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Alcohol intake exacerbates
experimental autoimmune
prostatitis through activating
PI3K/AKT/mTOR pathway-
mediated Th1 differentiation
Shun Xu1,2,3†, Jing Chen1,2,3†, Shaoyu Yue1,2,3†, Yifan Zhang1,2,3,
Shengyu Zhao1,2,3, Yongtao Hu1,2,3, Cheng Zhang1,2,3,
Wenrui Guan1,2,3, Li Zhang1,2,3, Ligang Zhang1,2,3*

and Chaozhao Liang1,2,3*

1Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical
University, Hefei, Anhui, China, 2Institute of Urology, Anhui Medical University, Hefei, Anhui, China,
3Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical
Transformation, Anhui Medical University, Hefei, Anhui, China
Background: Epidemiological investigations have revealed a significant

association between alcohol consumption and chronic prostatitis/chronic

pelvic pain syndrome (CP/CPPS). Nevertheless, the potential mechanisms are

still inadequately revealed. This research aimed to investigate the impact of

alcohol on CP/CPPS using an animal model and to elucidate the

underlying mechanisms.

Methods: We first established the widely used animal model for CP/CPPS,

experimental autoimmune prostatitis (EAP). During the induction of EAP, mice

were fed with alcohol or control diet. The HE staining, ELISA, and behavioral

experiments were employed to assess the severity of inflammation in EAP mice

and EAP-alcohol mice. Patients with a history of chronic alcohol consumption

were also included to evaluate the effects of chronic alcohol consumption on CP/

CPPS. Subsequently, proteomic analysis, flow cytometry, immunofluorescence,

Western blotting, and immunohistochemistry were utilized to investigate the

underlying mechanism involved both in vivo and in vitro.

Results: HE staining, ELISA, and behavioral experiments showed that alcohol

exacerbated the severity of EAP in mice and patients. Proteomic and KEGG

pathway analyses showed that abnormal Th1 differentiation and PI3K/AKT/mTOR

pathway were significantly enriched. Subsequent mechanistic research showed

that alcohol significantly activated PI3K/AKT/mTOR pathway and increased the

Th1 cell differentiation both in vivo and in vitro. In contrast, PI3K inhibitor

LY294002 and shRNA-PI3K plasmid inhibited PI3K/AKT/mTOR pathway

activation, reduced Th1 cell differentiation, and alleviated EAP inflammation

severity, respectively.
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Conclusion: Our study is the first to demonstrate that alcohol intake promotes Th1

cell differentiation and exacerbates EAP by activating the PI3K/AKT/mTOR pathway.

Additionally, the role of LY294002 in inhibiting PI3K/AKT/mTOR pathway to relieve

EAP suggests that it can serve as a promising therapeutic target for CP/CPPS.
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1 Introduction

The chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS)

is a typical urogenital disease affecting young males, accounting for

over 25% of urology outpatients. In China, epidemiological studies

indicated that the occurrence of CP/CPPS symptoms is about 8.4% of

the population. Additionally, about 50% of all men suffer CP/CPPS

symptoms at some age stage (1). CP/CPPS symptoms are often

varied, with feature of pain and discomfort in the testis, scrotum, and

perineum, bladder irritation symptoms (frequency, urgency, dysuria),

abnormal urodynamic performance (2), and an increased risk of male

infertility and sexual dysfunction. However, the exact pathogenesis of

prostatitis remains unknown.

Alcohol consumption is widespread globally. Consequently,

alcohol-related disorders are highly common worldwide (3, 4).

Alcohol consumption affects nearly all organs and is intricately

linked to various inflammatory diseases, like hepatitis (5),

pancreatitis, and atherosclerosis (6, 7). Epidemiological researches

revealed a strong relation in alcohol intake and CP/CPPS (1).

Individuals with drinking habits exhibit a higher incidence of CP/

CPPS and more severe symptoms (8). Alcohol is known to

exacerbate prostate tissue inflammation, pelvic pain symptoms,

and the concentrations of associated inflammatory cytokines in

experimental autoimmune prostatitis (EAP) mice (9). Additionally,

we observed that during alcohol-induced exacerbation of EAP, IFN-

g levels were significantly elevated, suggesting that Th1 cells may

play a regulatory role in alcohol-induced EAP.

Upon activation, initial CD4+ T cells differentiate into various

other cells, like Th1, Th2, Th17,depending on the cytokines they

produce (10). Th1 cells have a strong pro-inflammatory effect (11),

primarily secreting cytokines IFN-g and IL-22, which activate

neutrophils. A recent study on apical periodontitis revealed that IFN-

g levels in the apical periodontitis group were significantly upregulated

compared to controls. This suggests that Th1 cells may modulate

inflammation (12). Jing et al. discovered that hydrogen sulfide

dysregulates the Th1/Th2 cell balance, caused higher expression of

pro-inflammatory cytokines, which interferes with the insulin axis and

leads to glucose metabolism disorders during the inflammatory

response in chicken skeletal muscle (13). Given this evidence, it

indicated that Th1 cells are strong contributors to the development

and progression of inflammation.
02
The PI3K/AKT/mTOR pathway is frequently activated during

inflammation. It works alongside other pathways to modulate the

pathological process of many kinds of inflammatory diseases, such

as hepatitis (14), airway inflammation in COPD (15), and

osteoarthritis (16). Interestingly, PI3K/AKT/mTOR pathway is

markedly activated in EAP (17). Multiple studies have indicated

that alcohol may also activate the relevant axis (18, 19).

Combined with literature research and preliminary experiments,

we demonstrated that alcohol activates PI3K/AKT/mTOR signaling

axis. Moreover, the Th1 cell ratio strongly modulates EAP. However,

the molecular mechanism underlying this process is currently

unknown. The non-obese diabetic (NOD) murine EAP model was

generated through immunization with CFA (20). Herein, we explored

the function of CD4+IFN-g+ Th1 cells in pain and inflammatory

manifestations in EAP mice. Besides, we discovered that the alcohol-

mediated effects on Th1 cells were mediated via PI3K/AKT/mTOR

pathway. The above results highlight potentially potent targets for

CP/CPPS therapy.
2 Materials and methods

2.1 Mice and antigens

Six- to eight-week-old NOD (NOD/LtJ) mice were acquired

from Jiangsu GemPharmatech Co., Ltd. (Nanjing, China). The

Animal Center provided a specific pathogen-free environment,

where all the mice were housed. All protocols involving mice

received ethical approval from the Ethic Committee of Anhui

Medical University(No. LLSC20210270).

Prostate glands from Wistar rats (Beijing Vital Company) were

collected as experimental samples. Samples from 30 rats were

processed by initial homogenization in 0.01 M PBS (pH 7.2)

using Super Homogenizer (Bertin, France). Homogenization was

performed with protease inhibitors. Afterward, samples were

centrifuged for 30 minutes at 10,000g, 4°C. The BCA detection

Kit (Beyotime, China) was applied to quantify supernatants protein,

also called prostate antigens (PAgs), and were preserved at −80°C.

Next, prostate antigens (PAgs) and complete Freund’s adjuvant

(CFA, Sigma-Aldrich) were mixed in a 1:1 ratio and fully emulsified

using ultrasonic processing to form a suspension.
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2.2 Mouse model of EAP

PAgs emulsified in CFA (150mL) were intradermally

administered to NOD mice (300mg/mouse, EAP mice), while PBS

was administered to control mice at their tail base, hind footpad,

and lower back as previously outlined (21). Following a previous

immunization schedule (22, 23), mice received these injections on

days 0, 28, and were sacrificed on day 42.
2.2.1 Alcohol feeding protocols

32 days post-PAgs or PBS treatments, two groups of mice—one

control‐alcohol (CA) group and one EAP‐alcohol (EA) group—

were persistently fed with alcohol. This was achieved by ad libitum

oral feeding of the Lieber‐DeCarli alcohol diet for 10 days, along

with a single gavage of 35% alcohol (5 g alcohol per kg).

Additionally, two groups of mice (control-vehicle, CV, EAP‐

vehicle, EV) were given a control diet. The alcohol intake

procedure has been previously described (24).
2.2.2 Treatment with LY294002

EAP mice in the EAP-LY294002 (E-LY) and EAP-alcohol-

LY294002 (EA-LY) groups were administered daily intraperitoneal

(IP) injections of 5mg/kg LY294002 (Selleck, S1105) from days 28 to

42 (25). The EAP-vehicle (EV) and EAP-alcohol (EA) mice received

intraperitoneal PBS injections at the same time intervals.
2.3 Patients

This research was performed in line with the Declaration of

Helsinki and was approval by the Ethic Committee of the First

Affiliated Hospital Anhui Medical University (PJ2024-03-37).

Prostate tissue specimens were collected from 60 benign prostatic

hyperplasia patients who underwent laser enucleation treatment.

Inclusion criteria: 1. Diagnosis of benign prostatic hyperplasia (BPH);

2. Presence of surgical indications; 3. Provision of informed consent.

Exclusion criteria: 1. Presence of malignant tumors; 2. History of

urinary system surgery; 3. Presence of severe infectious diseases; 4.

Presence of coagulation disorders. HE staining was applied to assess the

prostate tissues inflammation. The inflammation severity of these

prostate tissues was graded based on clinical pathology reports.

Patients were grouped according to the history of chronic

alcohol consumption.
2.4 Histopathological evaluation

We conducted H&E staining of the prostate tissue of mice. Initially,

the specimens were fixed for 1 d. They were sequentially dehydrated in

graded alcohol and xylene series. Subsequently, the specimens were

embedded and sliced into approximately 5-mm sections. These sections

underwent H&E staining and were observed via microscope.
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Histopathological assessments used a point-counting system to

evaluate inflammation severity, as previously described (9). Cellular

alterations were graded on a four-point scale (0–3): 0 for no

inflammation, 1 for mild inflammation characterized by perivascular

cuffing, 2 for moderate inflammation with medium mononuclear cells,

while 3 for severe inflammation with significant perivascular cuffing,

abundant mononuclear parenchymal cells, and hemorrhage.
2.5 Behavioral testing

Cutaneous allodynia was assessed 42 days following the initial

injection. An isolated transparent plastic chamber was used to

conduct 24 evaluations, based on a previously established

protocol (9, 17). Three situations were considered positive

outcomes of filament stimulation. These included: (1) intense

abdominal retraction, (2) instantaneous scratching or licking of

the filament stimulation site, (3) jumping. The response rate

frequency was determined based on the ratio of positive

outcomes (e.g., 10 applications resulting in 3 outcomes = 30%).
2.6 ELISA

Cytokine contents were assessed using mouse plasma from EAP

mice injected subcutaneously with PAgs and an ELISA, following

kit directions (IFN-g: Elabscience Biotechnology Co. Ltd., Wuhan,

China; TNF-a: E-EL-M3063, Elabscience Biotechnology Co. Ltd.,

Wuhan, China; IL-4: E-EL-M0043c, Elabscience Biotechnology Co.

Ltd., Wuhan, China; IL-10: E-EL-M0046c, Elabscience

Biotechnology Company., Wuhan, China). The assay linear

ranges were as follows: 15.63-1000 pg/mL (IL-10 and IFN-g),
31.25-2000 pg/mL (IL-4), 7.81-500 pg/mL (TNF-a).
2.7 Western blotting analysis

Tissues and cell lysis were performed in RIPA buffer for 30minutes

at 4°C before adding SDS loading buffer. Protein separation was

performed using SDS-PAGE gel (Bio-Rad) and transferred onto

PVDF membranes. The membranes were blocked with primary

antibodies against PI3K (1:1000; CST,#42495), p-PI3K (1:1000; CST,

#17366), AKT,p-AKT,mTOR, p-mTOR, and GAPDH (1:3000;

Affinity, AF7021) at 4°C. This was followed by antibodies marked by

HRP (1:5000; goat anti-rabbit) for 1 hour. Protein visualization and

quantification were performed using chemiluminescence with a

ChemiScope and ImageJ (National Institutes of Health).
2.8 Immunohistochemistry evaluations

The prostate specimen was fixed for 1 day, subsequently

paraffin embedding and sliced into 5-mm sections. The paraffin

slices were dewaxed using xylene. After rehydration, antigens were

retrieved by microwaving the slices for 15 minutes at 95°C in 0.01 M

citric acid buffer. The sections were processed with 3% H2O2 for 10
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minutes (SP 9000; Beijing Zhongshan Company) at 25°C. Next, it

was washed with PBS (pH 7.4) before blocking in 10% BSA. They

were then cultured for 14h at 4°C with primary antibodies ([1:200]

p-PI3K, [1:200] p-AKT, and [1:500] p-mTOR). Subsequently, it was

washed with PBS and cultured with goat anti-mice IgG (1:200) for

30 minutes at 37°C, followed by three PBS rinses and treatment with

horseradish peroxidase-labeled streptavidin at 37°C for 30 minutes.

Following additional PBS rinses, immunoreactivity was assessed

using a Diaminobenzidine Staining Kit.
2.9 Immunofluorescence (IF)

Paraffin sections were successively dewaxed, rehydrated,

antigen repaired, and endogenous peroxidase activity quenched.

BSA was then added and blocked for 30 minutes. The blocking

solution was removed, and the specific primary antibodies were

added. The slides were placed flat in a humidified box and incubated

for 14h at 4°C. The rabbit anti-CD4 polyclonal antibody (YT0762,

Immunoway) and rabbit anti-IFN-g polyclonal antibody (YT2279,

Immunoway) was applied in the experiment. Next, the slides were

treated with fluorescent secondary antibodies, covered with an

incubation box. The slides were counterstained with DAPI for

nuclei staining and then sealed with sealing agent. A fluorescence

microscope was applied for photography.
2.10 Flow cytometry and ICS

Lymphocytes were extracted from murine spleens and stained

with fluorescence-labeled anti-CD4 (BD Pharmingen, 553650). To

conduct ICS, cells from murine NOD-derived spleen samples were

treated in 1640 medium (Gibco, USA) for 4 hours with ionomycin

(MultiSciences, China), and monensin.

Following a 60-minute surface marker CD4 (BD Pharmingen,

553650) stain at 4°C, Fix-Perm intracellular buffers were utilized for

cell fixation and permeabilization. Intracellular cytokine antibodies

(anti-IFN-g, BD Pharmingen, 554412) were applied to stain

cytokines for 1h at 4°C. A flow cytometer (Beckman Coulter,

Brea, CA) assessed the stained cells, and data analysis was

conducted using CytExpert Software.
2.11 Cell isolation and in vitro
differentiation of naive CD4+ T cells

The unlabeled cells were collected via LS Column in line with

relevant Isolation Kit (Miltenyi Biotec). IL-2 (10 ng/mL;CK24), IL-

12 (10 ng/mL; Novoprotein, CM39), and anti-IL-4 (BE0045) were

used for the generation of Th1 cells. To investigate the effect of

alcohol on Th1 cell differentiation, 100 mM alcohol was added to

the 1640 medium with 10% FBS (26, 27). For the intervention

group, naive CD4+ T cells were transfected with shRNA-PI3K

plasmid or NC plasmid (Genechem, China). After 4 days of culture,

cells were harvested and relevant experiments were performed.
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2.12 Short hairpin RNA (shRNA) plasmids
inhibit the expression of target genes

The knockdown plasmid, purchased from Shanghai Genechem

Company (Contract Number: GIEE0429289), was used to inhibit

the PI3K gene with short hairpin RNA (shRNA). The shRNA-PI3K

plasmid sequence used was: 5’-GATCCCGTACGAGACGCATC

TACTAAACTCGAGTTTAGTAGATGCGTCTCGTAC

TTTTTGGAT-3’. The sorted naive CD4+ T cells were transfected

for 1h, and the medium was then changed, followed by the

corresponding stimulation and differentiation operations.
2.13 Proteomic sequencing and
bioinformatics analysis

Tissue samples were collected from four groups of NOD mice

(CV, CA, EV, EA), and proteins were extracted via the RIPA lysis

buffer. The proteins were digested with trypsin and treated via LC-

MS/MS. The obtained data were applied to identify proteins. The

identified proteins were annotated using the GO and KEGG

databases. Enrichment analysis was conducted. The obviously

enriched pathways and biological processes were identified with a

threshold of P < 0.05.
2.14 Statistical analysis

Data were expressed as mean ± SD and were compared via

independent t-tests or ANOVA. Statistical difference was judged by

*P < 0.05. In the figures, *, **, ***, and **** represent statistical

significance levels of P < 0.05, P < 0.01, P < 0.001, P <

0.0001, respectively.
3 Results

3.1 Establishment of the EAP model and
Th1 abnormalities

The EAP model was established (Figure 1A). The EAP model

was assessed using histological analysis and pelvic pain assessment

in this study. EAP mice exhibited significantly higher tactile

allodynia responses to forces of 0.4 g, 1.0 g, 4.0 g than control

mice (P < 0.05, Figure 1B). EAP mice exhibited pathological

alterations such as stromal mononuclear cellular invasion, edema,

chronic tissue disorders (Figure 1C). HE scores for EAP and control

mice are depicted in Figure 1D (P < 0.001).

Next, we assessed the ratio of Th1 cells among splenic

lymphocytes from EAP and control mice. Our data revealed a

significantly higher concentration of Th1 (CD4+IFN-g+) cells in

EAP mice than that of controls (P < 0.01, Figure 1E, F). This finding

was further confirmed by immunofluorescence staining results

(Figure 1G), demonstrating an increased ratio of Th1 cells in

EAP mice.
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3.2 Alcohol exacerbated the
severity inflammation

H&E staining indicated that patients with benign prostatic

hyperplasia who have a history of drinking exhibit significantly

higher levels of inflammation in their prostate tissue compared to
Frontiers in Immunology 05
those with no experience of drinking (P < 0.01, Figure 2A, C). This

finding aligns with the outcomes observed in the animal

experiments. EA mice showed more severe prostate tissue

inflammation than the EV mice (P < 0.01, Figure 2B, D). Severe

inflammation was pronounced in the stromal tissue with a

significant infiltration of mononuclear cells, as well as fibrosis and
FIGURE 1

Induction of EAP model and abnormalities in the Proportion of Th1 in EAP mice. (A) Flow chart of EAP mice induction. (B) EAP induced pelvic pain as
assessed by tactile allodynia von Frey testing. (C) Representative HE staining images of prostate tissue sections of control and EAP group.
(D) Inflammation score of prostate tissue in control and EAP group. (E) Representative pictures of flow cytometric staining for Th1 cells in the splenic
lymphocytes from control and EAP mice. (F) Flow cytometric analysis of the proportion of Th1 cells in control and EAP mice. (G) Representative
pictures of immunofluorescent staining for Th1 cells in the splenic lymphocytes from control and EAP mice. NS, no significance, *P < 0.05,
**P < 0.01, ***P < 0.001; EAP, experimental autoimmune prostatitis; HE, hematoxylin-eosin.
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hemorrhage. In contrast, CV and CA mice showed no clear signs of

inflammatory cell infiltration (Figure 2B, D). EA mice exhibited

significantly higher tactile allodynia responses to forces of 0.4 g, 1.0

g, 4.0 g than EV mice (P < 0.05, Figure 2E).

The profile of specific inflammatory cytokines was assessed in

the plasma of immunized mice using ELISA. The IFN‐g and TNF‐a
(P < 0.01) were significantly elevated in EA mice than that in EV

mice (Figure 2F, G). The cytokines IL‐4 (P < 0.0001) and IL‐10 (P <

0.001) showed significant downregulation compared to the controls

(Figure 2H, I). This evidence suggests that alcohol significantly

relieve the EAP in mice and benign prostatic hyperplasia in patients.
3.3 Impact of alcohol on prostatitis:
insights from proteomic analysis

As previously noted, alcohol significantly influences prostatitis

(9). Therefore, we conducted proteomic analysis to clarify the

potential mechanism of action in EA mice. Analysis of differential

protein expression profiles in alcohol-induced experimental

autoimmune prostatitis mice showed that EA and EV mice

exhibited 152 differences in protein expression, with 100 proteins

up-regulated (Figure 2J).

Proteomic and KEGG pathway analyses showed that multiple

pathways were enriched. Specifically, the pathway related to T

lymphocyte differentiation strongly influenced the development

and progression of EAP. Based on analyses and identification,

abnormal Th1 differentiation was chosen as the focus of our

research (Figure 2K).

Sequencing also revealed that the PI3K/AKT/mTOR axis was

activated after alcohol treatment (Figure 2L). The results strongly

indicated that alcohol-induced activation of that axis mediated Th1

differentiation, playing a crucial role in EAP progression. After

conducting a thorough literature review, we identified that pathway

as the focus of our research. Taken together, these findings

highlighted significant differences between EA and EV mice,

providing insights into the role of alcohol in regulating EAP.
3.4 Alcohol increases Th1 cell
differentiation and activates the PI3K/AKT/
mTOR pathway

Following alcohol exposure, we assessed the number and

proportion of Th1 (CD4+IFNg+) cells in EAP mice using flow

cytometry. The data indicated that alcohol exposure significantly

increased Th1 cell content in EAP mice, leading to a higher Th1 cell

differentiation ratio than that of the EAP-vehicle group (P < 0.01,

Figure 3A, B). Immunofluorescence staining of mouse prostate

tissue (Figure 3C) revealed that the ratio of Th1 cells was

obviously higher in the EAP-alcohol group than the EAP-

vehicle group.

To clarify the mechanisms of alcohol’s effects in EAP mice, we

evaluated proteins related to the pathway using western blotting

and immunohistochemical (IHC) analyses. In EV mice, levels of p-

PI3K/PI3K, p-mTOR/mTOR were obviously enhanced. Following
Frontiers in Immunology 06
alcohol exposure in EAP mice, the concentrations of these

inflammation-associated proteins, specifically p-PI3K/PI3K, p-

AKT/AKT, p-mTOR/mTOR, were markedly enhanced, as

demonstrated by western blotting (P < 0.01, Figure 3D–G) and

IHC assays (Figure 3H). Based on this evidence, we confirmed that

alcohol activates the PI3K/AKT/mTOR pathway.
3.5 LY294002 reduces the inflammation
severity and inhibits the PI3K/AKT/
mTOR pathway

Next, we explored the effect of LY294002, an inhibitor of PI3K/

AKT/mTOR pathway, on the inflammation severity in mice

models. After LY294002 treatment, H&E staining showed a

significant reduction in perivascular and interstitial multifocal

mononuclear cell invasion in EA mice (Figure 4A). The EAP

scores of four murine groups are depicted in Figure 4B.

The levels of cytokines in EA-LY mice showed the following

profile: IFN‐g (P < 0.01) and TNF‐a (P < 0.0001) were significantly

reduced in EA-LY mice than that of EA mice (Figure 4C, D),

whereas cytokines IL‐4 (P < 0.0001) and IL‐10 (P < 0.01) were

reversed (Figure 4E, F).

Moreover, we assessed the number and proportion of

CD4+IFNg+Th1 cells (P < 0.001, Figure 4G, H) in spleen

lymphocytes of EAP mice using flow cytometry following

intraperitoneal LY294002 administration. Immunofluorescence

staining of Th1 cell-related proteins was conducted on prostate

tissues from all four groups of mice (Figure 4I). The data showed

comparable Th1 cell levels relative to EA mice, and the Th1 cell

differentiation ratio was reduced in EA-LY mice. These findings

suggest that LY294002 exposure has the potential to reduce

inflammation in EA mice.

Subsequetly, this research explored the effects of LY294002

exposure on the PI3K/AKT/mTOR pathway and inflammation

status in EA mice. Western blotting analysis result indicated that

the expressions of p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTORwere

obviously reduced in EA-LY mice compared to EA mice (P < 0.05,

Figure 4J–M). We also evaluated PI3K/AKT/mTOR-associated

proteins using IHC. The IHC data in EA-LY mice confirmed our

western blotting findings, suggesting that the PI3K suppressor

LY294002 prevented the PI3K/AKT/mTOR pathway (Figure 4N).
3.6 Activation of PI3K/AKT/mTOR pathway
and an increase of Th1 cell differentiation
in vitro

To validate our findings, we explored the biological effects of

alcohol on Th1 cell differentiation in vitro. Naive CD4+ T cells were

isolated and processed. In the in vitro experiment, for the sorted

Naive CD4 + T cells, IL-2, IL-12 and anti-IL-4 are used to stimulate

the differentiation of Naive CD4 + T cells into Th1 cells. Flow

cytometry (Figure 5A, B) results demonstrated that the Th1-alcohol

group had a significantly higher proportion of Th1 cells than the

Th1 group. Subsequent immunofluorescence staining results
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FIGURE 2

Alcohol worsened EAP mice and Benign prostatic hyperplasia patients degree, and Proteomic features of EAP-alcohol and EAP mice.
(A) Representative HE staining images of prostate tissue sections of non-inflammation, non-inflammation-alcohol, inflammation, and inflammation-
alcohol group. (B) Representative HE staining images of prostate tissue sections of control-vehicle, control-alcohol, EAP-vehicle, and EAP-alcohol
group. (C) Inflammation score of prostate tissue in non-inflammation, non-inflammation-alcohol, inflammation, and inflammation-alcohol group.
(D) Inflammation score of prostate tissue in control-vehicle, control-alcohol, EAP-vehicle, and EAP-alcohol group. (E) Pelvic pain as assessed by
tactile allodynia von Frey testing. (F–I) Concentration determination of serum IFN-g, TNF‐a, IL-4, and IL-10 by ELISA in control-vehicle, control-
alcohol, EAP-vehicle, and EAP-alcohol group. (J) Volcano plot analyses of protein expression levels in EAP-alcohol and EAP-vehicle mice prostate
tissue. The red origin represents the significantly up-regulated protein, the blue origin represents the significantly down-regulated protein, and the
gray dot represents the insignificant protein. (K) Selected examples of KEGG pathway enrichment. Disturbances in Th1 and Th2 cells are highlighted
in red. (L) Hierarchical clustering heatmap of protein expression levels in EAP-alcohol and EAP-vehicle mice. Disturbances in PI3K/AKT network are
highlighted in red. NS, no significance, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; EAP, experimental autoimmune prostatitis; HE,
hematoxylin-eosin.
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FIGURE 3

The effect of alcohol on EAP mice/patients causes an increase in the Th1 cell differentiation ratio, and activates the PI3K/AKT/mTOR pathway.
(A) Representative pictures of flow cytometric staining for Th1 cells in the splenic lymphocytes from control-vehicle, control-alcohol, EAP-vehicle,
and EAP-alcohol group. (B) Flow cytometric analysis of the proportion of Th1 cells in control-vehicle, control-alcohol, EAP-vehicle, and EAP-alcohol
group. (C) Representative pictures of immunofluorescent staining for Th1 cells of prostate tissue sections from control-vehicle, control-alcohol,
EAP-vehicle, and EAP-alcohol group. (D) The expressions of PI3K, phospho‐PI3K, AKT, phospho-AKT, mTOR, and phospho-mTOR in prostate were
detected by Western blotting analysis for the CV, CA, EV, EA. (E) Relative density analysis of PI3K/phospho‐PI3K. (F) Relative density analysis of AKT/
phospho-AKT. (G) Relative density analysis of mTOR/phospho-mTOR. (H) The activation of phospho‐PI3K, phospho-AKT, and phospho-mTOR
showed by Immunohistochemistry Assays for control-vehicle, control-alcohol, EAP-vehicle, and EAP-alcohol group. NS, no significance, *P < 0.05,
**P < 0.01, ****P < 0.0001; EAP, experimental autoimmune prostatitis.
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FIGURE 4

LY294002 may reduce inflammation severity, decrease the ratio of Th1 cells in EAP mouse, and inhibit the PI3K/AKT/mTOR pathway activation.
(A) Representative HE staining images of prostate tissue sections of EAP-vehicle, EAP-LY294002, EAP-alcohol, and EAP-alcohol-LY294002 group.
(B) Inflammation score of prostate tissue in EAP-vehicle, EAP-LY294002, EAP-alcohol, and EAP-alcohol-LY294002 group. (C–F) Concentration
determination of serum IFN-g, TNF‐a, IL-4, and IL-10 by ELISA in EAP-vehicle, EAP-LY294002, EAP-alcohol, and EAP-alcohol-LY294002 group.
(G) Representative pictures of flow cytometric staining for Th1 cells in the splenic lymphocytes from EAP-vehicle, EAP-LY294002, EAP-alcohol, and
EAP-alcohol-LY294002 group. (H) Flow cytometric analysis of the proportion of Th1 cells in EAP-vehicle, EAP-LY294002, EAP-alcohol, and EAP-
alcohol-LY294002 group. (I) Representative pictures of immunofluorescent staining for Th1 cells of prostate tissue sections of EAP-vehicle, EAP-
LY294002, EAP-alcohol, and EAP-alcohol-LY294002 group. (J) The expressions of PI3K, phospho‐PI3K, AKT, phospho-AKT, mTOR, and phospho-
mTOR in prostate were detected by Western blotting analysis for the EV, E-LY, EA, EA-LY. (K) Relative density analysis of PI3K/phospho‐PI3K. (L) Relative
density analysis of AKT/phospho-AKT. (M) Relative density analysis of mTOR/phospho-mTOR. (N) The activation of phospho‐PI3K, phospho-AKT, and
phospho-mTOR showed by Immunohistochemistry Assays for EAP-vehicle, EAP-LY294002, EAP-alcohol, EAP-alcohol-LY294002. NS, no significance,
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; EAP, experimental autoimmune prostatitis; HE, hematoxylin-eosin.
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(Figure 5C) were consistent with these observations. Western

blotting (Figure 5D–F) results demonstrated that alcohol

significantly activates AKT/mTOR pathway. In short, Alcohol

treatment significantly increased the differentiation ratio of Th1
Frontiers in Immunology 10
cells and significantly activated the AKT/mTOR pathway. Mouse

naive CD4+ T cells were transfected with an shRNA-PI3K plasmid

to suppress PI3K expression. The inhibitory effect of the shRNA-

PI3K-plasmid further corroborated this finding (Figure 5).
FIGURE 5

In vitro experiments further demonstrated increased proportion of Th1 cells and the pathway activation. (A) Representative pictures of flow
cytometric staining for Th1 cells of Naive CD4+, Th1, Th1-alcohol, Th1-alcohol-shPI3K group. (B) Flow cytometric analysis of the proportion of Th1
cells in Naive CD4+, Th1, Th1-alcohol, Th1-alcohol-shPI3K group. (C) Representative pictures of immunofluorescent staining for Th1 cells of Naive
CD4+, Th1, Th1-alcohol, Th1-alcohol-shPI3K. (D) The expressions of AKT, phospho-AKT, mTOR, and phospho-mTOR in lymphocytes were detected
by Western blotting analysis for the Naive CD4+, Th1, Th1-alcohol, Th1-alcohol-shPI3K group. (E) Relative density analysis of AKT/phospho-AKT.
(F) Relative density analysis of mTOR/phospho-mTOR. NS, no significance, ***P < 0.001, ****P < 0.0001; EAP, experimental autoimmune prostatitis;
EV, EAP-vehicle, E-LY, EAP-LY294002, EA, EAP-alcohol, EA-LY, EAP-alcohol-LY294002.
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4 Discussion

CP/CPPS remains a prevalent global urinary system concern,

and further exploration is needed to understand its pathogenesis.

While the Th1/Th2 cell-mediated involvement in CP/CPPS patients

is well-documented (28, 29), the regulatory mechanisms of Th1 cell

differentiation remain incompletely understood.

Our research team has previously made significant progress in

studying alcohol-induced prostatitis, contributing to the understanding

of CP/CPPS pathogenesis (9, 17). Using preliminary proteomic

sequencing, we found that EAP-alcohol mice exhibited an enhanced

Th1/Th2 cell ratio and marked activation of the PI3K/AKT/mTOR

axis compared to EAP mice. This observation suggests that alcohol

strongly regulates Th1 cell differentiation through induction of that

axis, influencing CP/CPPS pathogenesis. Our study enhances

understanding of the regulatory mechanisms of Th1 cell

differentiation and sheds light on the development of alcohol-

induced prostatitis.

Alcohol is a well-established regulator of inflammation,

significantly increasing production of pro-inflammatory cytokines

like TNF‐a, IFN‐g, which directly contribute to inflammatory

processes (30, 31). Previous studies have indicated that alcohol

exacerbates conditions like allergic dermatitis and allergic asthma

by modulating autoimmune mediators (32, 33). Similarly, the EAP

model reflects autoimmune-based inflammation. Consistent with

clinical epidemiological findings (8), the incidence of CP/CPPS is
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notably higher among alcoholic drinkers. Additionally, alcohol is

implicated in the regulation of prostatitis development. Our

research further corroborated that alcohol exacerbates EAP

severity, with feature of extensive inflammatory infiltration in the

interstitium, resulting in significant pain and elevated levels of

inflammatory cytokines.

The PI3K/AKT/mTOR network serves as a key regulator in

many kinds of pathophysiological processes, such as inflammation,

apoptosis (34, 35). Dysregulated PI3K/AKT/mTOR signaling is

implicated in the initiation and modulation of autoimmunity and

inflammation (36–38). Tang et al. demonstrated that lncRNA

MEG3 inhibits PI3K/AKT/mTOR activation, suppressing

inflammation in TNF-a-exposed psoriatic mice (39). Several

drugs and their components are known to mitigate inflammation

by targeting that axis (40–42). In our study, it was found that there

exist obvious increase in p-PI3K, p-AKT, p-mTOR levels in EAP

mice, which were further elevated following alcohol treatment. This

finding suggests that alcohol exacerbates prostate inflammation by

activating the inflammation-related that axis.

Several studies indicate infiltration of inflammatory cells like

neutrophils, macrophages of CP/CPPS cases (10). Elevated Th1 cells

contribute to pelvic pain and play a significant role in autoimmune

prostatitis (22, 43). In EAP mice, prostate-infiltrating lymphocytes

are predominantly Th1 cells, evidenced by upregulated cytoplasmic

IFN-g staining. Immunizing IL17A/F-deficient mice with prostate

antigen induced a robust Th1 immune response, exacerbating
FIGURE 6

Schematic diagram of the pathogenic role of alcohol in EAP. In the process of EAP, alcohol activates the PI3K/AKT/mTOR pathway to increase the
Th1 cell ratio, resulting in aggravation of EAP.
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persistent pelvic pain. This highlights the role of increased Th1 cell

population in enhancing EAP susceptibility. The immune response

involving Th1 cells and IFN-g secretion is critical in CP/CPPS (44),

suggesting a potential autoimmune mechanism targeting the prostate

(45). Studies also report elevated IL-1b, TNF-a, IFN-g levels in CP/

CPPS patient seminal plasma (44), underscoring the importance of

Th1 ratio in CP/CPPS development. However, the role of alcohol in

regulating Th1 cells in CP/CPPS remains unclear. Here, using flow

cytometry, we demonstrated that alcohol significantly increases both

the quantity and proportion of Th1 cells. Moreover, LY294002, a

PI3K suppressor, attenuated the PI3K/AKT/mTOR axis. Compared

to EA mice, EA-LY mice showed reduced PI3K/AKT/mTOR

pathway protein expression, fewer Th1 cells, and reduced prostate

tissue inflammation. In vitro experiments with shRNA-PI3K-plasmid

further supported these findings. Therefore, LY294002 represents a

promising therapeutic approach for PI3K/AKT/mTOR network-

related diseases such as CP/CPPS. LY294002 also holds potential

for future research on the PI3K/AKT/mTOR network and

associated diseases.
5 Conclusion

In summary, our study is the first to show that alcohol intake

promotes Th1 cell differentiation and exacerbates EAP through

activating the PI3K/AKT/mTOR pathway (Figure 6). Additionally,

the role of LY294002 in inhibiting PI3K/AKT/mTOR pathway to

relieve EAP indicated that it can served as a promising treatment

target for CP/CPPS.
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