
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Marcin Okrój,
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The complement system, a coordinator and facilitator of the innate immune

response, plays an essential role in maintaining host homeostasis. It promotes

clearance of pathogen- and danger-associated molecular patterns, regulates

adaptive immunity, and can modify various metabolic processes such as energy

expenditure, lipid metabolism, and glucose homeostasis. In this review, we will

focus on the intricate interplay between complement components and lipid

metabolism. More precisely, we will display how alterations in the activation and

regulation of the complement system affect pathological outcome in lipid-

associated diseases, such as atherosclerosis, obesity, metabolic syndrome,

age-related macular degeneration, and metabolic dysfunction-associated

steatotic liver disease. In addition to that, we will present and evaluate

underlying complement-mediated physiological mechanisms, observed both

in vitro and in vivo. Our manuscript will demonstrate the clinical significance of

the complement system as a bridging figure between innate immunity and

lipid homeostasis.
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Introduction

Living organisms require immune homeostasis - a balance between the immune

tolerance to self and immunogenicity to exogenous challenges deleterious to the host.

This equilibrium is achieved through coordinated interplay between tissues with proteins

and cells of the immune system. In contrast to pathogen-induced inflammation, metabolic

changes caused by abnormal amounts of nutrients lead to sterile low-grade inflammation

(1). This kind of inflammation can be initiated within various organs, and if not resolved by

immune system action, it can drive disease development.

One of the essential energy sources, lipids, are fundamental for building cell structures,

cellular signaling, and the generation of physiologically active compounds. They affect

immunity in a bidirectional manner, e.g., through the balance between pro- and anti-

inflammatory lipid-derived mediators modulating cellular and humoral immune response

by shaping repertoires of immune cells, circulating antibodies and complement system
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components. At the same time, the immune system can steer lipid

metabolism and determine the fate of lipid derivatives affecting the

general metabolic homeostasis. Next to native lipids, modified lipids

and lipoproteins are increasingly recognized as drivers in many

cellular and immune processes and disease pathogenesis such as

atherosclerosis, metabolic dysfunction-associated steatotic liver

disease (MASLD), etc. (1–3).

Lipid-mediated pathologies comprise a broad spectrum of

diseases in which abnormal lipid metabolism, signaling and

storage affect various organs and systems. The most prevalent are

obesity, atherosclerosis, type 2 diabetes mellitus (T2DM), age-

related macular degeneration (AMD), and MASLD (4). This

group of non-communicable diseases reduces the quality of life

and is responsible for 20 million deaths annually (https://

www.who.int/news-room/fact-sheets/detail/noncommunicable-

diseases). Several factors, including genetics, diet, and lifestyle

contribute to these complex conditions. The diagnosis is usually

established by anthropometric measurements, biochemical, genetic,

liver function tests, inflammatory markers, and imaging techniques.

In this mini-review, we will report recent knowledge on the

interaction between lipids, lipid metabolism within tissues and the

complement system.
Complement system – an overview

The complement system, a humoral part of innate immunity, is a

network of proteolytic cascades exerting its function in extracellular

and intracellular fluids and on cellular surfaces. Most of its

constituents are synthesized in the liver, whereas some are produced

in immune or non-immune cells. It is an ancient defense system

consisting of pattern recognition receptors (PRRs) and regulatory

proteins, organized into three different pathways: classical (CP), lectin

(LP) and alternative (AP). The CP is initiated by binding of its PRR -

C1q, to antigen/antibody complexes, some pentraxins, apoptotic

bodies and amyloid fibrils. Furthermore, repeating carbohydrates or

acetylated residues, as well as aberrant glycocalyx patterns, engage

recognition by PRRs of the LP (5–7). In contrast to that, the AP has a

continuous low level of activation on self and non-self surfaces by the

tick-over mechanism (8). Recently it was shown that complement can

be activated in a non-canonical manner, by certain proteases from

coagulation and fibrinolysis pathways (9–12). Cascades of all

complement pathways conduct and control deposition of the central

effector molecule C3 (13). Once deposited, and if not inactivated, C3

can guide the recruitment and formation of C5-convertase and

terminal complement complex (C5b-C9) with a lytic function (8).

Moreover, C3 and C5 cleavage generates anaphylatoxins that can drive

chemotaxis and activation of immune cells, further propagating

damage and inflammation (14, 15). Due to their strong auto-

damaging potential, complement cascades are controlled by multiple

regulators and inhibitors present in the fluid phase and on host cells

(7, 16).

Novel evidence demonstrated that complement acts

intracellularly. The intracellular complement, complosome, plays

a role in cellular responses to the environment or the homeostatic
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balance maintenance, by regulating many cellular functions, e.g.,

cell metabolism, autophagy, survival, signaling, response to

infections, and efferocytosis capacity (17–21).

Finally, the complement system functions are versatile: it

eliminates pathogens and altered self-structures, coordinates

innate and adaptive immune responses, controls tissue

reorganization, instructs clearance of metabolic waste, and

responds to metabolic alternations on intra- and extracellular

levels (7, 17, 22).
The complement system
in atherosclerosis

Atherosclerosis is a chronic inflammatory disease characterized

by the deposition and oxidation of low-density lipoprotein (LDL)

particles in the vessel wall, followed by immune cell infiltration,

leading to the formation of fatty streaks that can progress to plaques.

If untreated, plaques become larger, more fibrous, calcified and

prone to rupture. According to WHO, atherosclerosis is a major

cause of mortality worldwide and is responsible for most

myocardial infarctions (MI), strokes, and peripheral artery disease

(PAD) (23).

The relevance of the complement system in atherosclerosis was

demonstrated in the 1970s (24). This was followed by detection of

complement proteins C3, C1q, C4, C9, C-reactive protein (CRP),

C5b-C9, CD55, CD35, C3aR1, C5aR1, factor B (FB), factor H (FH),

C1-inhibitor (C1-INH), C4-binding protein (C4BP), as well as

active degradation products of some, within atherosclerotic

plaques (25–32). Various clinical or genome-wide association

studies (GWAS), demonstrated that components of the LP and

CP have both proatherogenic and atheroprotective effects. More

precisely, ficolin-1 and -2, pentraxin 3 (PTX3), mannan-binding

lectin serine protease 2 (MASP2) and MASP3 have predictive value

towards adverse cardiovascular events (33–35). The absence of

mannan-binding lectin (MBL) predisposes to atherogenesis, but

there are some controversies over its serum level effect on

atherosclerotic cardiovascular disease (ACVD) (36–41). C1Q has

been identified as a risk gene; in advanced lesions its local

production is higher, but clear mechanisms of how its serum

levels affect disease outcome are unknown (42–49). Predisposition

for MI or cerebrovascular episodes was seen in hereditary C2

deficiency (50). Also, elevated levels of C4 have been associated

with cardiovascular disease (CVD) or diabetic stroke,

independently of traditional risk factors (51–55). In contrast to

CP or LP components, elevated C3 levels correlated with classical

risk factors and worsened CVD outcomes (56–63). Similarly,

components of the C5b-C9 complex have a strong association

with pathogenicity (60, 64–69). Serum levels of C4BP can be

predictive of the severity of the PAD (70, 71). Although AP is

proatherogenic, there is no conclusion about the effect of CFH

polymorphisms on coronary heart disease (CHD) (72–76). On the

contrary, plasma concentrations of factor H-related protein 1

(FHR1) were elevated in patients with ACVD and correlated with

the expression of the inflammation markers (77).
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The mechanistic role of complement in atherosclerosis was

explored in vitro and in vivo. High-fat diet (HFD) feeding led to

elevated amounts of circulating lipids and increased levels of

circulating C3, C4 and C1q (78, 79). Oxidatively modified LDL

(OxLDL), located within the vessel, presents various damage-

associated molecular patterns (DAMPs) on its surface, which are

recognized by natural IgM antibodies, CRP, C1q, MBL, C3a, FH,

FHR1, FHR3, FHR5 or scavenger receptors on macrophages (1, 2,

80–86). Due to its damage potential, if not neutralized by the

immune system, OxLDL can activate endothelial cells. It alters

their phenotype to procoagulatory and induces their secretion of

C3a, C5a and other chemokines. This further propagates

endothelial distress and activates immune response, partially

through C3a/C3aR, C5a/C5aR axis, or by deposition of sublytic

C5b-C9 (87–92). Consequently, monocytes are recruited to the

intima, where they become foam cells (23). Macrophage uptake of

OxLDL, cholesterol efflux and foam cell transformation is affected

by PTX3, C3a, C1q, factor D (FD), FH and MBL (81, 84, 93–97). If

the amount of engulfed lipids is too excessive, cholesterol crystals

(CCs) build up and trigger NLR family pyrin domain containing 3

protein (NLRP3) activation, resulting in macrophage death. At this

stage, IgM, C1q, MBL-A, MBL-C, and C3b play a protective role –

guiding their removal of dying cells by macrophages, employing

complement receptor 3 (CR3) and V-set and immunoglobulin

domain containing 4 protein (VSIG4) receptors (98–102). Next to

it, a balance between intracellular C3 activation and repression by

FH controls the efferocytosis rate of lesional macrophages and

affects necrotic core formation (19). The impaired clearance rate

of lipid-overloaded macrophages leads to the release of DAMPs

resulting in the recruitment of additional immune cells and

generation of C3a and C5a, propagating inflammation, and

smooth muscle cell expansion (103). This leads to the necrotic

core formation filled with CCs, cellular debris, monocytes/

macrophages rich in tissue factor and erythrocytes. Cholesterol

crystals are recognized by C1q, C3c, ficolin-2, MBL, PTX3, and

CRP. When cleared by CR3-rich monocytes, opsonized CCs

activate the inflammasome in a C5a-dependent manner and

enhance IL-1b secretion (104–108). Later, it was clarified that the

metabolic switch required for IL-1b production by macrophages

requires mitochondrial C5aR1 ligation generated by cell-intrinsic

C5a (109). Furthermore, C5a makes plaques unstable and prone to

rupture by affecting the senescence and death rate of smooth muscle

cells (110, 111). Upon plaque rupture, released CCs activate

complement and drive thrombus formation (112).

The presence of components of the C5b-C9 complex within

lesions is shown to be proatherogenic in vivo. This observation was

further supported by the finding that the absence of CD59, a C5b-

C9 inhibitor, accelerated advanced atherosclerosis (113, 114). The

previously mentioned proatherogenic effect of C5a was further

confirmed by findings that inhibition of surface-expressed C5aR1

and deficiency of C5aR2 resulted in smaller lesions using animal

models (111, 115–117).

The discrepancy in complement inhibition effectiveness

between human trials and animal studies in atherosclerosis

highlights the need for further research on the complement

system function to develop novel therapeutic strategies (118–120).
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The complement system in
metabolic syndrome
Metabolic syndrome (MetS) represents a cluster of several

disorders, including insulin resistance (IR), obesity, dyslipidemia,

hypertension and hyperglycemia. It contributes to the development

of ACVD and T2DM (121–124). Even though increased C3 and C4

levels have been associated with the risk of developing MetS,

metabolic alterations such as IR, obesity, inflammation, and

neurohormonal dysfunction are pivotal initiators of this

pathogenic cascade (123, 125–130).

Insulin resistance is characterized by the loss of sensitivity to

insulin within insulin-dependent tissues such as adipocytes,

muscles and liver. Observational studies have shown that C4

levels are associated with the homeostasis model assessment

(HOMA) index, the parameter for IR (131). Although C1qA

deficiency protects from HFD-induced IR, conflicting findings for

the involvement of CP have been reported (132–135). In contrast to

CP, LP is predominantly protective. Independently of multiple

metabolic features, MBL correlated with insulin sensitivity and its

levels were low among obese individuals (136–139). Additionally,

low ficolin-3 was independently associated with IR and predicted

type 2 diabetes mellitus (T2DM) (140). Baseline C3 levels and level

changes correlated with HOMA, multiple organ IR and T2DM

independently of obesity, metabolism- and inflammation-related

risk factors (131, 141–149). Mechanistically, C3 influence on IR

may be linked to the activity of C3a and C5a and their receptors.

Studies in mice show that lack of C3aR or C3 can increase insulin

sensitivity, although human studies did not find a connection

between C3a and IR or T2DM (147, 150, 151). Furthermore, in

vivo data on the role of C3adesArg – acylation stimulating protein

(ASP) in IR are inconsistent (152, 153). In humans, higher ASP

levels correlate with increased IR through altered lipid and glucose

metabolism (154). Downstream proteins of the AP have been

negatively correlated with insulin sensitivity. Weight loss and

treatment of IR with rosiglitazone decreased FH concentrations in

plasma, although conflicting results were found in SLE patients

(126, 155). Additionally, the association between properdin, FH and

Bb with HOMA was observed (156). However, data on the role of

properdin obtained in vivo differ from human ones, as properdin

deficiency did not affect insulin-mediated glucose uptake (157).

Mechanistic data confirm the relevance of FB in MetS, as Cfb-/-

mice exhibit increased insulin sensitivity and decreased

inflammation (158). For more downstream components, in vitro

and in vivo data have shown C5aR1 to contribute to IR development

(159, 160). Furthermore, the role of C5b-C9 complex in IR is still

unclear. For instance, it does not correlate with IR nor influence the

incidence of T2DM (147). However, in chronic heart failure, a

positive correlation with HOMA-IR, fasting glucose and insulin

level was seen (161).

Obesity is a low-grade inflammatory disease defined by

excessive fat accumulation in visceral and subcutaneous fat depots

(BMI≥30kg/m2) (162, 163). It is driven by lifestyle, genetic,

environmental and cultural factors and is considered endocrine

and metabolic disease (162, 164–166). Excessive nutrient intake or
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low energy expenditure causes lipid accumulation, leading to

adipocyte hypertrophy or hyperplasia, consequently driving

inflammation that further exacerbates obesity and associated

health issues (166–168). Adipose tissue produces many

complement proteins including C3, FB, FH, CR1, C1q, C1r, C1s

and properdin, and is the predominant source of key players in

adipose tissue biology such as ASP, FD, and adiponectin (155, 169–

173). In obesity, serum levels of C3, FB, FH and factor I (FI), but not

FD, were elevated when compared to normal weight controls (174,

175). Similarly, analysis of BMI-discordant monozygotic obese twin

pairs demonstrated that levels of FHR5, C4, C1qA, C1-INH,

MASP1, FH, FI, C3 and C8 were elevated in a twin with higher

BMI (176). Moreover, visceral and subcutaneous adipose tissue of a

heavier twin had increased expressions of C1, C2, C3, FB, FI,

properdin, FH, FHR2, C3aR, C5aR1, VISIG4, CD59, in contrast

to FD and components of the C5b-C9 (177). In most rodent models

of obesity, decreases in FD levels, induction of C1q, and

inconsistency in overproduction and secretion of C3 or FB by

adipose tissue were seen (170, 173, 178–180). Different production

rate of certain complement proteins between subcutaneous and

visceral fat of obese subjects, or between dissimilar stages of

adipocyte maturation was reported in mice and men (172, 181–

185). Within adipose tissue, by binding to the C5L2 receptor, ASP

stimulates TG synthesis, increases glucose transport through

GLUT1 and GLUT4, fractional free fatty acids re-esterification

and inhibits lipolysis (186–194). In line with this, C3-deficient

mice have a reduction in fat mass and are resistant to diet-

induced obesity. Exogenous ASP administration to C3-/- animals

on a standard diet led to a weight increase of a fat pad (193, 195–

199). Overexpression of FB in preadipocytes boosts their lipid

accumulation and maturation (185, 200). Additionally, through

C3a/C3aR axis, FD regulates glucose uptake, increases TG synthesis

and inhibits lipolysis (169, 172, 201–203). However, animals

deficient in FD had no abnormality in development or body

weight (204). Another adipokine similar to C1q is adiponectin,

with an anti-inflammatory and anti-fibrotic function. It enhances

insulin sensitivity and is downregulated in obesity (205–208).

Diabetes mellitus is the dysregulation of blood glucose levels due

to insufficient insulin secretion by pancreatic beta cells, insensitivity

of peripheral tissues to insulin, or a combination of both. Type 2

DM, an inflammatory disease, represents 90% of newly diagnosed

cases. It is related to obesity and multiple metabolic disturbances,

e.g., IR leading to hyperinsulinemia, beta cell exhaustion and finally

insulin insufficiency (209). The complement system was shown to

have critical metabolic functions within the beta cells. It affects

insulin secretion, substrate and metabolite processing and regulates

inflammatory processes within islets. Elevated C3 is associated with

an increased risk of developing diabetes, independently of

demographic, hereditary, metabolism- and inflammation-related

factors (141, 147, 210). Interestingly, C3 was associated with

insulin secretion, even after adjustment for insulin sensitivity

index (211). Moreover, C3a, C3c and C3d correlated with T2DM,

although for C3a these associations were attenuated after

adjustment for confounding factors (147, 212, 213). Decreased

levels of FD were observed in T2DM patients (174, 203). In one

study, levels of properdin and soluble C5b-C9 were associated with
Frontiers in Immunology 04
a family history of T2DM, although the effect of C5b-C9 niveau was

not confirmed in others (147, 156, 214, 215).

Since insulin infusion did not affect C3 expression within

adipocytes, this implicated that C3 levels might affect insulin

secretion in vivo (216). In line with this, increased C3 expression

in T2DM pancreatic cells demonstrated that intracellular C3 has

protective effects on islet beta cells in stress conditions, through

interaction with ATG16L1 (18, 20). The highest expressed

complement gene in human beta cells, CD59, was shown to

control glucose-mediated insulin secretion (217–219). This effect

is further promoted by ASP (220). On the contrary, beta cell FH

suppresses insulin secretion via adrenomedullin (221).

Additionally, C3a and C5b-C9 have been identified as potent

inflammasome activators, suggesting their role in insulitis (222,

223). Interestingly, C3a and C5a generated by FD activity, and

through the activity of their receptors, play a key role in adipose

tissue-pancreas axis in murine models, by inducing insulin

production and dampening beta cell death and dedifferentiation

(201, 203, 224). Accordingly, C3aR and C5aR1 agonists improved

glucose-dependent insulin production (225).

Dyslipidemia represents abnormal levels of lipids and

lipoprotein particles in circulation and is a crucial risk factor for

ACVD. It accounts for nearly 50% of deaths due to ischemic heart

disease (226). Dyslipidemia is characterized by abnormal lipid

levels, e.g., increased TGs, and decreased high-density lipoprotein

(HDL). Many complement proteins have been shown to bind

lipoprotein particles in plasma and are essential for their

metabolic turnover. For instance, C3, acidic form of C4 (C4-A),

basic form of C4 (C4-B), and C9 were detected on very low-density

lipoprotein (VLDL) and LDL particles, while FHR3 appeared only

on LDL (227, 228). Moreover, HDL was associated with C3, C4-A,

C4-B, C9, vitronectin and clusterin in coronary artery disease and

cholesterol ester protein transfer deficiency (229, 230). Additionally,

FH, FD, properdin and MASP3 showed associations with

lipoprotein particle concentration and size (228). Apolipoprotein

E, a major protein component of lipoproteins, binds to FH, and C1q

(97, 231, 232). In observational studies, levels of TGs, adverse

lipoprotein subclass profile and enrichment in TGs in all

lipoprotein subclasses are associated with higher levels of

circulating C3; however, contradictory opinions were reported

(129, 144, 216, 228, 233–238). Accordingly, ASP and TG levels

correlate, although significance is lost when adjusted for waist/hip

ratio and LDL size (195, 239). Elevated expression of C1S, C5aR1,

CD59 and CD55 in subcutaneous adipose tissue was seen in

patients with familial combined hyperlipidemia (240).

Experimental data further underscores the significance of

complement-lipid interaction. For instance, postprandial C3 and

ASP secretion by adipocytes is shown to be stimulated by

chylomicrons (190, 241). Additionally, male C3-/- mice (ASP

deficient) display delayed postprandial clearance of TGs and

increased fasting and postprandial free fatty acids levels (198).

Properdin-deficient animals have increased fat accumulation on

HFD, impaired postprandial TG clearance and decreased energy

expenditure (157, 242).

As demonstrated above, the complement system controls

insulin production and resistance, adipose tissue remodeling, and
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lipoprotein metabolism, consequently affecting chronic low-

grade inflammation.
The complement system in metabolic
dysfunction-associated steatotic
liver disease

The liver, a primary site for complement protein synthesis, is

particularly susceptible to complement-mediated damage (243,

244). Dysregulation of the complement system can exacerbate

liver inflammation and fibrosis (245).

Metabolic dysfunction-associated steatotic liver disease

(MASLD) is characterized by excess fat accumulation in

hepatocytes, without significant alcohol intake and is among the

most commonly diagnosed liver disorders (246, 247). A progressive

and inflammatory form ofMASLD, known asmetabolic dysfunction-

associated steatohepatitis (MASH), features hepatic steatosis,

inflammation, and fibrosis (248, 249). Predisposing factors for

MASLD and MASH are components of MetS, oxidative stress, and

lipid peroxidation. This condition can further advance to cirrhosis

and hepatocellular carcinoma (250, 251).

A positive correlation between high C3 in serum and the

prevalence and severity of MASLD was demonstrated in clinical

studies (252–255). In addition to this, ASP, involved in adipocyte

lipid metabolism, was increased in MASLD patients (255).

Histological analyses demonstrated that in 74% of patients,

cleaved C3b and C4d were deposited in liver tissue, with more
Frontiers in Immunology 05
than 50% of C3-positive livers also showing C1q and MBL deposits,

and exhibiting C5b-C9 formation. Additionally, these components

were more frequently detected in MASH, demonstrating the

involvement of both CP and LP in liver inflammation (256).

However, in some patients, C3 activation was not associated with

C1q, MBL, or C4d deposition, suggesting that the AP may also play

a role in complement activation in the MASLD. This was confirmed

by the positive correlation of properdin and the C3c deposits with

liver inflammation. Additionally, levels of FH were downregulated

in MASH subjects (257). C3a and C5a were identified to promote

hepatic inflammation by attracting immune cells (258).

Additionally, blocking or removing C3aR and C5aR1 might offer

protection against steatosis, fibrosing MASH, inflammation, and

metabolic dysfunction (17, 259–261). However, while some

evidence points to C3a/C3aR and C5a/C5aR1 as a potential

therapeutic approach, clinical trials targeting the complement

system are still lacking, making its effectiveness uncertain.

The complement system and age-
related macular degeneration

Age-related macular degeneration (AMD) is a chronic,

inflammatory disease of the retina, and it is the most common

cause of blindness in the elderly in developed countries (262). It is

characterized by the accumulation of lipid-rich drusen between the

Bruch membrane (BrM) and retinal pigment epithelium (RPE),

resulting in degeneration of RPE, photoreceptors and consequently

loss of vision. Joint action of aging, genetic and environmental
FIGURE 1

Schematic illustration of complement levels alterations (A) and their effects (B) in lipid-mediated pathologies. The components of the classical (CP),
lectin (LP), alternative (AP) and terminal (C5b-C9) pathways are labeled in red, green, yellow and black, respectively. IR, Insulin resistance; T2DM,
Type 2 diabetes mellitus; MASLD, Metabolic dysfunction-associated steatotic liver disease; AMD, Age-related macular degeneration; IgM,
Immunoglobulin M; C1q, Complement Component 1q; C2, Complement Component 2; C4, Complement Component 4; MBL, Mannan binding
lectin; MASP1, MBL Associated Serine Protease 1; C3, Complement Component 3; Asp, C3adesArg – acylation stimulating protein; FB, Factor B; FD,
Factor D; FH, Factor H; FHR1, Factor H related protein 1; FI, Factor I; C3aR, Complement C3a Receptor; VSIG4, V-Set And Immunoglobulin Domain
Containing 4; CR3, Complement Component Receptor 3; C5, Complement Component 5; C5aR1, Complement C5a Receptor 1; C5aR2,
Complement C5a Receptor 2; C9, Complement Component 9; del, gene deletion; gene variants are given in the bracket after affected gene.
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factors play a significant role in the disease onset and

progression (263).

Lipids within the retina are crucial players in the pathogenesis

of AMD. Due to photo-oxidative stress, they are highly susceptible

to lipid peroxidation and the generation of oxidized and reactive

breakdown products (1, 264–267). These degradation products can

initiate sterile inflammation and stimulate immune responses (1, 2,

266, 268–270).

Seminal studies discovered 52 variants with genome-wide

association (GWA) significance, among which CFH variant

rs1061170 (Y402H), and variants within ARMS2-HTR1, C2-CFB-

SKVI2L and C3 had the strongest associations, confirming the key

role of complement in the AMD pathogenesis (271–273). Today,

Y402H is recognized as the major susceptibility variant.

Heterozygous carriers of the minor C allele have a 2-4-fold, and

homozygous carriers have a 3-7-fold increased risk for developing

AMD (274). Moreover, it is important to note that this variant also

affects the splice variant of FH, FHL-1, a main regulator of AP within

BrM and RPE (275–277). Y402H decreases the binding ability of FH

to heparin sulfate, CRP and malondialdehyde (MDA), thereby

affecting its availability to act and regulate AP on surfaces

decorated with these ligands (85, 276, 278–281). A similar

aftermath was observed for the rare variant R1210C located within

the C-terminal part of FH (273, 282). Deletion of CFHR3-1

genes decreases the risk of AMD development (283–285).

Moreover, deleterious effects were reported for some variants

within CFI, C3 and C9 (274, 286–296). On the other hand, loss-of-

function variants within complement activators C2 and CFB are

mostly protective (293, 297, 298).

Accumulation of oxidative damage shown by intensive MDA

staining in BrM and choroid which co-stained with FH, implicated

the binding of FH to MDA-adducts. Additionally, FH promoted the

generation of iC3b on MDA surfaces and suppressed the

proinflammatory effects of MDA in vitro. Due to the weaker

binding to MDA, Y402H carriers have diminished regulation of

AP and attenuated anti-MDA inflammatory properties (85). This

was supported in a murine model, expressing chimeric FH,

containing a human Y402H variant (299). Loss of endogenous

FH in RPE cells renders them more susceptible to oxidative stress

and reduces their viability (300, 301). Furthermore, we have

demonstrated that FHR1 and FHR3 bind to MDA and thereby

compete with FH for it, affecting FH AP regulatory function. These

findings mechanistically explain the protective properties of

CFHR3-1 deletion (80).

Next to AP, the relevance of locally produced C5b-C9,

deposited in choriocapillaris during the photoreceptor outer

segment recycling by RPE was reported (302–304). In the aging

retina, recycling capabilities decrease, resulting in enhanced C5b-C9

formation, pronounced in the presence of AMD-predisposing CFH

variants (303, 305). Apart from locally produced FHL-1 and C5b-

C9, increased systemic C3d/C3 ratio and enhanced local C3d

deposition are implicated in AMD (302, 306, 307).

Activation of the AP, dysfunctional FH, together with aging,

oxidative damage and disturbed lipid metabolism, are identified as

critical steps in the development and progression of AMD (7).
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Concluding remarks

Experimental evidence presented in this review confirms that the

functions of the complement system in lipid homeostasis are versatile

(Figure 1). Certain complement proteins sense and control lipid

homeostasis locally or systemically. However, in case of excessive lipid

accumulation or oxidation, complement proteins, if unable to neutralize

it, can also act as initiators or propagators of lipid-driven inflammation.

Therefore, understanding all mechanisms involved in cross-talk

between lipid metabolism and complement system should be of

importance for developing better diagnostic or therapeutic approaches.
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