGAGCGAGATCCCTCCAAAAT; Reverse:

GGCTGTTGTCATACTTCTCATGG.
2.11 Transfection

The overexpression plasmids pcDNA3.1-LINC00519,

pcDNA3.1-LINC02004, and pcDNA3.1-PAN3-AS1 were obtained

from Wuhan Qing Ke Biological Company. Cells were seeded into

6-well plates at the correct density. After 24 hours at 37°C,

transfection was performed using Lipofectamine 3000 (Sigma,

USA) according to the manufacturer’s instructions, and the cells

were then used for subsequent experiments.
2.12 Colony formation experiment

After transfection for 24 hours, 500 cancer cells were evenly

distributed into each well of a 6-well culture plate and cultured

under conditions of 37°C and 5% CO2 until visible colonies formed.

At the end of the culture period, the cells were fixed with a 10%

formaldehyde solution for 5 minutes, followed by staining with
frontiersin.org
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0.1% crystal violet for 1 hour. After two weeks of cultivation, the

formed colonies were counted. To enhance the reliability of the

data, the experiment was repeated three times, and the results

were averaged.
2.13 Transwell invasion assay

Cells were seeded onto the upper chamber of a Transwell insert

pre-coated with Matrigel, using serum-free medium. The lower

chamber was filled with medium containing a chemoattractant.

After incubation, non-invading cells on the upper surface of the

membrane were removed, and invading cells on the lower surface

were fixed and stained. Finally, the number of invaded cells was

quantified using microscopy.
2.14 Statistical analysis

We carried out all statistical evaluations with R version 4.4.1.

By using the Kruskal-Wallis test, we aimed to evaluate differences

in immune checkpoint gene expression, immune scores, and drug

sensitivity across various risk groups. The log-rank test, obtained

from the R survival package, was utilized for conducting Kaplan-
Frontiers in Immunology 05
Meier survival analyses. The formula is: c2 =on
j=1

(Oj−Ej)
2

Ej
.

Additionally, the Cox model was applied in order to assess the

collective impact of multiple variables. For all statistical analyses, a

two-tailed test was used, with significance accepted at P-values less

than 0.05. Significance levels were described as asterisks: ***

denotes p < 0.001, ** denotes p < 0.01, and * denotes p < 0.05.
3 Results

3.1 NK cell-related immune
microenvironment crosstalk in PDAC

Figure 1 depicts a flowchart of the analysis and derivation

pathway followed in this study. By visualizing the scRNA data of

GSE162708 on TISCH2, Figure 2A distinctly illustrates the

delineation of NK cell subsets. Through pie charts and bar

graphs, we displayed the counts and relative frequencies of NK

cells. The estimated total number of normal human NK cells is 2 ×

10^10, accounting for approximately 1% of all immune cells in the

body (19). Single-cell dataset analysis has found that in PDAC

patients, NK cells constitute 15.9% of immune cells, significantly

higher than the content of NK cells in normal human bodies,
FIGURE 1

A detailed flowchart illustrating the construction, validation, and molecular subtyping of the NK cell-related lncRNA model in PDAC. PDAC, Pancreatic Ductal
Adenocarcinoma; TISCH2, Tumor Immune Single-Cell Hub 2; TCGA, The Cancer Genome Atlas; TF, Transcription factor; LASSO, Least absolute shrinkage
and selection operator; PCA, Principal component analysis; tSNE, T-distributed stochastic neighbor embedding; NK, Natural Killer cells.
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indicating an abnormal enrichment of NK cells in PDAC, which is

of significant research importance (Figures 2B, C). Within the

tumor immune microenvironment, cell-cell correlations are

crucial for regulating cellular functions, immune status, and

cancer development. Utilizing the Cell Chat method on the

TISCH2 platform, we forecasted the interactions among diverse

cell populations. The findings revealed robust interactions between

NK cells and malignant cells, CD8 T cells, and fibroblasts

(Figure 2D), with NK cells assuming a pivotal part in the PDAC

immune microenvironment, modulating the tumor’s immune

context through cellular crosstalk. We examined the genetic

interactions between NK cells, either as signal transmitters

(Supplementary Figure S1A) or signal receivers (Supplementary

Figure S1B), and other cell types. The results revealed extensive

genetic interactions between NK cells and varied other cell types,

containing endothelial cells, malignant cells, CD8 T cells, and

fibroblasts. To contrast NK cell-related genes with those of else

cells, we applied the Wilcoxon test accessible in TISCH2. We

pinpointed NK cell-related genes based on a log-transformed fold

change (|fold change| > 1.5) and an FDR threshold below 0.05. The

analysis yielded 387 upregulated and 699 downregulated NK cell-

related genes (Figure 2E).
3.2 Functional characteristics of NK cells
in PDAC

To clarify the possible regulatory functions of NK cells in PDAC

and their interactions with other cellular components within the

tumor immune microenvironment within the tumor immune

microenvironment, we carried out GSEA using the TISCH2

platform. We observed robust correlations between NK cells and

gene sets associated with CD8 T cells as well as B cells

(Supplementary Figure S2). In the KEGG pathway enrichment

analysis, NK cells were found to exhibit analogous regulatory

patterns to B cells and CD8 T cells in biological processes such as

natural killer cell-mediated cytotoxicity, primary immunodeficiency,

ribosomal signaling, antigen preparation and presentation processes,

as well as T cell receptor-mediated signaling (Supplementary Figures

S3, S4). The GO analysis detected important enrichment of NK cells

in several key biological processes, including cytoplasmic

translational activities, activation of innate immune responses, and

NK cell-mediated cytotoxicity. Moreover, NK cells demonstrated

enrichment in specific cellular components like free ribosomes and

RNA polymerase II, and in variousmolecular functions, including the

formation of ribosomal structures, involvement in antigen and

hormone binding, and modulation of the activity of membrane

receptor tyrosine kinases (Supplementary Figures S5–S7B). In

PDAC, a multitude of transcription factors assume a crucial role.

Utilizing the spatial association algorithm on the TISCH2 platform,

we deduced the pivotal transcription factors that orchestrate gene

expression across various cell clusters. A heatmap graphically

represents the high or low expression levels of core transcription

factors within different cell clusters in the dataset. The transcription

factor expression profile in NK cells closely mirrors that in

monocytes/macrophages and CD8 T cells (Supplementary Figure
Frontiers in Immunology 06
S7C), hinting at a potential regulatory axis among these cell types that

could influence PDAC progression. We then identified transcription

factors that are specifically enriched in NK cells. Notably,

transcription factors such as KMT2A, MED1, BRD4, ERG, E2F6,

MAF, HEY1, H2AFZ, STAT1, and CDK9 are highly expressed in NK

cells (Supplementary Figure S7D). These factors are instrumental in

the development and functionality of NK cells, with their expression

alterations being intricately linked to tumorigenesis and tumor

progression. Thus, NK cells appear to participate in the

translocation of multiple signaling molecules in PDAC and

subsequent immune response.
3.3 Establishing and affirming a survival
model for PDAC centered on NK cell-
related genes

As delineated in Figure 1, we initially extracted the gene

expression patterns of the previously identified differential NK cell-

related genes from the TCGA-PAAD dataset. Employing the Pearson

correlation coefficient, we pinpointed NK cell-associated lncRNAs

correlated with these genes (correlation coefficient > 0.4, p-value <

0.001). Through differential expression investigation, a total of 304 NK

cell-related lncRNAs exhibiting differential expression in PDAC were

identified (Figure 3A). A heatmap graphically represents the top 50

most significant DEGs among PDAC patients (Figure 3B). Subsequent

univariate Cox regression research on the training dataset,

preliminarily screening out 42 lncRNAs related to the prognosis of

PDAC patients (Figure 3C), which served as the foundation for

subsequent selection steps. The heatmap illustrated the expression

variance of these lncRNAs between PDAC and normal samples

(Figure 4A). To prevent model overfitting, LASSO regression

analysis was applied (Figures 4B, C). Such a step facilitated the

refinement of 42 candidate lncRNAs to identify key prognostic

factors, thereby simplifying the model and enhancing its predictive

precision. Utilizing the foundation laid by the initial steps, we

proceeded with multivariate Cox regression analysis, a pivotal

component in the construction of a clinical prognostic model. This

analysis takes into account the interplay and influence amongmultiple

variables, offering a more holistic predictive model. Through this

process, we ultimately identified 3 lncRNAs that were significant. To

validate the prognostic correlation of these three lncRNAs in PDAC

patients, we utilized the GEPIA online analysis tool to visualize their

expression levels. Box plots depicted the expression profiles of these

lncRNAs among PDAC patients within the TCGA database, with

survival analysis suggesting a potential link between their expression

levels and PDAC prognosis (Figure 4D). A PDAC patient risk model

was established using three specific NK-related lncRNAs: LINC00519,

PAN3-AS1, and LINC02004. The risk score is derived using the

following formula: risk score = 0.456120265000581 * expression of

LINC00519 - 1.12039497572332 * expression of PAN3-

AS1 + 0.479223014745653 * expression of LINC02004. The risk

score was used to divide patients into two categories: low risk and

high risk. Figure 5A displays the expression profiles that were

compared between high-risk and low-risk groups in the training

dataset. It can be observed that LINC00519 and LINC02004 are
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highly expressed in the high-risk group, while PAN3-AS1 is highly

expressed in the low-risk group, which is consistent with the risk score

coefficients (LINC00519 and LINC02004 being positive influencing

factors, and PAN3-AS1 being a negative influencing factor). while The

distribution and survival outcomes of PDAC patients in the training

set are depicted in Figure 5B. Survival analysis from Figure 5C

indicates that the high-risk population within the training group has
Frontiers in Immunology 07
a poorer prognosis. The ROC curve for the NK-related lncRNAmodel

in the training set demonstrates good performance, with AUC scores

of 0.725, 0.812, and 0.890 for 1, 3, and 5 years, respectively

(Figure 5D). Validation using the test set and the whole dataset

authenticated the level of lncRNAs connected to NK cells

(Figures 5E–L), survival analysis, and differential analysis,

demonstrating the robustness of the findings.
FIGURE 2

NK cell communication network in PDAC. (A) A UMAP plot displaying the distribution and abundance of different cell subsets in PDAC; (B) A pie
chart showing the percentage of NK cells; (C) A bar graph illustrating the distribution of NK cells across individual samples; (D) The interaction
probabilities between NK cells and other cells visualized through Cell Chat; (E) A volcano plot depicting differentially expressed genes within NK
cells. Red indicates a fold change > 1.5, FDR < 0.05; green indicates a fold change < 1.5, FDR < 0.05.
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FIGURE 4

Identification of NK cell-related lncRNAs associated with prognosis. (A) A heatmap illustrating the expression differences of the lncRNAs identified in
(C) between PDAC samples and normal samples (*** represents p < 0.001, ** represents p < 0.01, * represents p < 0.05); (B, C) Lasso regression
analysis reveals the degree of overfitting in the model under different gene number settings and compares the severity of overfitting under these
settings; (D) A box plot depicting the expression distribution of specific lncRNAs in the PDAC model from the TCGA database, and the results of
survival analysis suggest a correlation between the expression levels of lncRNAs in the TCGA database and the clinical prognosis of PDAC patients.
FIGURE 3

Identification of NK cell-related lncRNAs associated with prognosis. (A) A volcano plot displaying the 304 differentially expressed NK cell-related
lncRNAs identified in PDAC (red: logFC > 0.585, FDR adjusted p < 0.05; green: logFC < 0.585, FDR adjusted p < 0.05); (B) A heatmap visually
presenting the top 50 NK cell-related lncRNAs with the most significant expression differences; (C) A forest plot showing the results of univariate
Cox regression analysis, identifying 42 lncRNAs associated with the prognosis of PDAC patients, where blue indicates a hazard ratio < 1 and red
indicates a hazard ratio > 1.
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3.4 Clinical relevance analysis of the NK
cell-associated lncRNA model

We employed the risk score as a prognostic variable for PDAC

and conducted univariate COX regression analysis alongside other
Frontiers in Immunology 09
clinical parameters to evaluate the clinical utility of the NK cell-

related lncRNA model. Figure 6A identifies age, Grade

classification, and risk score as statistically significant prognostic

factors for PDAC (hazard ratio > 1, p < 0.05). These predictors were

then exposed to multivariate COX regression analysis, and the
FIGURE 5

Construction and validation of the NK cell-related prognostic model. (A) A heatmap showing the expression of the 3 LncRNAs in high and low-risk
groups in the training set; (B) The distribution and survival status of PDAC patients in the training set; (C) A comparison of survival curves between
high and low-risk groups in the training set; (D) An assessment of the ROC curve in the training set; (E) A heatmap showing the expression of the 3
LncRNAs in high and low-risk groups in the test set; (F) The distribution and survival status of PDAC patients in the test set; (G) A comparison of
survival curves between high and low-risk groups in the test set; (H) An assessment of the ROC curve in the test set; (I) A heatmap showing the
expression of the 3 LncRNAs in high and low-risk groups among all patients; (J) The distribution and survival status of PDAC patients among all
patients; (K) A comparison of survival curves between high and low-risk groups among all patients; (L) An assessment of the ROC curve among
all patients.
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results indicated that only the risk score emerged as an independent

prognostic indicator (Figure 6B). Moreover, ROC analysis

demonstrated that among all these clinical parameters, the risk

score’s evaluative efficacy significantly surpassed that of other

factors (Figure 6C). We also conducted stratified analyses on the

basis of different clinical features and found that the risk score had a

good predictive effect across various subgroups, including gender,

stage of grading, and age less than or equal to 65 years, as well as in
Frontiers in Immunology 10
early-stage patients (Figures 6E–J). In patients over the age of 65

and in late-stage (III-IV) disease, although a high-risk score seemed

to be associated with a poorer prognosis, The connection observed

was not statistically significant (P > 0.05), potentially on account of

the sample size being too limited in these subgroups (Figures 6D,

K). We also investigated the expression of these three lncRNAs in

relation to clinical parameters and found that, among the most

meaningful clinical grading and staging indicators related to
FIGURE 6

Association of the prognostic model with clinical factors. (A) Univariate COX regression demonstrates the factors affecting the prognosis of PDAC;
(B) Multivariate COX regression shows the independent factors influencing the prognosis of PDAC; (C) ROC curve analysis assesses the accuracy of
various clinical variables and risk scores in predicting the prognosis of PDAC; (D–K) Survival curves for various clinical subgroups based on risk
scores. (L) High LINC00519 expression was associated with a worse Grade. (M) High LINC02004 expression was associated with a worse T-stage
(N, O) Low PAN3-AS1 expression was associated with a worse T-stage and N-stage.
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prognosis, high LINC00519 expression was associated with a worse

T-stage (Figure 6L), high LINC02004 expression was associated

with a worse Stage (Figure 6M), and low PAN3-AS1 expression was

associated with a worse T-stage and N-stage (Figures 6N, O). This is

consistent with our research findings on the impact of lncRNAs on

pancreatic cancer. Although other results did not yield positive

outcomes, the trends were similar (Supplementary Figure S8). The

main reason for the negative results may be related to the small

sample size, and it is also possible that these three lncRNAs

influence the progression of pancreatic cancer through

other pathways.
3.5 Exploring pathway and enrichment
differences among risk groups

Seeking to explain the poorer prognosis in the high-risk group

as opposed to the low-risk group, the differential analysis revealed

597 genes with significant differences in expression levels (|logFC| >

1, FDR adjusted p < 0.05) (Figure 7A). A heatmap was employed to

visually represent the 50 most significant DEGs (Figure 7B). GO

enrichment analysis revealed substantial changes in the high-risk

group, particularly associated with the regulation of membrane

potential and synaptic structure (Figures 7C, D). KEGG pathway

enrichment revealed an overrepresentation of cell signaling-related

processes in the high-risk cohort, containing neuroactive ligand-

receptor interaction signaling pathways, calcium signaling

pathways, cAMP signaling pathways, and MAPK signaling

pathways (Figure 7E). Besides, the GSEA uncovered notable

enrichment in molecular mechanisms associated with cell

proliferation, DNA replication, and repair in the high-risk cohort,

which may be linked to the tumor’s origin, development, and

therapeutic responsiveness. However, the low-risk cohort

exhibited a richer presence of pathways involved in metabolism

and signaling, blood and immune responses, and hormone

regulation, potentially relating to better physiological function

and stronger disease defense capabilities (Figures 7F, G).
3.6 Somatic mutation analysis in different
risk groups

In the high-risk group, the three most frequently mutated genes are

KRAS, TP53, and SMAD4. Notably, the mutation frequency of the

KRAS gene in the high-risk cohort, at 75%, Is considerably elevated in

contrast to the low-risk group, which is 44%. This disparity

underscores the pivotal role of KRAS in the poorer prognosis

associated with the high-risk cohort (Figure 8A). We further

explored the relationship between LINC00519, PAN3-AS1, and

LINC02004 and mutated genes, finding that in the group with high

expression of LINC00519, there was a high mutation risk for KRAS

and TP53. In the group with high expression of LINC02004, there was

a high mutation risk for KRAS, TP53, and SMAD4. Conversely, in

PAN3-AS1, which has a negative regulatory effect, the mutation rates

of KRAS and SMAD4 were reduced. These results indicate a strong

correlation between the expression levels of LINC00519, PAN3-AS1,
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and LINC02004 and the mutation frequencies of KRAS, TP53, and

SMAD4 in PDAC (Figures 8B–D). Moreover, we assessed the tumor

mutational burden (TMB) in PDAC patients, categorizing them into

high and low TMB groups. An upward trend is observed between the

risk score and TMB, with a high TMB correlating with an adverse

prognosis (Figures 8E, F). High TMB is associated with poor survival.

(Figure 8G) And it is particularly striking that patients with both high

TMB and elevated risk scores exhibit the most severe prognosis,

whereas those with low TMB and reduced risk scores have the most

favorable outcomes. The combined effect of these two factors is more

prominent than either TMB or risk score alone (Figure 8H).
3.7 Immune analysis in different risk groups

Our study delved into the relationship between the NK cell-

connected lncRNA model score and immune infiltration in PDAC.

Utilizing various software to analyze the immune cell infiltration

status in PDAC samples, we discovered an inverse correlation

between NK cell infiltration and the risk score. This suggests that

within the tumor microenvironment, an increased level of NK cell

infiltration corresponds to a lower risk score for patients,

potentially indicating a more favorable prognosis (Figure 9A).

The immune-related functional analysis between different risk

groups demonstrated that the high-risk cohort displayed co-

inhibition of antigen-presenting cells and activation of type I

IFN response immune functions. This suggests that these

patients may be in a state of immune suppression and could

trigger a complex immune activation response (Figure 9B). The

high level of immune checkpoint genes (ICGs) such as TNFSF9,

CD276, VTCN1, CD44, and CD80 in the high-risk group, as well as

TNFRSF25, CD200, CD160, IDO1, and BTNL2 in the low-risk

cohort, suggest potential targets for corresponding immune

checkpoint inhibitors (Figure 9C). In our drug sensitivity

analysis, the high-risk group demonstrated a strong response to

drugs like Acetalax, Erlotinib, Trametinib, and Sapitinib, indicating

that this group may benefit more from these drugs. In contrast,

low-risk cohort patients were preferable for drugs such as

Irinotecan, Oxaliplatin, SCH772984, Sorafenib, and Venetoclax

(Figure 9D; Supplementary Figure S9).
3.8 Characterization of PDAC molecular
subtypes by NK cell-related lncRNA

In our study, we utilized an NK cell-associated lncRNA model to

classify PDAC tumor samples. Within the test set, k = 4 demonstrated

a more flattened and closer proximity to the maximum cumulative

distribution function (CDF) (Figures 10A–C). Consequently, we set k =
4 and categorized PDAC cancer specimens into four subtypes: Cluster

1-4 (C1, C2, C3, C4) (Figure 10D). A Sankey diagram illustrated the

distribution of different risk score groups across these subtypes, with C1

showing an equal distribution, C2 being exclusively high-risk, C3

mainly high-risk, and C4 primarily low-risk (Figure 10E). Survival

analysis revealed that C2, the cluster enriched with high-risk samples,

exhibited the poorest prognosis (Figure 10F). This highlights the
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potential of the NK cell-related lncRNA model to stratify PDAC

patients into clinically relevant molecular subtypes, which may

inform personalized therapeutic strategies. Furthermore, we

integrated principal component analysis (PCA) and t-distributed

Stochastic Neighbor Embedding (tSNE) to validate the efficacy of
Frontiers in Immunology 12
our tumor classification approach, confirming the robustness of our

clustering results (Figures 10G, H). These findings underscore the

utility of the NK cell-related lncRNA model in delineating distinct

subtypes of PDAC, affecting the future of precision medicine and the

development of targeted therapeutics.
FIGURE 7

Functional enrichment analysis of different risk groups. (A) A volcano plot displays differentially expressed genes between different risk groups (red:
logFC > 1, FDR adjusted p < 0.05; green: logFC < 1, FDR adjusted p < 0.05); (B) A heatmap shows the distribution of differential genes across
different risk groups; (C) A Circos plot reveals the changes in differentially expressed genes in the graphene oxide pathways; (D) A bubble chart
reveals the enrichment of graphene oxide signaling pathways with significantly differential gene expression; (E) A bubble chart shows the
concentration of significantly differentially expressed genes in KEGG signaling pathways; (F) Displays the upregulated pathways in the high-risk group
according to GSEA; (G) Displays the downregulated pathways in the low-risk group according to GSEA.
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3.9 Immune analysis based on molecular
subtypes defined by NK cell-
related lncRNA

To determine the utility of NK cell-related lncRNA molecular

typing in immunotherapy for PDAC subtypes, an exhaustive

analysis of the tumor immune microenvironment was conducted.

Employing diverse computational algorithms, we identified that the

C1 subtype of PDAC exhibited the most abundant immune cell

infiltration, whereas the C3 subtype demonstrated the sparsest

(Figure 11A). Further examination of the StromalScore,

ImmuneScore, and ESTIMATEScore across subtypes revealed that

the C3 subtype had the lowest scores, signifying more pronounced

immune suppression in patients with the C3 subtype (Figure 11B).

Concurrently, an immune checkpoint analysis was performed

(Figure 11C), suggesting that PDAC subtypes with elevated

immune checkpoint gene expression may benefit from targeted

immune checkpoint inhibitors. Notably, the C2 subtype showed

high expression of TNFSF9, HHLA2, CD274, PDCD1LG2, CD276,

CD70, TNFSF4, CD44, and CD80; the C3 subtype featured high

expression of TNFRSF14, VTCN1, and LGALS9; with the

remaining genes predominantly highly expressed in the C1

subtype. The C4 subtype exhibited the lowest expression across

most immune checkpoints, implying reduced immune suppression
Frontiers in Immunology 13
and a potentially better prognosis. Drug sensitivity analysis,

stratified by the four molecular subtypes, indicated that C1

patients were most sensitive to AZD1332 and CZC24832; C2

patients to ERK_6604 and Dasatinib; C3 patients to Selumetinib

and Acetalax; and C4 patients to Doramepimod and Sorafenib

(Figure 11D; Supplementary Figure S10).

It can be seen that using molecular subtypes defined by NK cell-

related LncRNA plays a role in evaluating the immune

microenvironment and immunotherapy analysis, providing new

ideas for further precision treatment of PDAC patients. An in-depth

analysis of each subtype will help us achieve personalized treatment

for PDAC patients and improve the efficacy of PDAC treatment.
3.10 Expression and functional validation
of model lncRNAs in PDAC

To validate the roles of these three lncRNAs in PDAC, we first

assessed their expression levels in the human normal cell line

HPDE6-C7 and human pancreatic cancer cell lines BXPC-3,

PANC-1, SW1990, ASPC1, and COLO357. We found that

LINC00519 and LINC02004 were highly expressed in pancreatic

cancer cell lines, while PAN3-AS1 was lowly expressed (Figures 12A–

C). We further overexpressed these three lncRNAs in the PANC-1
FIGURE 8

Tumor mutational burden in different risk groups. (A) Waterfall plots showing the genetic mutation status in high and low-risk groups; (B) Waterfall
plots showing the genetic mutation status in high and low- LINC00519 expression groups; (C) Waterfall plots showing the genetic mutation status in
high and low- LINC02004 expression groups; (D) Waterfall plots showing the genetic mutation status in high and low- PAN3-AS1 expression groups;
(E, F) Correlation analysis between tumor mutational burden and risk scores; (G) Survival analysis revealing the prognosis of PDAC patients in
different tumor mutational burden groups; (H) Survival analysis showing the impact of combining tumor mutational burden and risk scores on the
prognosis of PDAC patients.
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cell line (Figures 12D–F) and discovered that overexpression of

LINC00519 and LINC02004 increased the proliferative and

invasive capabilities of pancreatic cancer cells, whereas

overexpression of PAN3-AS1 diminished these capabilities

(Figures 12G–L). Through experimental validation, we confirmed

that LINC00519 and LINC02004 promote the progression of PDAC,

while PAN3-AS1 may play a role in inhibiting its progression.
Frontiers in Immunology 14
4 Discussion

While our comprehension of T cells in tumor immunity has

significantly progressed, the function of NK cells in PDAC is an area

that warrants further exploration. NK cells, in distinction to B and T

cells, have receptors that can activate or inhibit cellular responses,

with the balance between these signals determining their reactivity
FIGURE 9

Immune, and drug sensitivity analysis in different risk groups. (A) Quantitative analysis of immune infiltration in PDAC using multiple algorithms;
(B) Box plots displaying the immune function status in high and low-risk groups; (C) Box plots showing the immune checkpoint status in high
and low-risk groups; (D) Box plots displaying the drug sensitivity status in high and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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to target cells. In the TME, NK cells are attracted from the

circulation to the tumor site in response to inflammatory

chemokines. Once in the TME, NK cells rely on a “missing self”

mechanism to detect and combat cancerous cells, and NK cells are

capable of identifying and reacting to cells that exhibit “missing self”

characteristics, which may ultimately lead to the elimination of the

target cells that are detected and engaged by NK cells in response to

these “missing self” cells, which may ultimately result in the
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destruction of the cells of interest (20). The “missing self”

mechanism is vital for overcoming tumor cells that evade T-cell

surveillance. Our investigation into NK cells within the TME

revealed their enrichment in several critical signaling pathways,

such as NK cell cytotoxicity, primary immunodeficiency, and

antigen presentation, as well as T cell receptor signaling. We also

noted significant enrichment in molecular functions involving

cytoplasmic translation, ribosomal structures, and antigen
FIGURE 10

New subtyping of PDAC based on NK cell-related lncRNA. (A) Sample distribution with different numbers of subtypes; (B) CDF curves for different
numbers of subtypes; (C) Consensus CDF for different numbers of subtypes; (D) Consensus matrix of the 4 subtypes; (E) A Sankey diagram showing
the relationship between different PDAC subtypes and risk scores; (F) Survival curves for different PDAC subtypes; (G) PCA analysis reveals the
distribution characteristics of samples in different PDAC subtypes; (H) t-SNE analysis presents the distribution of samples in various PDAC subtypes.
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binding, among others. These less-studied areas provide critical

insights into the part played by NK cells in the realm of

cancer immunology.

Studies continue to highlight the significant part that lncRNAs

contribute to the regulation of immune cells (21). We identified key

NK cell-related lncRNAs through correlation analysis and

established a prognostic model based on three: LINC00519,
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LINC02004, and PAN3-AS1. LINC00519 and LINC02004 are

high-risk indicators, while PAN3-AS1 suggests a low-risk profile.

LINC02004’s overexpression in PDAC aligns with poor prognosis,

whereas PAN3-AS1’s underexpression correlates with better

outcomes. Interestingly, LINC00519’s underexpression in PDAC

is still linked to poor prognosis, suggesting unknown regulatory

complexities. These lncRNAs are understudied in pancreatic cancer,
FIGURE 11

Immune and drug sensitivity analysis of PDAC new subtypes. (A) Quantitative analysis of immune infiltration in PDAC new subtypes using multiple
algorithms; (B) ESTIMATE scores, stromal scores, and immune scores for different PDAC subtypes; (C) Analysis of immune checkpoints in different
PDAC subtypes; (D) Analysis of drug sensitivity in different PDAC subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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offering the potential for new therapeutic targets. Therefore, we

experimentally verified the expression levels of these three lncRNAs

and reached conclusions similar to those of our model.

Furthermore, our experimental validation revealed that the

expression of these lncRNAs is associated with the proliferation
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and invasion of PDAC. Stratifying patients by risk score, we found

differential gene expression. Our findings revealed that these

LncRNAs are predominantly engaged in signal transduction and

the advancement of PDAC. For example, the neuroactive ligand-

receptor interaction signaling pathway, calcium signaling pathway,
FIGURE 12

Expression and functional validation of model lncRNAs in PDAC. (A) The expression levels of LINC00519 vary across different pancreatic cell
lines; (B) The expression levels of LINC02004 vary across different pancreatic cell lines; (C) The expression levels of PAN3-AS1 vary across
different pancreatic cell lines; (D) Construct the LINC00519 overexpression plasmid; (E) Construct the LINC02004 overexpression plasmid;
(F) Construct the PAN3-AS1 overexpression plasmid; (G) Colony formation assay to verify the proliferative capacity after overexpression of
LINC00519; (H) Transwell assay to validate the invasive capacity after overexpression of LINC00519; (I) Colony formation assay to verify the
proliferative capacity after overexpression of LINC02004; (J) Transwell assay to validate the invasive capacity after overexpression of
LINC02004; (K) Colony formation assay to verify the proliferative capacity after overexpression of PAN3-AS1; (L) Transwell assay to validate the
invasive capacity after overexpression of PAN3-AS1. ***p < 0.001.
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cAMP signaling pathway, and MAPK signaling pathway in KEGG

and the enrichment of molecular mechanisms related to cell

proliferation, DNA replication, and repair in GSEA analysis.

These findings elucidate the mechanisms of NK cell-associated

LncRNAs in PDAC. Furthermore, our research has brought to

light several under-explored and uncharted pathways in NK cells,

including those involved in membrane potential regulation,

synaptic structure, blood and immune responses, and hormone

regulation. The identification of these pathways will steer our future

investigations into the realm of NK cell-associated LncRNAs in

tumor immunity.

Our study revealed an inverse correlation between NK cell

infiltration and risk score, hinting at a possible association with

improved prognosis. NK cells in peripheral blood readily engage

blood tumor cells, but their infiltration into solid tumors is impeded

by the dense tumor structure and the suppressive tumor

microenvironment, which can induce NK cell exhaustion. This

underscores the importance of investigating methods to restore and

enhance NK cells’ tumor-killing capabilities. To this end,

researchers are exploring diverse strategies to augment NK cell

efficacy, crucial for advancing immunotherapies against solid

tumors (22). Among emerging strategies, CAR-modified cell

therapies are particularly promising. Despite this, CAR-T cell

therapies encounter challenges such as treatment-related toxicity,

production complexities, a lack of specific tumor antigens, and

inadequate tumor infiltration. In contrast, CAR-NK cells present

advantages like reduced toxicity, easier preparation, and a

multiplicity of tumor-targeting pathways, positioning them as a

superior alternative (23). While NK cell therapy shows potential in

oncological treatments, it is not without challenges. Key issues

include enhancing the survival and persistence of NK cells within

tumors, accurately identifying tumor cells, streamlining cell

preparation for scalability and standardization, and addressing

the variability in clinical trial results. Addressing these hurdles is

crucial for the advancement of NK cell therapy in cancer treatment

(19). Further research aims to overcome these limitations to

optimize the effects of NK cell therapy.

Our analysis of ICG expression between different risk groups

identified significant dissimilarities. High-risk groups exhibited

increased expression of ICGs such as TNFSF9, CD276, VTCN1,

CD44, and CD80, whereas TNFRSF25, CD200, CD160, IDO1, and

BTNL2 were more highly expressed in low-risk groups. These genes

are integral to tumor immunity. Notably, TNFSF9 (CD137L) is a

key activating immune checkpoint molecule, and its agonist, in

combination with PD-L1, can potently activate and expand tumor-

specific cytotoxic T cells, thereby enhancing their inhibitory and

lethal effects on tumors (24). CD276 (B7-H3), an immune

checkpoint molecule, is often overexpressed in various tumors

and correlates with poor prognosis (25). The expression of other

immune checkpoint molecules also hints at their potential role in

the development of immune checkpoint inhibitors for PDAC.

Validation of these roles will necessitate extensive, collaborative,

multicenter trials.

Our clinical prediction model for PDAC is anchored in the

differential expression of NK cell genes and constructed utilizing

LncRNAs associated with NK cells as a prognostic framework,
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predicts a poorer prognosis for members of the high-risk subset. We

confirmed the model’s accuracy through risk plotting, heatmap

generation, ROC testing, and Kaplan-Meier survival analysis. The

model emerged as a significant predictor in COX regression

analyses, outperforming traditional clinical variables in ROC

curve assessments. Validation with both test and complete

datasets ensured the robustness and reproducibility of our findings.

In the realm of personalized medicine, precision in tumor

subtype differentiation is crucial. Our risk score-based

categorization of PDAC patients into four subtypes reveals

distinct prognostic outcomes: C2, all high-risk, has the poorest

prognosis; C4, largely low-risk, the best. The C1 subtype of PDAC

exhibited the most robust immune cell infiltration, indicating a

potential state of immune exhaustion. Conversely, the C3 subtype

demonstrated the weakest immune cell infiltration, which may

imply a diminished capacity of the immune system to effectively

surveil and combat the tumor. The differential drug sensitivities

across subtypes are vital for precise drug selection. This molecular

subtype classification is instrumental in advancing PDAC’s

precision treatment.
5 Conclusion

We introduce a groundbreaking clinical prediction model for

PDAC that elucidates the characteristic role of NK cells, enabling a

new molecular classification framework for patients. At the same

time, we conducted validation for lncRNAs associated with NK

cells. This advancement is set to significantly bolster the field of

personalized and precision medicine.
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(A, B) Descriptions of the interaction probabilities between NK cells, acting as

donors and receptors, and specific gene pairs in other cells through Cell Chat.

SUPPLEMENTARY FIGURE 2

A heatmap visually displaying the upregulated immune gene sets across
different cell subsets.

SUPPLEMENTARY FIGURE 3

A heatmap visually depicting the enriched Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways upregulated by various cell subsets.

SUPPLEMENTARY FIGURE 4

A heatmap visually depicting the enriched KEGG pathways downregulated by

various cell subsets.

SUPPLEMENTARY FIGURE 5

(A) A heatmap visually showing the enriched Gene Ontology biological

process (GOBP) pathways upregulated in different cell subsets; (B) A

heatmap visually showing the enriched GOBP pathways downregulated in
different cell subsets.

SUPPLEMENTARY FIGURE 6

(A) A heatmap visually showing the enriched Gene Ontology cellular
component (GOCC) pathways upregulated in different cell subsets; (B) A

heatmap visually showing the enriched GOCC pathways downregulated in

different cell subsets.

SUPPLEMENTARY FIGURE 7

(A) A heatmap visually showing the enriched Gene Ontology molecular

function (GOMF) pathways upregulated in different cell subsets; (B) A
heatmap visually showing the enriched GOMF pathways downregulated in

different cell subsets. (C) A heatmap showing the differential expression of

core transcription factors in various cells of PDAC; (D) A dot plot revealing
transcription factors that are significantly expressed in NK cells of PDAC.

SUPPLEMENTARY FIGURE 8

Box plots demonstrating the relationship between model lncRNA molecules
and clinical parameters.

SUPPLEMENTARY FIGURE 9

Box plot showing drug sensitivity in different risk groups.

SUPPLEMENTARY FIGURE 10

Box plots demonstrating drug sensitivity for different molecular typologies.
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