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Background: With poor treatment outcomes and prognosis, bladder cancer

remains a focus for clinical research in the precision oncology era. However, the

potential of disulfidptosis, a novel cell death mechanism, and its related long

non-coding RNAs to support selective cancer cell killing in this disease is

still unclear.

Methods: We identified key disulfidptosis-related lncRNAs in bladder cancer,

constructed a prognostic risk model with potential therapeutic targets, and

confirmed the findings through quantitative PCR analysis.

Results: We identified five crucial lncRNAs (AC005840.4, AC010331.1,

AL021707.6, MIR4435-2HG and ARHGAP5-AS1) and integrated them into a

predictive model centered on disulfidptosis-associated lncRNAs. Reliability and

validity tests demonstrated that the lncRNA prediction index associated with

disulfidptosis effectively discerns patients’ prognosis outcomes. Additionally,

high-risk patients exhibited elevated expression levels of genes involved in the

PI3K-Akt signaling pathway, extracellular matrix organization, and immune

escape mechanisms, which are associated with poor prognosis. Notably, high-

risk patients demonstrated higher sensitivity to Sorafenib, Oxaliplatin and MK-

2206, underscoring the promise of these lncRNAs as precise therapeutic targets

in bladder cancer.

Conclusion: By revealing the predictive importance of disulfidptosis-associated

lncRNAs in bladder cancer, our research offers new perspectives and pinpoints

potential therapeutic targets in clinical environments.
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1 Introduction

Bladder cancer (BC) is one of the most common malignant

tumors affecting the urinary system, posing substantial challenges to

global healthcare (1, 2). The incidence of BC varies widely,

encompassing both occult, non-invasive types and highly

aggressive forms with high mortality rates. The clinical course of

BC is highly variable; some cases progress slowly and are prone to

recurrence, necessitating long-term invasive monitoring (3, 4). In

contrast, other cases exhibit aggressive behavior, spreading to

surrounding tissues and distant organs, resulting in poor

prognosis and reduced survival rates. Effective treatment of BC

requires a personalized, multidisciplinary approach, including

surgery, chemotherapy, radiotherapy, and immunotherapy (5, 6).

Despite the diversity and advancements in treatment options, the

heterogeneity and varied clinical presentations of BC present

significant challenges for treatment and prognosis. Identifying

novel biomarkers is crucial for selecting optimal chemotherapy

regimens, determining responsive patient groups, achieving early

diagnosis, and enhancing the efficacy of diagnostic and therapeutic

interventions (7–9). In recent years, long non-coding RNAs

(lncRNAs) have garnered attention for their selective expression

in tumor cells, making them potential markers of cancer. Numerous

studies have demonstrated that lncRNAs, screened from cancers

such as breast and colon cancer, show strong potential in predicting

tumor classification, treatment response, and prognosis (10),

making them effective tools for prognostic prediction, tumor

microenvironment assessment , and the se lec t ion of

immunotherapy and chemotherapy (10–13).

Disulfidptosis, a newly identified form of metabolic cell death, is

considered a promising avenue for cancer therapy. According to

research by Professors Gan Boyi and Chen Junjie, the primary

characteristic of disulfidptosis is initiated when cells with elevated

SLC7A11 expression face glucose deprivation. In preclinical studies,

glucose transporter (GLUT) inhibitors have been shown to induce

disulfidptosis in SLC7A11-overexpressing cancer cells, effectively

suppressing tumor growth while minimizing toxicity to healthy

tissues (14). This research provides new strategies for developing

innovative cancer treatments and, due to its distinct mechanism

from known cell death types, may offer new pathways for treating

cancers resistant to traditional therapies (15, 16). It supports

selective killing of cancer cells by targeting cancer metabolism

from a precision oncology perspective (17). Additionally, the

discovery of disulfidptosis highlights the metabolic vulnerability

of SLC7A11 overexpressing cancer cells (16, 18), offering new

insights into cancer treatment by targeting their dependency on

glucose and NADPH. Notably, the application of disulfidptosis in

cancer treatment requires further research and validation. Existing

preclinical studies indicate that tumors with high SLC7A11 levels

exhibit greater sensitivity to GLUT inhibitors, presenting a new

direction for cancer therapy. However, the potential for utilizing

disulfidptosis-triggered tumor-killing strategies in BC remains

unclear, and further investigation is needed to clarify the role of

associated lncRNAs as biomarkers for guiding treatment

and prognosis.
Frontiers in Immunology 02
Accordingly, the objective of this study was to discover and

confirm new lncRNA-based prognostic indicators related to

disulfidptosis, with the aim of enhancing prognostic forecasting

for patients with BC. We established and validated a highly accurate

prognostic model, examining differences in cellular functions,

signaling pathways, and immune characteristics between high-

and low-risk groups. We aimed to create a prognostic nomogram

to enhance clinical decision-making and personalize treatment by

estimating survival probabilities for BC patients. Our findings

highlight the regulatory role of disulfidptosis-related lncRNAs in

BC progression, paving the way for future precision therapies

targeting these molecular markers.
2 Materials and methods

2.1 Transcriptomic data collection
and analysis

We retrieved publicly available transcriptomic data from the

TCGA-BLCA database, which provides RNA expression profiles for

412 BC tumor samples and 19 normal tissue samples. These profiles

were systematically combined with corresponding clinical factors,

including sex, age, stage, and survival information, using Perl

version 5.30.0. To ensure data integrity, samples with incomplete

clinical or transcriptomic data were excluded from the analysis.
2.2 Identification of DRGs

Building on previous studies, a set of disulfidptosis-related genes

(DRGs) was identified. With R version 4.2.0, we created a matrix of

expressions for lncRNAs associated with disulfitosis using the

‘BiocManager’ and ‘limma’ packages. To ensure the reliability of the

DRL expression matrix, we set strict filtering criteria with |Pearson R| >

0.4, p < 0.001.
2.3 Development and validation of a
prognostic prediction model

The experimental design for this study is depicted in a schematic

flowchart (Figure 1). The lncRNA expression matrix was integrated

with patient survival information. A cohort of 404 BC patients was split

into training and validation groups. The training set underwent LASSO

and univariate Cox regression analysis, with key DRLs identified

through subsequent multivariate Cox regression (p < 0.05). The

model’s robustness was confirmed using the validation group and

the complete dataset. Five key DRLs were identified, and risk

assessments along with heatmaps were generated using R packages.

Risk scores were computed using the formula: Risk score = Si = lnCoef

(i) × Expr(i), and patients were subsequently divided into high-risk and

low-risk groups based on the median score. Several statistical

techniques were employed to evaluate the precision and

dependability of the model’s predictions.
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2.4 Functional enrichment analysis

We utilized enrichment analyses, including GO, KEGG, and

GSEA, to investigate the molecular functions and pathways linked

to DEGs across various risk levels. Robustness was ensured with p-

value and q-value thresholds of 0.05, various R packages were used

to systematically explore enriched functions and pathways.
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2.5 Tumor mutational burden and immune
escape analysis

Perl scripts were employed to calculate the tumor mutational

burden (TMB) for each BC patient. Differential analysis, using

advanced software tools, revealed significant variations. To evaluate

immune escape mechanisms, The Tumor Immune Dysfunction and
FIGURE 1

Flow chart of the entire study.
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Exclusion (TIDE) score was sourced directly out of its repository to

evaluate immune escape mechanisms. Immune evasion differences

between high- and low-risk BC groups were analyzed using the

TIDE score.
2.6 Immune characteristic comparison

To assess the immunological variations across different risk

levels, we utilized various R packages designed for statistical

analysis, presenting the distribution of 22 tumor-infiltrating

immune cell types through box plots. Additionally, to evaluate

immune cell penetration and checkpoint evaluation, a correlation

heatmap was generated using various R packages, including

‘limma,’ ‘tidyverse,’ ‘ggplot2,’ ‘ggpubr,’ ‘ggExtra,’ and ‘reshape2’.
2.7 Prediction of drug response and
therapeutic outcomes

To assess drug responsiveness and predict therapeutic outcomes

in targeted cancer treatments, we utilized the Genomics of Drug

Sensitivity in Cancer (GDSC) database. OncoPredict software was

employed to estimate patient responses to specific therapies, with

patients classified into elevated- and reduced-risk categories.
2.8 A real-time quantitative PCR method
for RNA extraction and analysis

In our study, RNA was extracted from T24 and SV-HUC-1 cells

using Trizol, then transcribed into cDNA with the Sangon Biotech

One Step RT-qPCR Kit for subsequent qPCR analysis. The specific

primer sequences can be found in Supplementary Table S1. Melting

curve images are provided in Supplementary Figure S1 to

demonstrate the specificity of lncRNA expression.
3 Results

3.1 Discovery of key DRLs and prognostic
model development in BC

We extracted transcriptomic data from the TCGA database,

identifying 412 sequences expressed in BC and normal tissue

samples. Further analysis showed that within the BC lncRNA

dataset, disulfidptosis-related genes correlated, satisfying the

standards of |Pearson’s R| > 0.4 and p < 0.001. Patients with

incomplete data were excluded, resulting in a final cohort of 404

BC patients whose lncRNA expression patterns were linked with

clinical survival outcomes. These patients were randomly split into

two groups: 202 in the training set and 202 in the testing set, with no

significant differences in their clinical characteristics. To visualize
Frontiers in Immunology 04
the connections between DRLs and disulfidptosis-related genes,

Sankey diagrams were employed (Figure 2A).

Univariate Cox regression, followed by LASSO regression,

identified 84 DRLs associated with BC prognosis, underscoring

significant predictors of poor outcomes (Figures 2B–D).

Multivariate Cox regression identified five DRLs significantly

linked to overall survival (OS) in TCGA cohorts. The expression

patterns of these five DRLs, deemed most influential in determining

BC prognosis, including AC005840.4, AC010331.1, AL021707.6,

MIR4435-2HG, and ARHGAP5-AS1, were visualized through

heatmaps (Figure 2E).
3.2 Constructing and validating a
prognostic risk assessment mode

Following the identification of key DRLs, formula was

developed to determine individual risk levels and produce risk

curves. As depicted in Figures 3A–C, patients were ordered from

low to high risk along the horizontal axis, with the vertical axis

displaying their respective risk scores. Based on the median risk

score obtained from the training group, the 404 BC patients were

categorized into high- and low-risk groups. A survival analysis was

performed on all data sets, including the training and testing sets

(Figures 3D–F). Higher risk scores were associated with increased

mortality, with high-risk patients showing shorter survival times

(indicated by red circles) and low-risk patients experiencing longer

survival (indicated by blue circles). In the test cohort, low-risk

patients demonstrated a markedly higher survival rate than those at

high risk (p < 0.05; Figure 3K). Kaplan-Meier survival curves

demonstrated that OS was significantly greater in patients with

lower risk than in those classified as higher risk (p < 0.001;

Figures 3J, L). These results emphasize the model’s effectiveness

in predicting patient outcomes.

An analysis of the heatmap showed elevated levels ofMIR4435-

2HG and ARHGAP5-AS1 as biomarkers of poor prognosis in high-

risk individuals. In contrast, AC005840.4, AC010331.1, and

AL021707.6 showed lower expression in those at high risk,

suggesting their role as favorable prognostic indicators

(Figures 3G–I). Moreover, analysis of progression-free survival

revealed that individuals classified as low-risk enjoyed notably

extended durations of high-quality survival. (p < 0.001;

Figure 3M), which aligns with their superior OS relative to the

high-risk cohort. Further analysis, accounting for clinical variables

like age and cancer stage, consistently showed reduced OS in high-

risk patients, irrespective of these factors (Figures 4A–D). Principal

component analysis (PCA) demonstrated that the lncRNA-based

model efficiently distinguished between patients with elevated and

reduced risk, showing significantly better performance than other

categorical indicators (Figures 5A–D). The analysis of the DRL-

based prognostic model revealed an inverse relationship between

DRL risk scores and OS in BC patients. Higher DRL risk scores were

associated with shorter OS and poorer prognostic outcomes.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1512203
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2024.1512203
3.3 Development of a DRLs-based risk-
prognostic model as a robust predictor of
clinical outcomes in BC patients

Univariate and multivariate Cox regression analyses were

conducted to evaluate the prognostic relevance of clinical factors

such as age, gender, cancer stage, and risk score. The risk score was

found to be statistically significant (p < 0.001), confirming its

independent predictive value for BC outcomes (Figures 6A and

6B). To evaluate the model's effectiveness in predicting 1-, 3-, and 5-

year OS, ROC curves and AUC values were employed (Figure 6C).

The risk score achieved an AUC of 0.699 (Figure 6D),

demonstrating greater predictive power than most clinical factors,

except for staging. The C-index curve (Figure 6E) demonstrated

that the concordance index of the risk score remained consistently

higher than other clinical factors over time, further reinforcing the

model's reliability. Calibration plots were generated to estimate OS

by combining the risk score with clinical parameters. These plots

indicated survival rates of 85.7%, 58.2%, and 45.5% at 1, 3, and 5

years, respectively (Figure 6F). The calibration curve (Figure 6G)

supported the accuracy of these predictions. These findings confirm

that the DRL-based risk model is a dependable predictor of survival

outcomes in BC patients, operating independently of other

clinical factors.
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3.4 Pathway and functional enrichment
insights through GO, KEGG, and GSEA
in BC

We performed GO and KEGG pathway analysis to deeply explore

the molecular functions associated with the identified DRLs in BC.

The GO enrichment analysis of DEGs revealed substantial enrichment

in biological processes critical to immune response and extracellular

matrix organization, highlighting their potential roles in BC

progression. Cellular component analysis indicated significant

involvement of DEGs in the extracellular matrix and endoplasmic

reticulum, while molecular function analysis showed enrichment in

protein binding and receptor activity, suggesting these interactions are

vital for tumor development and immune regulation (Figures 7A, B).

DEGs were shown to be primarily involved in several crucial

signaling pathways relevant to BC biology, as indicated by KEGG

pathway enrichment analysis. These pathways are known to be

crucial for processes such as cell survival and migration,

underscoring their importance in the context of cancer

progression (Figures 7C, D).

GSEA further identified distinct biological pathways activated

in different risk categories. Pathways linked to cellular structure and

adhesion showed significant enhancement in the group at high risk.

indicating a potential link to the more aggressive cancer phenotype.
FIGURE 2

Identification of DRLs and construction of a prognostic DRLs signature in BC. (A) Sankey diagram showing the relationship between disulfidptosis
genes and disulfidptosis lncRNAs. (B) Forest plot of prognostic genes associated with DRLs. (C) LASSO coefficients of the DRLs obtained by LASSO
analysis. (D) Cross-validation of DRLs in LASSO regression. (E) Multivariate Cox regression analysis and correlation between bisulfite pendulous genes
and DRLs. Statistical significance: p < 0.05; p < 0.01; p < 0.001; ns, no significance.
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Elevated metabolic activity was noted among low-risk patients,

potentially explaining their better prognosis (Figures 7E, F).
3.5 Immune microenvironment differences
in BC patients with varying risk levels

BC progression is inextricably linked to the tumor immune

microenvironment. Immune cells play various roles within BC,

either suppressing the immune response or stimulating anti-tumor

immunity, significantly influencing the tumor growth process (19).

We assessed immune cell infiltration in tumors across patient

groups with varying risk levels (Figure 8A). The analysis indicated

that CD8+ T cells and regulatory T cells (Tregs) were significantly

less abundant in the high-risk group compared to the low-risk

group. The levels of resting memory CD4+ T cells and eosinophils

were found to be lower in patients categorized as low-risk compared

to those in the high-risk group (Figure 8B).

To delve deeper into the immune landscape, Gene Set Variation

Analysis (GSVA) was employed to assess variations in pathway-
Frontiers in Immunology 06
related gene sets among samples. This analysis highlighted that

genes associated with APC co-stimulation, CCR, mast cells,

macrophages, and Tregs were notably enriched in the high-risk

group (Figure 8C). These findings underscore a notable variation

within the immune landscape of tumors across different risk levels.

The low-risk group, benefiting from a stronger immunosurveillance

effect, showed higher levels of resting immune cells, particularly

resting memory CD4+ T cells. In contrast, immune cells associated

with tumor invasion, metastasis, and BC progression, such as T cells

and NK cells, for instance, were more prevalent in individuals at

greater risk.
3.6 TMB analysis and survival analysis
of TMB

Using the maftools package in R, somatic mutation data from

the TCGA database were analyzed to create waterfall plots,

illustrating genetic alterations in high-risk versus low-risk BC

groups (Figures 9A, B). This analysis highlighted 15 genes with
FIGURE 3

Establishment of a risk prediction model for predicting overall survival of patients with BC. (A-C) Distribution of patients in the combined, training,
and testing sets according to increasing risk scores (A, training set; B, testing set; C, combined set). (D-F) Correlation between survival time and risk
scores in three patient groups. (D, training set; E, testing set; F, combined set). (G-I) Heatmap of risk scores for five key disulfidptosis-associated
lncRNAs across the three groups (G, training set; H, testing set; I, combined set). (J-L) Kaplan-Meier survival analysis of OS in the three patient
groups (J, combined set; K, testing set; L, training set). (M) Progression-free survival analysis of the combined dataset.
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notable mutation frequencies. In 209 patients classified as high-

risk, mutations were present in 92.34% of cases, with genes such as

TP53, TTN, and ARID1A showing more frequent mutations

compared to the low-risk group. Conversely, genes like

KDM6A, SYNE1, MUC16, and PIK3CA were more commonly

mutated in the low-risk group. Further analysis of TMB and TIDE

scores indicated a higher immune escape potential in the high-risk

group (Figures 9C, D), although TMB differences between the

groups were not statistically significant (p = 0.066). Survival

probability analysis revealed that patients in the high-TMB, low-

risk group had the highest survival rates, while those in the low-

TMB, high-risk group exhibited the lowest survival rates

(Figures 9E, F). This suggests that high mutational load

combined with low-risk status may correlate with better

survival, potentially due to greater immune diversity and

stronger immune activation signals in these tumors.

Furthermore, the analysis of TMB indicated a higher mutational

load in the high-risk group, though these findings were not

statistically significant (20). The concept of TIDE, which

measures the capacity of tumor cells to evade immune detection

and suppress immune responses, showed that revealed that the

high-risk cohort demonstrated notably elevated TIDE scores

compared to the low-risk cohort.

Survival analyses demonstrated that the group with high

mutations had a better prognosis than those with fewer

mutations, particularly noting that the high-mutation, low-risk
Frontiers in Immunology 07
group had the highest survival probability. This suggests that

these tumor cells might possess greater immune diversity and

stronger immune activation signals. The data indicate a prevalent

strategy of immune evasion and frequent mutations in tumor cells

of low-risk BC patients, highlighting the substantial therapeutic

promise of immune checkpoint inhibitors for treating low-risk BC.
3.7 Assessment of drug sensitivity to BC

Sensitivity analysis revealed that high-risk patients exhibited

significantly higher sensitivity to all six drugs compared to low-risk

patients (Figures 10A–F). This outcome suggests that targeting

these pathways may support personalized treatment strategies

tailored for high-risk BC patients (21).

The role of chemotherapy in enhancing the prognosis of patients

with LSCC is well-established. In this study, we employed

OncoPredict to evaluate the efficacy of 21 different drugs and

identified six that were most representative and clinically

significant: Sorafenib, Oxaliplatin, MK-2206, Gemcitabine,

AZD6482, and Leflunomide. Among these, Sorafenib, a well-known

anti-angiogenic agent, has demonstrated broad-spectrum efficacy

across various cancer types by inhibiting angiogenesis, which in

turn reduces tumor growth and induces apoptosis and necrosis (22).

Oxaliplatin has emerged as a valuable alternative to cisplatin,

particularly in the chemotherapy of advanced BC, due to its reduced
FIGURE 4

Kaplan-Meier survival analysis of high- and low-risk patients based on different clinical variables. (A, B) age; (C, D) stage.
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nephrotoxicity, making it a safer option for long-term treatment

regimens (23). MK-2206, an AKT inhibitor that specifically targets

the PI3K-AKT-mTOR pathway, has shown promising therapeutic

potential in the management of urothelial BCs, offering a targeted

approach to disrupting cancer cell survival pathways (24).

Gemcitabine, another critical agent, serves as a key alternative to

Bacillus Calmette-Guerin (BCG) for patients with high-risk non-

muscle-invasive BC, especially during times of BCG scarcity, where

its availability is limited. This drug’s efficacy in such contexts

underscores its importance in maintaining continuity of care for

these patients (25). AZD6482, a novel isoform-selective PI3Kb
inhibitor, has been identified as a potential therapeutic target due

to its ability to disrupt the enzyme’s interaction with ATP, with

studies confirming its effectiveness in sensitizing BC cells, thus

providing a new avenue for targeted therapy (26). Moreover,

Leflunomide, recognized for its immunomodulatory effects, has

been shown to greatly reduce the viability of cells in BC by

inhibiting a key signaling pathway (27).
3.8 Induction of disulfidptosis and
apoptotic cell models and in vitro
validation of risk prediction models

To confirm the expression patterns of the five DRLs identified

in our study, we conducted RT-qPCR on BC cell lines. As shown in
Frontiers in Immunology 08
Figure 11, the expression levels of MIR4435-2HG and ARHGAP5-

AS1 were significantly elevated in BC cells (T24) compared to

normal human bladder cells (SV-HUC-1). In contrast, AC005840.4

exhibited significantly lower expression in BC cells, while

AC010331.1 and AL021707.6 exhibited no notable differences in

expression between cancerous and normal cell types.
4 Discussion

Cell death, a fundamental physiological process, is vital for

normal development and the maintenance of homeostasis within

organisms. It has become a central focus in oncology because

manipulating the pathways that regulate cell death can selectively

target and destroy cancer cells, thereby offering a promising avenue

for therapeutic interventions (14). One of the latest breakthroughs

in this field is the identification and comprehensive characterization

of disulfidptosis, a unique mechanism of cell death. This discovery

has not only broadened our understanding of cellular demise but

has also opened up novel avenues for the development of innovative

cancer therapies that could be more effective against resistant cancer

types. In this context, GLUT1 inhibitors, such as WZB117,

represent a promising tool for potentially inducing disulfidptosis

in cancer cells overexpressing SLC7A11, given their dependence on

glucose uptake. Although this study did not employ a GLUT1

inhibitor experimentally, this theoretical application may serve as a
FIGURE 5

PCA analysis based on different classification indexes. (A) Model lncRNA, (B) Bisulfide-dead lncRNA, (C) Bisulfide-dead genes and (D) all genes.
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direction for future studies, particularly for developing targeted

therapies in BC treatment.

However, despite these significant advancements, the role of

disulfidptosis in the specific context of BC remains largely

uncharted. There is a need for in-depth exploration to fully

understand how this mechanism might influence the

pathophysiology of BC and its potential as a therapeutic target.

To address this gap, our study was meticulously designed to

investigate the importance of DRLs in BC through a series of
Frontiers in Immunology 09
comprehensive correlation analyses. Our research highlights the

intricate and multifaceted role of disulfidptosis in the onset and

progression of BC by examining these specific molecular

interactions (12, 28, 29). In this investigation, we created a

predictive risk model that incorporates five key DRLs. This model

enables the classification of patients into separate risk categories,

supporting more tailored treatment strategies. The reliability and

autonomous predictive ability of this model were thoroughly

validated through an array of advanced analytical methods, such
FIGURE 6

Evaluating the prognostic power and predictive accuracy of the disulfidptosis-related lncRNA risk scoring model. (A) Univariate Cox regression
analysis evaluating clinical variables and risk scores. (B) Multivariate Cox regression analysis assessing clinical variables and risk scores. (C) Predicted
1-, 3-, and 5- year OS for BC patients using the risk scoring model. (D) Comparison of the risk scoring model with other clinical variables in
predicting OS for BC patients. (E) Bar charts illustrating the predictive capability of risk scores and clinical variables for 1-, 3-, and 5-year OS in BC
patients. (F) C-index ROC curves indicating the model’s consistency. (G) Calibration curves validating the model’s accuracy in predicting 1-, 3-, and
5- year OS in BC patients.
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FIGURE 7

Enrichment analysis using GO, KEGG, and GSEA. (A, B) Diverse molecular BPs, CCs, and molecular functions are revealed through GO analysis. (C, D)
Significant pathways are identified in the KEGG pathway analyses. (E, F) GSEA highlights the top five pathways enriched in high- and low-risk populations.
FIGURE 8

Analysis of tumor immune microenvironment in high-risk and low-risk patient groups. (A) The proportion of 22 different tumor-infiltrating immune
cells. (B) Violin plot depicting the proportion of the 22 tumor-infiltrating immune cells from (A). (C) Comparative analysis of immune-related
functions between high-risk and low-risk groups. Statistical significance: *p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance.
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as ROC curve evaluation, C-index analysis, calibration plots, as well

as univariate and multivariate Cox regressions (30). These methods

collectively ensured the reliability of our findings.

Following the application of this risk model, we conducted a

comparative analysis of survival outcomes between the defined
Frontiers in Immunology 11
risk groups. The results clearly demonstrated a positive

association between elevated risk scores and higher mortality

rates in patients with BC (28, 31). These findings highlight

the value of the risk score as an accurate and dependable

method for forecasting patient survival. which could be
FIGURE 9

Differential analysis of tumor mutation burden with tumor immune dysfunction and exclusion. (A, B) Waterfall plots depicting 15 highly mutated
genes in the high- and low-risk node BC groups. (C) Differential analysis of TMB in patients in the high- and low-risk BC groups. (D) Analysis of TIDE
of patients in the high- and low-risk groups. (E) TMB survival curves of high-mutated and low-mutated groups. (F) TMB survival curves for different
high and low risk groups versus high and low mutation groups. Statistical significance: p < 0.05; p < 0.01; p < 0.001; ns, no significance.
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instrumental in guiding clinical decision-making and optimizing

treatment strategies.

To bolster the reliability of our risk model, we conducted an

analysis of mRNA expression for five DRLs in two different cell

lines, T24 and SV-HUC-1. To confirm the specificity of lncRNA

expression, melting curve analyses were conducted, and the results
Frontiers in Immunology 12
are provided in the supplementary materials, validating primer

specificity across experimental runs. Additionally, we performed

enrichment analyses on DEGs between high-risk and low-risk

patient groups, finding that these DEGs were primarily involved

in immune-related processes. Additionally, DRLs were significantly

associated with various biological pathways related to immune
FIGURE 10

Identification of potential drugs for the treatment of BC. (A) AZD6482. (B) Gemcitabine. (C) MK-2206. (D) Sorafenib. (E) Leflunomide. (F) Oxaliplatin.
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responses and cellular signaling. Gene set enrichment analyses

further indicated elevated pathway activity within the high-

risk group.

Neutrophils release chromatin DNA strands surrounded by

granular proteins, forming NETs to capture microbes. Research has

underscored the role of NET formation in the development and

progression of cancer. Neuroendocrine tumors are known for

enhancing vascular permeability, which aids the spread of

malignant cells from the bloodstream to remote sites. NET-DNA,

via its transmembrane receptor CCDC25, can act as a chemotactic

agent for cancer cells, promoting the mobility of tumor cells by

triggering the ILK-b-parvin signaling cascade. The IL-17 signaling

pathway is implicated in cancer development and is closely

associated with inflammation progression. Adenomatous

intestinal epithelial cells in mice carrying the Apc mutation

undergo rapid proliferation when stimulated by IL-17 signaling,

promoting adenoma formation (32). Adenomas impair the

intestinal barrier function and amplify the IL-17 response within

tumors, thereby accelerating the growth of the tumor. The nuclear

receptor PPAR, once activated by its ligand, plays a role in

regulating energy balance and lipid metabolism. Aberrant

activation of the PPAR signaling system has been observed in BC

tumor cells (33). When the pathway was blocked with PPARg
inhibitors, tumor epithelial cell proliferation was significantly

inhibited, and apoptosis increased.

In our analysis, the low-risk cohort presented higher TMB and

lower TIDE scores, indicating a greater likelihood of response to

immune checkpoint inhibitors and reduced immune evasion

potential. In contrast, individuals at greater risk displayed

heightened indicators associated with a more suppressive tumor

microenvironment. Further studies are necessary to validate the

efficacy of these checkpoint inhibitors, particularly in breast cancer,
Frontiers in Immunology 13
where certain pathway alterations might enhance responsiveness to

immunotherapies. Additionally, IFNG plays a significant role in

tumor immune angiogenesis (34).

This research provides insight into the foundational

mechanisms of disulfidptosis in BC, underscoring its potential as

a prognostic marker. Through the evaluation of gene expression

variations between the different risk groups, we identified critical

pathways influencing immune response and disease outcomes in

BC (35). These findings offer substantial implications for advancing

both preventive and therapeutic strategies, positioning this study as

a leading effort in the intersection of disulfidptosis, lncRNAs, and

immunotherapy in BC research.

Despite these findings, our research had certain intrinsic

limitations. As our study relied solely on data from the TCGA

database for both model training and validation, this may limit the

generalizability of our findings. To enhance the robustness and

broader applicability of our model, future research should

incorporate external cohorts across diverse patient populations.

Additionally, experimental validation of DRLs in functional

studies will be essential for a more comprehensive understanding

of their biological roles in BC pathophysiology. Expanding future

research to include in vivo and in vitro experiments will help clarify

the fundamental mechanisms underlying DRLs and further

establish their potential as therapeutic targets.
5 Conclusions

Overall, our study identified five key disulfidptosis-related

lncRNAs (AC005840.4, AC010331.1, AL021707.6, MIR4435-2HG

and ARHGAP5-AS1) and developed a prognostic model with high

accuracy in predicting survival rates for BC patients. These findings
FIGURE 11

Validation of 5-DRLs expression in cell lines. The expression of lncRNAs in SV-HUC-1 and T24 cells was measured by quantitative real-time
polymerase chain reaction (n = 3). Statistical significance: *p < 0.05; ***p < 0.001; ns, no significance.
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provide a foundation for future research to develop precision

treatment strategies targeting these molecular markers, potentially

improving clinical outcomes and personalized patient management.
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