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Transcriptomics analysis reveals
potential mechanisms underlying
mitochondrial dysfunction and
T cell exhaustion in astronauts’
blood cells in space
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Introduction: The impact of spaceflight on the immune system and mitochondria

has been investigated for decades. However, the molecular mechanisms underlying

spaceflight-induced immune dysregulations are still unclear.

Methods: In this study, blood from eleven crewmembers was collected before and

during International Space Station (ISS) missions. Transcriptomic analysis was

performed in isolated peripheral blood mononuclear cells (PBMCs) using RNA-

sequencing. Differentially expresses genes (DEG) in space were determined by

comparing of the inflight to the preflight samples. Pathways and statistical

analyses of these DEG were performed using the Ingenuity Pathway Analysis

(IPA) tool.

Results: In comparison to pre-flight, a total of 2030 genes were differentially

expressed in PBMC collected between 135 and 210 days in orbit, which included a

significant number of surface receptors. The dysregulated genes and pathways were

mostly involved in energy and oxygen metabolism, immune responses, cell

adhesion/migration and cell death/survival.

Discussion: Based on the DEG and the associated pathways and functions, we

propose that mitochondria dysfunction was caused by constant modulation of

mechano-sensing receptors in microgravity, which triggered a signaling cascade

that led to calcium overloading in mitochondria. The response of PBMC in space

shares T-cell exhaustion features, likely initiated by microgravity than by infection.

Consequences of mitochondria dysfunction include immune dysregulation and
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prolonged cell survival which potentially explains the reported findings of inhibition

of T cell activation and telomere lengthening in astronauts.

Conclusion:Our study potentially identifies the upstream cause of mitochondria

dysfunction and the downstream consequences in immune cells.
KEYWORDS

spaceflight, transcriptomics, astronauts’ health, mitochondria, immune dysfunction,
telomere lengthening
Introduction

The impact of spaceflight on mitochondria has been known for

decades, as reported in the muscle of rats (1), the ocular tissue of

mice (2), and in human blood samples (3). In a comprehensive

multi-omics analysis from human and animal samples flown in

space, mitochondrial dysregulation was identified as a central hub

across different species and organ tissues (4). Although

mitochondria dysfunction can have profound consequences on

human health, the underlying mechanisms of this spaceflight

occurrence remain unresolved.

In this study, we investigated transcriptomic changes in blood

samples collected from crewmembers during long-duration

International Space Station (ISS) missions. Our intent is to identify

potential signal transduction systems that regulate cell gene expression

in response to the space environment, particularly the mechanisms

underlying mitochondria dysfunction. Previously published gene

expression data from astronauts’ blood samples showed dysregulated

genes involved in DNA repair, oxidative stress, and protein folding/

degradation in space (5). The NASA twin study revealed altered gene

expression patterns related to the metabolic process of ROS,

mitochondrial transport, hypoxia, and apoptotic mitochondrial

changes (3). Other published studies include a transcriptomics

analysis of ISS crewmembers’ leukocytes (6). A recent study of

Inspiration 4 crewmembers’ blood using single cell gene expression

technology also identified a set of “spaceflight genes” (7).

As our transcriptomics data was collected from the human

blood samples in space, we also explored the mechanisms

underlying other reported findings in astronauts’ blood. One of

these findings is dysregulation of the immune system (8, 9). Studies

conducted with astronaut biological specimens, cell culture systems,

and animal models demonstrated that the immune system is

affected during flight, and immune dysregulation, in part, persists

after short- as well as after long-duration missions (10).

Transcriptomic analyses of human peripheral blood mononuclear

cells (PBMCs), splenocytes and purified T cells have demonstrated

that the absence of gravity profoundly inhibits the capacity of

immune cells to respond to in vivo (11) and ex vivo stimulations

(12). Evidence of enhanced virulence of pathogens (13) and
02
increased viral shedding indicate potential risks for astronauts´

health during long-duration missions (14). Recent studies using

single cell analysis revealed simulated microgravity can induce

inflammation and age like inflammatory changes in PBMCs (15).

Additionally, it has been shown that simulated microgravity impairs

bioactive lipids in monocytes, promoting immune dysfunction (16).

Altered gene expression changes in primary and secondary

lymphoid organs has also been reported in mice exposed to

simulated microgravity (17). These findings demonstrate the

complexity of immune dysfunction that arise during space travel.

However, despite decades of research, the molecular mechanisms

behind space environment-associated immune dysregulation are

not fully understood.

The other reported finding is telomere lengthening. In the NASA

Twin study, the average telomere length was shown to be greater in

blood cells collected in space when compared to the ground controls

(3). The length shortened rapidly after the missions (18). A mutational

analysis conducted on C elegans during a short duration spaceflight

mission also revealed telomere elongation (19). Likewise, a combination

of simulated microgravity conditions and radiation exposure on

myogenic cells showed telomere elongation in mice (20). While these

studies highlight space induced telomere elongation across different

species, the process in which it occurs is yet to be uncovered.
Methods

Sample collection

The data reported in this paper was collected from eleven

astronauts. Four of the crewmembers were females. For each

crewmember, blood was collected at two time points pre-flight,

which varied from 240 to 85 days before launch for the first blood

draw and from 125 to 23 days for the second blood draw. Onboard

the ISS, blood was collected between 135 and 210 days after launch.

In order to minimize any time-related effects, blood was drawn

immediately prior to departing the ISS.

Blood was collected into an 8.5 mL BD ACD Vacutainer (BD

Biosciences, Franklin Lakes, New Jersey) containing acid citric
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dextrose (ACD) solution. Blood tubes were then returned to the

ground and transported at ambient temperature to Johnson Space

Center (JSC) in Houston, Texas. The samples were received at JSC

approximately 36 hours after blood draw on the ISS and then

processed. The two preflight samples were collected at JSC and left

unprocessed at ambient temperature for 36 hours in order to match

the blood tube returning time from the ISS. At JSC, blood was

diluted with phosphate buffered saline, and peripheral blood

mononuclear cells (PBMC) were isolated using density gradient

centrifugation. The PBMCs were then washed twice with PBS and

lysed using Qiagen RLT Plus Buffer (Hilden, Germany). The lysates

were frozen at -80°C until batch RNA isolation was performed. The

results presented here correspond to gene expression of PBMC

collected in space in comparison to the combined pre-flight

time points.
RNA isolation

Total RNA was isolated using a Qiagen AllPrep DNA/RNA/

miRNA kit (Hilden, Germany) according to the manufacturer’s

instructions. Briefly, the cells were homogenized using a

QIAshredder (Hilden, Germany), passed through a DNA

extraction column, precipitated with ethanol, passed through an

RNA extraction column, treated with DNase, washed and eluted in

nuclease free water. The concentration and purity of the RNA

samples was determined using a Nanodrop 2000 instrument. The

RNA isolates were frozen at -80°C until being shipped on dry ice for

RNA-seq analysis. Although the blood samples were collected at

different times for the 11 crewmembers, the RNA was isolated from

PBMC in 3 batches. The batch effects were corrected in the data

analysis. Isolated RNA from PBMC of the crewmembers yielded

similar RNA concentrations between the blood samples collected in

space and on the ground. The RNA integrity numbers (RIN) ranged

from 7.2 and 9.3 for all samples, collected except for a pre-flight

sample collected from Crew3 which was excluded from the analysis.
RNA sequencing

Purified total RNA from all samples was submitted to the

University of Wisconsin-Biotechnology Center for RNA QC,

library construction (Illumina TruSeq) and NGS sequencing.

Total RNA was assayed for purity and integrity via the

NanoDrop One Spectrophotometer and Agilent 2100 Bioanalyzer,

respectively. RNA libraries were prepared from samples that met

the TruSeq® Stranded Total RNA Sample Preparation Guide

(15031048 E) input guidelines using the Illumina® TruSeq®

Stranded Total (Globin) RNA Sample Preparation kit (Illumina

Inc., San Diego, California, USA). For each library preparation,

cytoplasmic ribosomal and globin RNA was removed using

biotinylated target-specific oligos combined with paramagnetic

beads tagged with streptavidin. Following purification, the

reduced RNA was fragmented using divalent cations under

elevated temperature. Fragmented RNA was copied into first

stranded cDNA using SuperScript II Reverse Transcriptase
Frontiers in Immunology 03
(Invitrogen, Carlsbad, California, USA) and random primers.

Second strand cDNA was synthesized using a modified dNTP

mix (dTTP replaced with dUTP), DNA Polymerase I, and RNase

H. Double-stranded cDNA was cleaned up with AMPure XP Beads

(1X) (Agencourt, Beckman Coulter).

The cDNA products were incubated with Klenow DNA

Polymerase to add a single ‘A’ nucleotide to the 3’ end of the

blunt DNA fragments. Unique dual indexes (UDI) were ligated to

the DNA fragments and cleaned up with two rounds of AMPure XP

beads (0.8X). Adapter ligated DNA was amplified by PCR and

cleaned up with AMPure XP beads (0.8X). Final libraries were

assessed for size and quantity using an Agilent DNA1000 chip and

Qubit® dsDNA HS Assay Kit (Invitrogen, Carlsbad, California,

USA), respectively. Libraries were standardized to 2nM. 2x150

paired-end sequencing was performed, using standard SBS

chemistry on an Illumina NovaSeq 6000 sequencer and processed

with bcl2fastq2 concersion software v2.20.
Bioinformatics analysis

Bioinformatic analysis of transcriptomics data adheres to

recommended ENCODE guidelines and best practices for RNA-

Seq. Alignment of adapter-trimmed (21) 2x150 (paired-end; PE) bp

strand-specific Illumina reads to the Homo sapiens GRCh38.p10

genome (assembly accession GCA_000001405.25) was achieved

with the Spliced Transcripts Alignment to a Reference (STAR

v2.5.3a) software (22), a splice-junction aware aligner, using

Ensembl version 93 annotation. Expression estimation was

performed with RSEM v1.3.0 (23).

Thirty-two samples from 11 crew members were assigned into

pre-flight (n=21, with one crew member having only 1 pre-flight

sample) and in-flight (n=11) groups based on the time of sample

collection. Genes with low reads counts were removed using

filterByExpr function within the edgeR package (24, 25) by

applying default parameters. Gene counts were subsequently

normalized with TMM algorithm using edgeR library. Differential

gene expression analysis was performed using limma-voom pipeline

(26). The design of the linear model for each gene was implemented

using the model.matrix function in limma, including two terms,

time (i.e., pre-flight, in-flight) and crew member ID. Incorporating

crew member IDs as covariates in the model compensated for the

individual differences of baseline gene expressions and increased the

statistical power to identify changes.

To perform principal component analysis (PCA), values of

counts per million (CPM) were calculated and log2-transformed.

Batch effects due to different sample processing time were corrected

using removeBatchEffect function from limma package. PCA was

performed using the prcomp function from base package of R.

The DEGs were determined by a threshold of false discovery

rate (FDR<0.01). These dysregulated genes were analyzed using

Ingenuity Pathway Analysis (IPA, Qiagen, (27)) for pathways,

functions and other biological consequences. IPA determines the

statistical significance (p-value from Fisher’s exact test) based on the

number of overlapping genes between the DEG in the present study

and those in the IPA database for the specific pathways or functions.
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Whether a pathway is activated or inhibited is measured by the z-

score, which is determined by the gene expression fold changes

against the expected directions. The genes in the IPA database are

compiled from comprehensive surveys of the scientific literature.
Results

Space environment-induced
gene dysregulation

Unsupervised principal component analysis (PCA) suggests

changes in gene expression profiles occurred in PBMCs collected

in-flight when compared with the pre-flight samples (Figure 1). The

directions of the in-flight samples, which deviated from the pre-flight

samples were consistent in all crew members (downwards along the

PC2 axis), suggesting a similar pattern of gene expression changes in

response to the space environment. The degree of changes varied

across individual crew members, as demonstrated by the distances

between in-flight and pre-flight samples, indicating the individual

variations in the adaptation to the space environment.

With a threshold of false discovery rate (FDR) at 0.01, 1012

genes were upregulated and 1018 downregulated in the in-flight

PBMCs when compared to the pre-flight samples. The top 100 DEG

sorted by the FDR with the fold change values (FC) are listed in

Table 1. The corresponding Volcano plot is shown in

Supplementary Figure S1.
Cellular pathways and gene functions
affected by the space environment

In order to identify the responsive canonical pathways in the

space environment, we applied Ingenuity Pathway Analysis (IPA)
FIGURE 1

Principal component analysis of gene expression profiles. The in-
flight PBMC samples were separated from pre-flight samples for all
crew members.
Frontiers in Immunology 04
TABLE 1 Differentially expressed genes (DEGs) in PBMC of ISS
crewmembers in space in comparison to pre-flight samples.

Symbol FC FDR Symbol FC FDR

SEC14L2 2.8 4.7E-08 MAP1S -3.5 4.4E-05

GPR174 1.8 5.8E-07 TMEM189 -1.8 4.5E-05

RUBCNL 4.0 1.3E-06 PLEKHG1 2.1 4.5E-05

ARID5B 1.9 2.3E-06 GPR15 2.0 4.5E-05

TMEM45B 2.0 8.1E-06 FAM78A -1.6 4.7E-05

DNASE1L1 -1.6 1.3E-05 CD68 -1.6 4.8E-05

EOMES 2.2 1.3E-05 S100A10 -1.7 5.9E-05

CTSH -1.7 1.3E-05 PRDM4 1.4 6.0E-05

PLEC -1.9 1.8E-05 LILRB1 -1.8 6.0E-05

CDKN1A -3.0 1.8E-05 TSPAN14 -1.8 6.0E-05

JDP2 -2.0 1.9E-05 TAGAP 1.5 6.0E-05

PPIF -2.1 2.1E-05 HCP5 2.0 6.3E-05

FLVCR2 -2.8 2.5E-05 ZC3H12D 1.5 6.6E-05

PFN1 -1.6 2.5E-05 ARHGAP25 2.4 6.6E-05

CDK5R1 -2.2 2.5E-05 VIM -1.6 6.6E-05

GPR65 1.7 2.5E-05 SH3TC1 -1.6 6.6E-05

CYC1 -1.7 2.5E-05 ACTG1 -1.3 6.7E-05

VEGFA -4.5 2.5E-05 GRASP -3.1 6.7E-05

LRIG1 1.8 2.6E-05 HK1 -1.3 6.7E-05

ARL5B 1.5 2.6E-05 ID2 -2.8 6.7E-05

CST3 -1.6 2.7E-05 MAFF -1.8 6.7E-05

RUNX1 -1.9 3.1E-05 ZDBF2 1.7 6.8E-05

RASGRP1 1.8 3.1E-05 EPM2AIP1 1.3 6.8E-05

SLAMF1 1.7 3.1E-05 UBAC1 -1.4 7.0E-05

NABP1 2.9 3.4E-05 CBLB 1.5 7.1E-05

TNFRSF13C 1.9 3.4E-05 LGALS3 -2.0 7.3E-05

SCML1 -1.8 3.4E-05 NTSR1 -2.9 7.4E-05

TTC7A -1.7 3.4E-05 CD302 -1.5 7.4E-05

DDIT4 -1.6 3.4E-05 TNFRSF21 -2.8 7.8E-05

NAPSB -1.7 3.4E-05 CTSB -1.4 8.0E-05

GLS 1.4 3.5E-05 SERPINF1 -2.1 8.1E-05

BCAT1 -1.7 3.5E-05 PNRC1 1.4 8.4E-05

CXCL8 4.4 3.5E-05 TOPORS 1.6 8.4E-05

MRPL23 -1.5 3.5E-05 CYP2S1 -2.5 8.4E-05

PIM2 2.0 3.5E-05 KLF2 1.7 8.5E-05

UPP1 -2.3 3.5E-05 ARHGAP15 1.4 8.6E-05

IRF5 -1.7 3.5E-05 NDFIP1 -1.5 8.6E-05

EFNA1 -6.6 3.5E-05 TGFBI -1.7 8.6E-05

(Continued)
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with a threshold of p<0.05 as the cutoff. In IPA, the cutoff of p<0.05

indicates statistical significance of change based on the overlapping

DEGs associated with a specific pathway, whereas the z-score

indicates significance in activations or inhibitions of these

pathways (See Methods). Figure 2 shows the top pathways with a

|z| -score threshold of 2. The pathways impacted by spaceflight are

mostly involved in i) metabolism and mitochondria dysfunction,

including oxidative phosphorylation and tricarboxylic acid cycle

(TCA), ii) immune responses, such as natural killer cell signaling,

interleukin signaling and hypoxia-inducible factor 1-alpha signaling

(HIF-1a), iii) actin nucleation and iv) cell death/survival including

sirtuin signaling, necroptosis and autophagy.

As shown in Figure 2, among the top dysregulated pathways are

mitochondria dysfunction and oxidative phosphorylation. These

pathways are dysregulated due to expression of the number of the

genes in the mitochondria as shown in Figure 3. Several pathways

related to mitochondria/ATP production have also been identified

including cristae formation and TCA cycle. Among mitochondrial

genes, OXPHOS is shown to be impaired atmultiple complex enzymes.

Dysregulated complex I genes include: NDUFB7(-1.6, 0.004),

NDUFA11(-1.4, 0.002), NDUFS6(-1.3, 0.006), NDUFA13(-1.2, 0.005)
TABLE 1 Continued

Symbol FC FDR Symbol FC FDR

NFKBID 1.9 3.5E-05 CAMSAP1 -1.9 8.8E-05

IRF4 -1.9 3.5E-05 TRIM39 1.6 8.9E-05

ALDH2 -1.5 4.0E-05 PMP22 -3.6 9.6E-05

MAN2B1 -1.4 4.0E-05 PTGS2 2.8 9.6E-05

RNH1 -1.7 4.0E-05 CHN1 2.1 9.9E-05

FAM84B 1.5 4.0E-05 TUBD1 1.8 1.0E-04

SH2D1A 1.9 4.0E-05 P4HB -1.3 1.0E-04

LILRB4 -1.9 4.0E-05 C1orf132 2.3 1.0E-04

GSTP1 -1.7 4.2E-05 SEC13 -1.3 1.0E-04

CD28 1.6 4.2E-05
ADORA2A-

AS1 4.7 1.0E-04

ASB6 -1.5 4.3E-05 ABHD12 -1.7 1.0E-04

RGS2 2.0 4.3E-05 MTMR11 -1.5 1.0E-04
The top 100 DEGs sorted by FDR are presented. FC.
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FIGURE 2

Top 50 canonical pathways identified by IPA.
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NDUFB10(-1.3,<0.001), NDUFB5(-1.4,<0.001), NDUFA4(-1.3, 0.01)

and NDUFB6 (1.4, 0.002). Most notably, complex I functions to

oxidize NADH and pump protons. Dysregulated complex III genes

include: UQCRC1 (-1.6, <0.001) and CYC1 (-1.7, <0.001). Complex III

contributes to the transfer of electrons from ubiquinol to cytochrome c.

Dysregulated genes in complex IV include: CYC(1.3, 0.005), COX8A

(-1.3, 0.002), COX15(-1.2, 0.007), and COX6B1 (-1.3, 0.001). Complex

IV serves as the last step of OXPHOS and generates water by

transferring electron from cytochrome C to O2. Dysregulated

Complex V genes include: ATP5F1B(-1.2,0.005), ATP5F1C

(-1.2,0.006), ATP5F1D(-1.4, 0.008), ATP5MC1(-1.5, 0.007),

ATP5MC2(-1.3, 0.003), ATP5ME(-1.3, 0.003), ATP5PB(-1.2, 0.003),

ATP5PD (-1.3, 0.002). ATP synthase, or complex V, is vital in the

conversion of ADP to ATP. All dysregulated genes are encoded by

nDNA and no mtDNA genes were shown dysregulated on the heat

map. DEGs of these enzyme subunits demonstrates impaired ATP

production and cellular metabolism.

One of the dysregulated pathways that is not in Figure 2 is

G-protein coupled receptor (GPCR) signaling, which has p=0.001
Frontiers in Immunology 06
and z=1.3. Table 2 shows the list of dysregulated GPCRs. The reason

for a lower z-score is that some of the receptors are upregulated, but

some downregulated. Besides adhesion GPCRs, dysregulated

GPCRs are organized by calcium flux modulation. Receptors

coupled to G alpha q activate the IP3 calcium pathway through

the alpha subunit. Receptors coupled to G alpha S activate adenylate

cyclace which in turn activates pKA to open calcium channels RyR

calcium channels on the endoplasmic reticulum. Receptors coupled

to G alpha i/o proteins activate the PLC gamma pathway through

the beta-gamma subunit. Despite being coupled to different G

proteins these receptors maintain the ability to increase

intracellular calcium, as discussed below.

When analyzing diseases and gene function annotations, IPA (|z|

score threshold of 2) identified downregulated functions including

endocytosis, cell migration, cell-cell contact and cell maturation

(Table 3). All of the top diseases and functions have small p-values.

The DEGs were also analyzed using the GSEA method. The

results of cellular components and molecular functions are shown

in Supplementary Table S2.
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Heatmap of the dysregulated genes involved mitochondria dysfunction in space.
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Discussion

Mitochondrial dysfunction has been a documented consequence of

space flight in both humans and animals (1–3). Understanding the

underlying mechanisms and implications of mitochondrial dysfunction

will provide crucial knowledge for future spaceflight missions. This

discussion will dive deeper into the molecular and cellular aspects that

are found within the 2030 differentially expressed genes and results

generated from IPA and its implications in spaceflight.
GPCRs

G protein Coupled Receptors (GPCRs) are the largest class of

membrane receptors that are abundantly expressed in various cell types

including T lymphocytes (28). Our study demonstrates a dysregulation

in GPCR related genes (Table 2). GPCRs function by converting

extracellular signals into biochemical responses that can activate or

suppress cell function. Activation of GPCRs can occur through a ligand

dependent and independent manner, activating a signaling cascade

that’s both receptor and cell specific. Ligand dependent GPCR

activation requires a ligand to bind to the receptor while ligand

independent GPCR activation can occur via mechanical force or

membrane modifications that induces a conformational change (29).

Our data shows the upregulation of 18 ligand dependent GPCRs that

have been linked to increasing cytosolic calcium and promoting calcium

mobilization (Table 2). Activated GPCRs undergo a conformational

change that exchanges GDP for GTP, causing the dissociation of Ga
and bg subunits (30). Depending on their subtype, the subunits can

modulate cytosolic calcium concentration andmobilization through the

activation of PLC-beta and cAMP signaling cascades (31). Our dataset

shows the downregulation of GABBR1 and GPR35 (Table 2) which

have been implicated in decreasing cytosolic calcium levels, thereby

elevating intracellular calcium (32). Adhesion GPCRs that were

dysregulated include, ADGRA2, ADGRE1, ADGRE3 and ADGRG3

(Table 2) and are proposed mechanoreceptors due to their large NH2-

terminal region (33). Dysregulation of mechanosensing GPCRs may be

attributed to microgravity during spaceflight. Various studies on plants,

microbes, yeasts and mammal cells have shown that long exposure of

microgravity exhibits changes inmechanotranduction and serving as an

adaptive response to a decreased pressure environment (34).

Furthermore, there was dysregulation in genes that modulate

GPCR activity, providing a mechanism to enhance and prolong

calcium influx. GNG2 (FC=1.4, FDR=0.009) was upregulated in our

data and encodes for the G-protein gamma 2, a subunit on the bg
complex. A study isolating G-protein g subunit has been shown to

enhance the lipase activity of the GaqGTP–PLCb complex, promoting

more cytosolic calcium (35). Our transcriptomic data also shows the

down regulation of PLPP3 (-6.5, 0.009), RGS1 (-2.2, 0.001), and RGS16

(-5.9, 0.002) which are negative regulators of G protein signaling. An

upregulation of 18 GPCRs that increase cytosolic calcium demonstrates

a potential enhancement of calcium influx during spaceflight. This is

further elucidated by the dysregulation of GPCR modulatory genes.
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TABLE 2 Dysregulated GPCR in space.

Symbol Entrez Gene Name
Fold

change FDR

Adhesion GPCRs

ADGRG3
adhesion G protein-coupled

receptor G3 3.2 1.2E-03

ADGRE3 adhesion G protein-coupled receptor E3 2.7 5.2E-04

ADGRA2
adhesion G protein-coupled

receptor A2 -1.6 1.9E-03

ADGRE1 adhesion G protein-coupled receptor E1 -1.3 1.2E-03

Upregulated GPCRs that
increase cytosolic Ca2+

HCAR2 hydroxycarboxylic acid receptor 2 5.5 2.8E-04

CXCR2 C-X-C motif chemokine receptor 2 4.9 6.0E-03

HCAR3 hydroxycarboxylic acid receptor 3 4.1 3.7E-04

FPR2 formyl peptide receptor 2 3.5 1.5E-03

FFAR2 free fatty acid receptor 2 3.0 1.9E-03

C5AR2 complement C5a receptor 2 2.6 3.8E-03

CCR3 C-C motif chemokine receptor 3 2.4 7.2E-03

ADORA2A adenosine A2a receptor 2.2 2.1E-03

CCR1 C-C motif chemokine receptor 1 2.2 7.5E-03

PTAFR platelet activating factor receptor 2.2 2.1E-03

FPR1 formyl peptide receptor 1 2.1 2.1E-03

P2RY13 purinergic receptor P2Y13 2.1 6.9E-03

GPR15 G protein-coupled receptor 15 2.0 4.5E-05

GPR174 G protein-coupled receptor 174 1.8 5.8E-07

GPR65 G protein-coupled receptor 65 1.7 2.5E-05

GPR18 G protein-coupled receptor 18 1.5 1.7E-03

P2RY10 P2Y receptor family member 10 1.5 2.6E-04

S1PR5 sphingosine-1-phosphate receptor 5 1.5 6.3E-04

Downregulated GPCRS that
increase cytosolic Ca2+

S1PR2 sphingosine-1-phosphate receptor 2 -3.1 2.5E-03

NTSR1 neurotensin receptor 1 -2.9 7.4E-05

P2RY2 purinergic receptor P2Y2 -2.7 2.6E-03

GPRC5C
G protein-coupled receptor class C

group 5 member C -2.3 1.2E-03

PTGIR prostaglandin I2 receptor -1.7 1.1E-03

VIPR1 vasoactive intestinal peptide receptor 1 -1.7 5.1E-03

P2RY1 purinergic receptor P2Y1 -1.6 2.4E-03

PTGDR2 prostaglandin D2 receptor 2 -1.6 7.7E-03

(Continued)
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Cell membrane

Lipids function to regulate the fluidity, and structure of the cell

membrane and regulate the location of membrane bound receptors

(36). The integrity and composition of the lipid membrane has been

shown to modulate GPCRs. A study conducted on b2-adrenergic
receptors demonstrated that lipid head groups could allosterically

modulate ligand binding and GPCR activation (37). This study also

demonstrates that anionic lipids were able to enhance the open

conformation of b2-adrenergic receptors compared to other lipids.

Another study showed that increasing membrane fluidity led to a

more active confirmation on GPCRs (38). The lipid membrane is

comprised of phospholipids, glycolipids, sphingolipids and sterols.

Our data shows the downregulation of sphingolipid metabolism

(Figure 2). Impaired metabolism of sphingolipids was shown to

enhance the activity of serotonin 1A receptors (39). Additional

dysregulated genes involved in the maintenance of the lipid

membrane include: SEC14L2 (2.8, <0.001), PLA2G15 (-1.5,

0.005), LIPA (-1.6, 0.001), NPC1 (1.4, 0.006), NPC2 (-1.4, 0.001),

STARD4 (-1.5, 0.001), AUP1 (-1.3, 0.001), HILPDA (3.4, <0.001),

APOL2 (1.7, 0.001), APOL3 (1.3, 0.008), APOL6 (1.3, 0.002),

DGAT2 (3.8, 0.001), SCD (-2.3, 0.002) and PEMT (-1.6, 0.005).

Cholesterol has also been shown to modulate stability, signaling and

ligand affinity of multiple GPCRs (40). Simulated microgravity was

found to dysregulate the metabolism of sterols, phospholipids,

sphingolipids, glycerolipids, and others in epidermal stem cells

(41). Thus, we propose that microgravity may modulate both

mechanoreceptor and ligand GPCRs by dysregulating the

surrounding lipid environment.

It has been suggested that cells respond to microgravity through

cytoskeleton reorganization (42). Interestingly, activation of GPCRs

induce cytoskeleton reorganization and may suggest a potential

crosstalk between microgravity and GPCRs. Moreover, simulated

and real microgravity altered the organization of actin filaments and

microtubules (43). GPCRs can initiate a Rac1-WASP family

signaling cascade that activates the ARP2/3 complex to induce

actin polymerization (44). Rac1 can be inhibited by specific GTPase

activating proteins (GAPs) and therefore its activity is not solely
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tied to the activation of GPCRs. Our data shows the upregulation of

rac1 GAP proteins: CHN1 (2.1, >0.001), ARHGAP25 (2.4, <0.001),

and ARHGAP15 (1.4, 0.001), and downregulation of RAC1 (-1.4,

0.004), which may suggest that the GPCR cytoskeleton remodeling

cascade is disrupted by GTPase activating proteins rather than the

lack of an initial GPCR signal. A study done on human MG-63

osteoblast-like cells revealed that silencing rac1 suppressed

microgravity induced alterations of the cytoskeleton (45).

Therefore, the downregulation of the rac1 pathway could also be

a potential compensatory mechanism for the impaired cytoskeleton

from microgravity. In the present study, the actin nucleation ARP-

WASP complex pathway (Figure 2) was also down regulated. The

associated genes include downregulation of actin (ARPC3 (-1.3,

0.001), ARPC4 (-1.2, 0.003) and ARPC1B (-1.4, 0.001)) and integral

proteins (ITGAM (-1.3, 0.003) and ITGB2 (-1.3, 0.001)). Other

dysregulated actin cytoskeleton related genes include PLEC

(-1.9, <0.001), PSTPIP2 (-1.6, <0.001), ACTB (-1.4, 0.001),

ACTG1 (-1.3, <0.001), MYH11 (16, 0.001), MYL6B (-1.6, 0.003),

and MYO10 (-2.4, 0.002). The disruption of the actin cytoskeleton

has also been shown to enhance ligand binding of serotonin 1a

receptors by either increasing the probability of GPCRs interacting

with G proteins or changing conformational dynamics (46).

Another study using serotonin 1a receptors showed that

destabilizing the actin cytoskeleton enhanced the GPCRs

signaling efficiency (47). Thus, cytoskeleton dysregulation induced

by microgravity may modulate GPCRs and contribute to increased

levels of cytosolic calcium.
Mitochondria dysfunction

Our data revealed mitochondrial dysfunction, and

downregulation of oxidative phosphorylation (OXPHOS) and

tricarboxylic acid cycle (TCA cycle) (Figure 2), indicating a clear

impact of the space environment on cellular respiration glucose

metabolic and ATP production (Figure 3). Spaceflight has

previously been shown to impact OXPHOS and induce

mitochondrial dysfunction (3, 7). A comprehensive multi-comics

analysis from human and animal samples in space also identified

mitochondrial dysregulation as a central hub across different species

and organ tissues (4). The impact of spaceflight on mitochondria

has also been reported previously in the muscle of rats (1, 48) and in

the NASA twin study (3). Prolonged exposure (~6 months) to space

conditions reduced mtDNA and mtRNA production in astronauts’

hair follicles (49). The cell-free mitochondrial DNA concentration

in circulating blood increased in astronauts and has been a

suggested biomarker for stress or immune responses related to

environmental space factors (50). In mice flown on the space

shuttle, it was also reported that spacefl ight induced

mitochondrial oxidative damage in ocular tissue (2). Our data

shows the upregulation of MICU3 (1.9, 0.008), a gene that

regulates calcium uptake into the mitochondria. Using mice, it

was demonstrated that over-expression of MICU3 increased

mitochondrial calcium levels while MICU3 knockout mice had

reduced levels of mitochondrial calcium (51). Transcriptomic data

also points to increased intracellular calcium via up regulation of
TABLE 2 Continued

Symbol Entrez Gene Name
Fold

change FDR

Downregulated GPCRS that
decrease cytosolic Ca2+

GPR35 G protein-coupled receptor 35 -2.0 1.8E-03

GABBR1
gamma-aminobutyric acid type B

receptor subunit 1 -1.7 5.5E-03

Upregulated GPCRs that
decrease cytosolic Ca2+

SSTR3 somatostatin receptor 3 1.4 9.2E-03

Unconventional GPCRs with
little known Ca2+

ACKR3 atypical chemokine receptor 3 -8.5 1.0E-03
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STIM2 (1.3, <0.001). STIM proteins trigger the influx of calcium

into the ER through a plasma membrane bound calcium channel

when it detects low levels of ER stored calcium (52).

Downregulation of STIM2 in neurons decreased mitochondrial

calcium levels, calcium release from the ER, and improved

mitochondrial function, demonstrating its role in mediating

mitochondrial calcium concentrations (53). Our data also shows

the upregulation of ITPRIPL1, PLCL1, PLCD1 genes, indicating

modulated IP3 activity. Likewise, our data shows the

downregulation of CACNA2D4, which has been shown to lower

the voltage required for the calcium channel to open (54).

Calcium overload disrupts the mitochondria by destabilizing

cristae, impairing oxidative phosphorylation, and inducing the

opening of the mitochondrial permeability transition pore

(mPTP) complex (55). A dysregulation in the cristae network was

noted in calcium overloaded mitochondria and aligns with the

downregulation of cristae formation from our dataset (Figure 2).

This phenomenon may occur due to the formation of calcium

phosphate precipitates that destabilize the cristae structure (56).

Likewise, it has been reported that high mitochondrial calcium

levels impair the rate of ADP phosphorylation in OXPHOS (55).

This is consistent with our data as oxidative phosphorylation was

among the top 3 down regulated pathways (Figure 2). Calcium

regulates the mPTP which is a non-selective pore. This complex is

triggered by calcium concentration which induces an open

confirmation that is either transient or sustained (57). A transient

open confirmation allows for the efflux of Ca2+ and ROS and serves

a regulatory function. During calcium overload, a sustained open

confirmation allows for ion and solute influx that induces apoptosis

and necroptosis by releasing pro-apoptotic proteins (58).

In addition, spaceflight is known to alter the general metabolic

state of living organisms (59). Microgravity has been shown to

associate with a decrease in key glycolysis enzymes in hematopoietic

progenitor cells (60). In muscle biopsies taken from astronauts after

short (~11 days in space) and long (~180 days in space) duration

missions, proteins and genes involved in TCA and fatty acid beta-

oxidation decreased (61). Moreover, the TCA activity and the

glycolysis/gluconeogenesis ratio was reduced in mouse muscles

during spaceflight (62). However, simulated microgravity and real

space conditions seems to promote or inhibit glycolysis or TCA,

depending on the cell type and in vitro/in vivo conditions (63). In a

study of mice flown in space for different durations (64), it was

reported that some mitochondria related genes were also

dysregulated, depending on the flight duration. As the flight

duration is proportional to the dose of space radiation exposure

that the mice received, the contribution of radiation to

mitochondria dysfunction cannot be ruled out. It is likely that

some of the biological effects of spaceflight are caused synergistically

by microgravity, cosmic radiation and other stress factors.
Endocytosis, cell migration and
cell adhesion

In our study, endocytosis, phagocytosis and engulfment were

identified amongst the highest down regulated cell processes
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(Table 3). The dysregulated genes associated with endocytosis are

listed in Supplementary Table S1. Endocytosis regulates several

functions including signal transduction, membrane composition,

mitosis, synaptic vesicle recycling, adhesion, lipid homeostasis,

moti l i ty and cell morphogenesis (65). Therefore, the

downregulation of genes involved in cell migration and adhesion

comes as no surprise. Endocytosis is a fundamental process in T

cells due to their role in membrane receptor trafficking recycling

and targeted degradation. Bystander T cell receptor (TCR) recycling

is a clathrin mediated endocytosis dependent process which was

down regulated in our dataset (Table 3) (66). More specifically our

data shows the downregulation of AP2S1 (-1.5, <0.001), AP2M1

(-1.3, <0.001), DNM2 (-1.2, 0.003), and DNMT1 (-1.3, 0.009)

indicating an impaired recruitment for clathrin coating and pit

scission. Moreover, endocytosis regulates T cell receptor (TCR)
TABLE 3 Diseases or functions that are associated with the DEGs as
identified by IPA.

Diseases or Functions
Annotation

Activation
z-score p-value

Endocytosis -3.2 1.2E-19

Endocytosis by eukaryotic cells -3.0 8.1E-16

Engulfment of cells -3.0 1.8E-16

Infection of cells -2.8 1.1E-16

Cell movement of antigen presenting cells -2.7 1.1E-10

Engulfment of myeloid cells -2.6 1.2E-12

Infection by RNA virus -2.6 4.0E-30

Phagocytosis of myeloid cells -2.6 6.5E-13

Phagocytosis of blood cells -2.5 2.2E-14

Cell movement of macrophages -2.5 3.5E-09

Phagocytosis of antigen presenting cells -2.4 2.5E-08

Viral Infection -2.4 7.0E-37

Internalization of cells -2.4 1.1E-13

Cell-cell contact -2.3 5.6E-07

Infiltration by T lymphocytes -2.3 2.5E-09

Phagocytosis by macrophages -2.3 4.2E-08

Phagocytosis -2.3 1.0E-15

Engulfment of blood cells -2.2 3.2E-14

Phagocytosis of phagocytes -2.2 2.6E-09

T cell migration -2.2 5.3E-18

Cellular infiltration by macrophages -2.2 1.4E-07

Systemic autoimmune syndrome -2.2 2.2E-25

Development of progenitor cells -2.2 5.3E-15

Leukocyte migration -2.2 7.8E-24

Cell movement of blood cells -2.1 6.1E-24

Immune response of myeloid cells -2.0 2.2E-14
fro
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signaling, antigen discovery by trogocytosis and activated cell

growth (57). Additionally, endocytosis requires cell surface

receptors for recognizing nutrients and pathogens (67).

Mechanisms underlying endocytosis in microgravity conditions

are not fully understood but macrophages have been shown to

exhibit impaired phagocytosis, adhesion migration and cytokine

production in space (68). Similarly, long-term cultures of dendritic

cells in simulated microgravity resulted in reduced antigen uptake

(69) and fungal conidia uptake by phagocytosis (70).

Downregulation of phagocytic surface markers CD32 and CD64

were also seen in astronauts’ monocytes after 5-11 days in space

(71). Endocytosis is a key component for cell fate determination and

cell migration (72), which are down regulated processes in our

dataset (Supplementary Table S1). It should also be noted that

RUNX1 (-1.9, <0.001) and GRASP (-3.1, <0.001), regulators of cell

adhesion, migration and endocytosis (73, 74), were among the top

down regulated genes from our data. Moreover, it has been reported

that after short duration space flight the surface expression of

CD62L and HLA-DR, key factors in endothelial cell adhesion and

tissue migration, were significantly reduced (75).

Modifications in the cytoskeleton are required for these processes

to occur as actin polymerization drives the morphological changes

that enable cells to undergo division, phagocytosis and migration.

The actin cytoskeleton is crucial for the adaptive immune response

due to its role in the organization and function of the immune

synapse during antigen recognition (76). The formation of new actin

filaments from actin monomers is regulated by the Arp2/3 complex

among others (77). A reduction in cell movement and adhesion as

seen in our analysis (Table 3) may be due to the impact of spaceflight

on the actin cytoskeleton. As mentioned above, the Rac1-Arp2/3

pathway and actin nucleation ARP-WASP complex were down

regulated (Figure 2). The Arp2/3 complex relies on ATP for its

activation therefore impaired oxidative phosphorylation due to

calcium overload may play a key role in its dysregulation.
Cell survival

The mitochondrion is a multifaceted organelle, responsible for

cellular ATP production but also modulates apoptosis, necroptosis,

ferroptosis, pyroptosis and autophagy (78). In the present study,

BCL6 (1.5, 0.004) was upregulated in space. Over expression of BCL6

has been shown to inhibit apoptosis in differentiation-induced

myogenic cells (79). Our data also shows the downregulation of

BCL7B (-1.8, <0.001). Knockdown of BCL7B in human gastric cancer

cells were shown to suppress cell death (80). Furthermore, our data

showed the downregulation of two calcium mediated apoptotic

pathways that are independent of the mitochondria, providing a

survival mechanism for cells during calcium overload. A

dysregulation of calcium induces ER stress by impairing calnexin

and calreticulin, which under normal conditions facilitates proper

protein folding (81). Our data shows the downregulation of Calnexin

(CANX (-1.3, <0.001)) and calreticulin (CALR (-1.3, 0.001)),

suggesting that the unfolded protein response (UPR) system is

activated. Activation of the UPR leads to a cascade that ultimately
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causes apoptosis by CHOP (82). Interestingly, our data shows the

downregulation of associated UPR proteins ATF4 (-1.3, 0.001), and

ATF3 (-1.5, 0.009), indicating impaired apoptosis from calcium

induced ER stress. Other dysregulated calcium-dependent apoptosis

genes in our data set were CAPN2 (-1.5, 0.002), CAPNS1 (-1.3,

0.002), CAPN1 (-1.3, 0.01), and CASP9 (-1.3, 0.006). Dysregulated

genes that were found to promote cell survival include PIM2 (2.0,

<0.001), PIK3CD (1.6, 0.001), PIK3R4 (1.5, 0.001), TMEM52B (3.4

0.003), MOAP1 (-1.4, 0.003), and TNFRSF10A (-1.3, 0.009).

Importantly, our data revealed the downregulation of genes

involved in the intrinsic death pathway for T cells. Similarly,

calcium overload in the mitochondria induces apoptosis through

the same mechanism. The intrinsic death pathway in T cells can be

activated by TCR activation, DNA damage, developmental cues, or

growth factor deprivation (83). Likewise, an increased level of

mitochondrial calcium can also initiate these events in other cell

types. These signals trigger the opening of the mPTP in the

mitochondria and release pro-apoptotic proteins: CytC, Endo G,

AIF and others (84). CytC forms an apoptosome that activates

CASP9 which leads to apoptosis via a caspase cascade (85). On the

other hand, Endo G and AIF mediate apoptosis through a caspase

independent pathway, translocating to the nucleus and degrading

chromatin (86). Our data shows the downregulation of PPIF

(-2.1, >0.001) and PACS2 (-1.4, 0.007), demonstrating an

impaired release of apoptotic proteins from the mitochondria.

PPIF knockdown mice showed impaired cytochrome C release,

inhibition of necroptosis and protected autophagy (87), aligning

with our data (Figure 2). Likewise, PACS2 depleted cells have been

shown to inhibit apoptosis by blocking the release of cytochrome c

(88). Additionally, our data showed the downregulation of CASP9

(-1.3, 0.006), CARD14 (-1.8, 0.004) and PYCARD (-1.5, <0.001),

indicating impaired initiation and recruitment of caspases. Our

analysis also showed the downregulation of AIF genes AIFM2 (-1.6,

0.007) and AIFM3 (-1.8, 0.01). IL-7 signaling (Figure 2) was also

upregulated in our data, which most notably inhibits the intrinsic

apoptotic pathway by up-regulating anti-apoptotic proteins (87).

BIRC6 (1.2, 0.008), an inhibiting apoptosis protein (IAP), was

also upregulated.

Avoiding cellular apoptosis is key for T cell survival, but cellular

stress can activate senescence, rendering lymphocytes inactive.

Autophagy has a complex relationship with senescence, but

several studies show that autophagy can suppress senescence in

cells with a dysfunctional mitochondrion (89). Furthermore,

autophagy is known to play a role in maintenance of T cells (90)

and promotes longevity of organisms. Our data indicated activation

of chaperone mediated autophagy (CMA) (Figure 2). CMA has

been linked to enhancing TCR activation by degrading inhibitory

signals and increasing cell survival by degrading pro-apoptotic

proteins (91). Additionally, autophagy was upregulated in our

dataset as a result of dysregulation of ATG12 (1.2, 0.004),

ATG2A (2.0, 0.003), ATG2B (1.4, 0.004) and other genes. Other

autophagy related genes such as MAP1LC3A (2.7, <0.001) and

RUBCNL (4.1, <0.001) (Table 1) were also upregulated. Likewise,

TMEM189 (-1.8, <0.001) and PPP1CA (-1.4, <0.001), negative

regulators for autophagy, were downregulated. Additionally,
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downregulation of SLC1A5 (-1.9, 0.001) and SLC7A5 (-3.4, <0.001)

in our dataset suggests reduced amino acid transport and starvation

of the cells. Moreover, a downregulation of endocytosis as shown in

Table 3 contributes to the nutrient starvation of cells which induces

autophagy (92). The sirtuin signaling pathway was also found to

suppress oxidative stress induced senescence in osteoporotic bone

marrow mesenchymal stem cells (93). Our findings show the

upregulation of the sirtuin signaling pathway (Figure 2). The

suppression of senescence from the sirtuin pathway occurs by

halting telomere attrition and upregulating DNA repair

mechanisms. Interestingly mammalian cells contain 6 SIRT

proteins, three of which (SIRT1,3,6) can function as gene

expression suppressors, to stabilize chromatin (94).

Moreover, T cells must overcome telomere attrition to avoid

senescence (95), An increased telomere length was reported in T

cells during the NASA twin study (3). The increased telomere length

was independent of telomerase, suggesting an aberrant pathway for

telomere maintenance and lengthening. It has been proposed that the

transient activation of telomerase-independent ALT pathway is a

response to chronic oxidative damage and serves as a mechanism for

cell survival (96). Our data shows the upregulation of 8 genes (NR2C2

(1.4, 0.005), CHD4 (1.5, <0.001), SMC4 (1.4, <0.001), RPA3 (1.3,

0.005), RPA2 (1.4, 0.008), ATRIP (1.4, 0.002), TOP3A (1.4, 0.007), and

PCNA (1.6, <0.001)) that activate the ALT pathway, and the

downregulation of 1 inhibitory gene (ERCC1 (-1.5, <0.001)) (97).

These dysregulated genes may indicate an adaptive response to the

chronic oxidative stress endured by T cells during spaceflight. In

addition, downregulation of senescence biomarker genes was noted

in our data and included CDKN1A (-3.0, <0.001), CDKN2AIP (-1.3,

0.004), TP53I13 (-1.6, <0.001), E2F4 (-1.3, <0.001), PPP1CA (-1.4,

<0.001), and DEC1 (BHLHE40, -2.7, <0.001). Likewise, our data did

not show expression changes to GLB1 which suggests unchanged sa-b-
galactosidase activity. Altogether, the downregulation of apoptosis,

necroptosis, and upregulation of chaperone mediated autophagy,

sirtuin signaling and ALT pathway suggests a mechanism for T cell

survival and telomere lengthening during spaceflight.

Emerging research demonstrates that telomeric RNA (TERRA)

increases with chronic low dose radiation exposure (98).

Importantly, TERRA is a mediator for ALT. TERRA was

increased in the blood of high-altitude climbers and in vitro

simulated radiation studies, but not in simulated microgravity.

However, the simulated microgravity experiment did not

investigate the synergistic effects microgravity may have with

space radiation nor the effects of long-term microgravity

exposure. PBMCs from the experiment were only exposed to

simulated microgravity for 25 hours, which may not have

provided sufficient time for key adaptational changes that link

microgravity to telomere elongation. TERRA is released as a

cellular response to telomeric damage from ROS, hypoxia, DNA

breaks and other stressful signals. While space radiation plays a role

in these stress responses, microgravity has been shown to induce

similar molecular stressors (99). Levels of telomeric RNA increase

in a radiation dose dependent manner (100, 101), suggesting that

the duration of stress exposure influences telomere elongation and

therefore should also be considered in the context of long term

microgravity exposure.
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Compromised immune function

Impaired immune function has been documented in astronauts

during spaceflight and after returning to earth (102). T cell activation

initiates a phosphorylation cascade that leads to gene expression

changes that modulate effector functions (103). Protein tyrosine

kinases serve as the phosphorylating enzymes in T cell activation

and utilize ATP to phosphorylate target molecules (104). Oxidative

phosphorylation functions as the main energy sources during T cell

activation (105), therefore the downregulation of the process may

contribute to the inhibition of T cell activation during spaceflight.

Interestingly, mitochondrial dysfunction has been suggested to be a cell

intrinsic trigger for T cell exhaustion ( (106) T cell exhaustion is

normally induced by chronic antigen stimulation, but during

spaceflight microgravity has been suggested to induce activation of T

cells that decreases over time (107). We propose that ROS from

dysfunctional mitochondria induces gene expression changes by

modulating key transcription factors such as HIF-1a and others as

seen by the upregulation in the generic transcriptional pathway

(Figure 2). T cell exhaustion is characterized by reduced effector

functions, reduced cytokine secretion of IL-2, TNF-g and TNF-a and

upregulation of inhibitory receptors (108). Hallmark T cell exhaustion

genes such as CTLA-4 (1.4, 0.004), TIGIT (1.6, 0.001), CD274 (1.9,

0.001, which encodes PD-L1), BCL6 (1.5, 0.004), BACH2 (1.4, 0.001)

and EOMES (2.2, <0.001) were upregulated in our dataset. CTLA-4

and TIGIT are inhibitory receptors that become upregulated on the

surface of exhausted T cells and serve to negatively regulate immune

function. Similarly, CD274 serves as the ligand for inhibitory receptor

PD-1, decreasing cytokine production (109). EOMES is a T-box

transcription factor that drives T cell exhaustion by mediating the

transcription of inhibitory receptors (110). Likewise, our dataset shows

the downregulation of IL-10 and its subsequent signaling pathway.

Research has correlated decreased IL10 (-4.2, 0.002) expression with an

increased amount of exhausted CD8 T cells (111). Decreased cytokine

secretion has been continuously noted in PBMCs from astronauts

returning from space missions and in cells cultured in simulated

microgravity conditions (102). Comparatively, our data shows the

upregulation of all three subunits of the IL-2 receptor (IL2RA (1.5,

0.003), IL2RB (1.4, 0.007), IR2RG (1.3, 0.007)). The upregulations of

these receptors may be due to an adaptive response from the lack of

cytokine secretion. Furthermore, the loss of cytotoxic abilities in

exhausted T cells aligns with the inability to engulf pathogens after

spaceflight (Table 3). Equally, downregulation of cell migration and

endocytosis (Table 3) may work cooperatively to reduce pathogen

engulfment from activated T cells.

Emerging data has also implicated GPCRs with T cell exhaustion

(112), supporting our claim that persistent GPCR stimulation

reprograms T cells to an exhaustive like state in microgravity. In this

referenced study, it was shown that G protein alpha S GPCRs were

highly expressed in exhausted CD8 T cells. Most notably, ADORA2A

(2.2, 0.002), GPR65 (1.7, <0.001) and FFAR (3.0, 0.002) were positively

correlated with T cell exhaustion. Our data shows the upregulation of

these GPCRs. Likewise, G alpha q/11 and G alpha S coupled GPCRs

were shown to have the highest mean correlation with T cells

dysfunction, implicating intracellular calcium and cAMP activation

with T cell exhaustion. Therefore, we propose that inhibition of T cell
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activation during spaceflight is due to a T cell state that parallels

features of T cell exhaustion.
Conclusion

Our present study represents the most comprehensive

transcriptomic dataset collected from 11 astronauts in space. The

2030 DEGs in our dataset for 11 astronauts after spending more

than 135 days on the ISS provides insight to the mechanisms by which

humans adapt to the unique space environment. Based on the 2030

DEGs of our dataset we hypothesize that spaceflight results in an

increased influx of cytosolic calcium which ultimately causes

mitochondrial dysfunction during spaceflight. We found

dysregulations in GPCR related genes that point to enhanced

calcium influx and mobilization into the cytosol and mitochondria.

Our findings also indicate microgravity induced membrane disruption,

further enhancing the influx of cytosolic calcium, and modulating

GPCR activity. Low levels of cytosolic calcium are needed to regulate

homeostasis and modulate cell function within eukaryotes, but

increased concentrations can induce calcium overload in the

mitochondria and impede cellular processes (113). Our dataset also

suggests activated survival mechanisms in T cells, allowing them to

bypass apoptotic and senescent cues, and explains telomere

lengthening during spaceflight. Additionally, we uncover the
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mechanisms that inhibit T cell activation during and after

spaceflight. The proposed mechanisms for mitochondria dysfunction,

immune dysregulation and telomere elongation are shown in Figure 4.

We further hypothesize that, for other cell types, spaceflight

induces mitochondrial dysfunction through calcium overload via

microgravity induced pressure changes that upregulate GPCR-

calcium signaling. In T lymphocytes this manifests as a T cell

exhaustion-like state that is independent of antigen stimulation. All

in all, while metabolically less active, these cells remain viable due to cell

survival mechanisms that allow them to bypass senescence, apoptosis

and undergo telomere elongation through the ALT pathway.
Limitations

Due to the enormous complexity of human studies involving

astronauts, the pre- and in-flight blood collection could not be

synchronized for all astronauts, resulting in different exposure times

to the space environment among the astronauts (135 to 210 days in

the present study). Grouping the blood samples collected at

different time points can generate “data noise” (114). During

return of the inflight samples to the ground, the cells in the blood

collection tube experienced changes from mg to hyper g (<1.6g) and
then to 1g after landing. In vitro studies in which cultured blood

cells experienced changes of gravity conditions may provide useful
FIGURE 4

Proposed mechanisms underlying mitochondria dysfunction, T cell dysregulation and telomere elongation in space Created in BioRender. Jimenez-
Chavez, L. (2025) https:// BioRender.com/n91t558.
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information to determine whether DEGs in our dataset were

induced by reentry of the blood samples. It has been reported

that the number of DEGs due to altered gravitational force is low, as

50 early responsive DEGs were found in T cells during a parabolic

flight when comparing hyper-g or mg to 1g (115). Transferring T

cells from mg to a 1g centrifuge on the ISS only identified 47

dysregulated genes (11). Gene expression changes in PBMC can

also be impacted by the distribution of different subtypes of blood

cells in space. The percentages of sub-blood cell types were not

significantly altered in space in comparison to the pre-flight samples

(Crucian, unpublished), in this case, it should have minimal impact

on the DEGs found in the present study. The populations of

different subtypes of blood cells were also similar between pre-

and in-flight samples from computations of DEG using a

deconvolution algorithm (Data not presented here). Based on

these results, we believe that the majority of DEGs found in our

study reflect a homeostatic response. The impact of these physical

stressors can be eliminated using an RNA stabilizer after blood was

drawn. However, RNA stabilizers were not used due to safety

reasons. We also recognize that information generated from

transcriptomics data needs to be verified in future studies.
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113. Matuz-Mares D, González-Andrade M, Araiza-Villanueva MG, Vilchis-
Landeros MM, Vázquez-Meza H. Mitochondrial calcium: effects of its imbalance in
disease. Antioxid (Basel). (2022) 11:801. doi: 10.3390/antiox11050801

114. Varabyou A, Salzberg SL, Pertea M. Effects of transcriptional noise on estimates
of gene and transcript expression in RNA sequencing experiments. Genome Res. (2021)
31:301–8. doi: 10.1101/gr.266213.120

115. Thiel CS, Hauschild S, Huge A, Tauber S, Lauber BA, Polzer J, et al. Dynamic
gene expression response to altered gravity in human T cells. Sci Rep. (2017) 7:5204.
doi: 10.1038/s41598-017-05580-x
frontiersin.org

https://doi.org/10.1038/s41467-024-48806-z
https://doi.org/10.1038/s41586-024-07586-8
https://doi.org/10.1016/j.actaastro.2014.05.019
https://doi.org/10.1038/s41392-021-00823-w
https://doi.org/10.7150/ijms.1.101
https://doi.org/10.1146/annurev-immunol-042617-053019
https://doi.org/10.1146/annurev-immunol-042617-053019
https://doi.org/10.1038/s41467-023-42634-3
https://doi.org/10.1016/j.lssr.2017.08.002
https://doi.org/10.3389/fimmu.2023.1104771
https://doi.org/10.3389/fimmu.2023.1104771
https://doi.org/10.1002/ctm2.934
https://doi.org/10.3389/fimmu.2018.02981
https://doi.org/10.3389/fimmu.2018.02981
https://doi.org/10.1016/j.immuni.2021.11.004
https://doi.org/10.1038/s41590-023-01529-7
https://doi.org/10.1038/s41590-023-01529-7
https://doi.org/10.3390/antiox11050801
https://doi.org/10.1101/gr.266213.120
https://doi.org/10.1038/s41598-017-05580-x
https://doi.org/10.3389/fimmu.2024.1512578
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Transcriptomics analysis reveals potential mechanisms underlying mitochondrial dysfunction and T cell exhaustion in astronauts’ blood cells in space
	Introduction
	Methods
	Sample collection
	RNA isolation
	RNA sequencing
	Bioinformatics analysis

	Results
	Space environment-induced gene dysregulation
	Cellular pathways and gene functions affected by the space environment

	Discussion
	GPCRs
	Cell membrane
	Mitochondria dysfunction
	Endocytosis, cell migration and cell adhesion
	Cell survival
	Compromised immune function

	Conclusion
	Limitations

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


