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The role of ACER2 in intestinal
sphingolipid metabolism and
gastrointestinal cancers
Binggang Liu*, Junfeng Zhou, Biao Jiang, Bing Tang,
Ting Liu and Pengcheng Lei

Department of Gastrointestinal Surgery, the Central Hospital of Yongzhou, Yongzhou, China
Sphingolipids, particularly sphingosine-1-phosphate (S1P), are bioactive lipids

involved in regulating cellular processes such as proliferation, apoptosis,

inflammation, and tumor progression. Alkaline ceramidase 2 (ACER2) plays a

critical role in sphingolipid metabolism by catalyzing the hydrolysis of ceramide

to sphingosine, which is subsequently converted to S1P. Dysregulation of ACER2

has been implicated in various gastrointestinal cancers, including colorectal

cancer, gastric cancer, and hepatocellular carcinoma. ACER2-mediated

sphingolipid signaling, particularly through the SphK/S1P pathway, influences

cancer development by modulating immune responses, inflammation, and the

balance between cell survival and death. This review examines the physiological

functions of ACER2, and its role in sphingolipid metabolism, and its contribution

to the pathogenesis of gastrointestinal cancers. Understanding the mechanisms

by which ACER2 regulates tumor progression and immune modulation may

open new avenues for targeted therapies in gastrointestinal malignancies.
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1 Introduction

Sphingolipids, including sphingomyelin (SM), ceramide (Cer), sphingosine (Sph), and

sphingosine-1-phosphate (S1P), are a family of lipids with sphingoid bases. These

molecules play an essential structural role in maintaining the fluidity and subdomain

structure of lipid bilayers, especially lipid rafts (1). Enzymes such as ceramidase, ceramide

synthase, sphingosine kinase (SphK), and S1P phosphatase metabolize sphingolipids,

forming a network of metabolically related bioactive lipid mediators (2). Biochemical

and molecular advances in sphingolipid metabolism have revealed that these sphingolipid

metabolites also function as signaling molecules involved in regulating many cellular

processes, including inflammation, proliferation, apoptosis, angiogenesis, and

transformation (3–5). The role of sphingolipid metabolism in both normal and

pathological states is gaining increasing recognition.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1511283/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1511283/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1511283/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1511283&domain=pdf&date_stamp=2024-11-22
mailto:m13874792693@163.com
https://doi.org/10.3389/fimmu.2024.1511283
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1511283
https://www.frontiersin.org/journals/immunology


Liu et al. 10.3389/fimmu.2024.1511283
S1P, a sphingolipid metabolite, is a critical bioactive molecule in

various aspects of cancer biology, including cell proliferation,

migration, apoptosis, senescence, and inflammation (1). S1P was

shown to affect inflammatory reactions and cancer development in

various tissues (6–8), including the evolution and progression of

gastrointestinal malignancies (9, 10). Sphingolipids, especially the S1P

signaling axis, play different roles in regulating innate and adaptive

immunity, immune surveillance, immune cell trafficking and

differentiation, cytokine release, and endothelial barrier integrity

through S1P binding to S1P receptors (S1PR) ubiquitously

expressed in gastrointestinal tissues, and are involved in regulating

inflammation-related responses in normal and malignant

gastrointestinal cells and tissues (11). The link between

inflammation and gastrointestinal (GI) malignancies is well

established (12–14). However, the role of sphingolipid signaling in

mediating proinflammatory responses and GI cancer development

has not been adequately addressed. Given the unique exposure of the

GI tract to dietary sphingolipids and their associated enzymes, the

relationship between sphingolipids and GI inflammation and tumors

is a novel and complex issue. Alkaline ceramidase ACER2 has been

identified as a key regulator of circulating S1P levels (2, 15), but its

role in the development of gastrointestinal tumors is not fully

understood. This review will focus on the physiological role of

ACER2 and its role in sphingolipid metabolism and GI cancer, this

will provide new strategies to prevent GI cancer progression.
2 ACER2 involves in sphingolipid
metabolism, inflammation and cancer

2.1 Classification, distribution, and function
of ceramidases

Ceramidases are key to the degradation of ceramide into

sphingosine and free fatty acids in the sphingolipid pathway (16),

contributing to the homeostasis of Cer and S1P. Five ceramidases

have been identified in humans, classified as acidic ceramidase (AC),

neutral ceramidase (nCDase), and alkaline ceramidases 1-3 (ACER1,

ACER2, and ACER3) (17). This classification reflects the optimal pH

for each enzyme’s catalytic activity (18, 19). AC is located in the

lysosomal compartment, and congenital deficiency of AC results in

Farber disease. AC is also involved in regulating cell viability and

response to stressors, particularly chemotherapeutic drugs (20).

Neutral ceramidase is primarily localized to the plasma membrane

(but also to the Golgi apparatus and mitochondria), is mainly

expressed in the small intestine and colon, and is associated with

digestive processes and colonic carcinogenesis (21). ACER1-3 belong

to a closely related family initially identified in yeast (22, 23). ACER1

is present in the endoplasmic reticulum and is highly expressed in the

skin, where it plays a critical role in keratinocyte differentiation (24).

ACER2 is localized to the Golgi complex, highly expressed in the

placenta, and involved in programmed cell death in response to DNA

damage (25). ACER3 is also localized in the endoplasmic reticulum

and Golgi complex, broadly expressed, and is associated with

Purkinje cell degeneration, contributing to motor coordination (26).
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2.2 ACER2 in sphingolipid metabolism

ACER2 is a 31 kDa membrane protein composed of 275 amino

acids, with seven presumed transmembrane domains allowing its

association with the Golgi apparatus (27). The Michaelis-Menten

constant (Km) values of ACER2 for ceramide are approximately

94.8–98.5 µM, depending on the substrate derivative used (28).

ACER2 is expressed in various tissues, including the placenta,

pancreas, and heart (27). The expression of ACER2 is regulated

by tumor suppressor p53 and hypoxia-inducible factor 2a (29–32).

Elevated ACER2 mRNA expression has been observed in human

cancer tissues, including liver and colon cancers, compared to

healthy samples (27). Under stress conditions, such as exposure

to glucocorticoids or reactive oxygen species (ROS), sphingosine

produced by ACER2 induces programmed cell death by increasing

ROS production in response to DNA damage (29).

ACER2 catalyzes the hydrolysis of ceramide into sphingosine,

which is phosphorylated by SphK (SphK1 and SphK2) to form S1P

(33). Upregulation of ACER2 leads to increased levels of

sphingosine and S1P in cells, while ceramide levels are reduced.

Ceramide is known as an antiproliferative, pro-apoptotic, and pro-

senescent bioactive lipid (3, 34, 35). Sphingosine also mediates cell

cycle arrest, differentiation, and programmed cell death (PCD)

(24, 27, 29, 36–38). In contrast, S1P promotes cell proliferation

and survival and inhibits senescence (39). S1P is most abundant in

the intestine, the activation of the mitogen-activated protein kinases

(MAPKs) is among the best-characterized S1P effects. Because the

MAPKs regulate proliferation, S1P stimulate intestinal epithelial

cell proliferation by MAPK activation (40). S1P induces

cyclooxygenase-2 (COX-2) expression via PI3K/Akt and p42/p44

MAPK pathways in rat vascular smooth muscle cells (41). Besides,

S1P mediates COX-2 expression and prostaglandin E2 (PGE2)/IL-6

secretion via c-Src-dependent AP-1 activation, thus promotes

airway inflammation (42). The binding of critical regulator YTH

N6-methyladenosine RNA binding protein 2 (YTHDF2) to m6A

sites on ACER2 mRNA promoted its stability and expression.

Enhanced ACER2 expression hydrolyzed ceramides, disrupting

the balance between Cer and S1P, activating the ERK and PI3K/

AKT pathways, and leading to diffuse large B-cell lymphoma

(DLBCL) tumorigenesis (43). In addition, S1P is enriched in the

blood and lymph (44), and the S1P gradient in blood vessels is used

to regulate immune cell trafficking, including lymphocytes,

hematopoietic progenitor cells, and dendritic cells (45).
2.3 ACER2-S1P signaling axis: effects on
immune response and cancer progression

S1P acts as a ligand for a group of five G protein-coupled

receptors known as S1PR1–5. The S1P1–3 receptors are highly

expressed in many tissues, particularly within the cardiovascular

and immune systems, while S1PR4 is more selectively expressed in

the lymphatic system and airway smooth muscle cells (46, 47).

S1PR5, on the other hand, is predominantly found in the white

matter of the central nervous system (48, 49), though the expression
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of S1PR4 and S1PR5 is comparatively lower than that of S1PR1–3.

These S1P receptors play a critical role in regulating immune cell

trafficking and cancer progression by influencing cell migration,

proliferation, and survival (45).

S1P signaling has been shown to regulate the trafficking of

various immune cells, including dendritic cells (50), natural killer

(NK) cells (51, 52), T cells (53, 54), and hematopoietic stem cells

(55). Additionally, S1P exhibits strong pro-inflammatory effects,

acting as a chemoattractant for neutrophils and macrophages (56).

Within macrophages, SphK1 is essential for complement

component C5a-induced intracellular calcium mobilization,

degranulation, and the production of cytokines such as TNF-a,
IL-6, and IL-8, as well as for chemotaxis (57). SphK1 also mediates

TNF-a-induced PGE2 synthesis (58). Research indicates that TNF-

triggered transcription of proinflammatory cytokines, chemokines,

and adhesion molecules, including IL-6, RANTES, MCP-1, and

VCAM-1, requires SphK1 activation (59). In endothelial cells, S1P

has been found to inhibit TNF-a-driven monocyte adhesion both in

vitro and in vivo (60, 61). Activation of SphK1 by TNF-a leads to

S1P production, which subsequently activates S1P1 and S1P3

through autocrine signaling, enhancing nitric oxide production by

eNOS (62). Nitric oxide, in turn, reduces the expression of adhesion

molecules and the adhesion of leukocytes (63–65).

External S1P, when added to NK cells, binds to S1P receptors,

inducing cell chemotaxis (66). Mice lacking S1P exhibit reduced NK

cell migration and impaired efflux (67). The mobilization of NK cells

relies on S1PR5 signaling (68), and further studies indicate that the

binding of S1PR5 to CXCR4 is essential for NK cell mobilization and

the rapid production of interferon following activation (69). The exit

of CD4+ T cells from lymph nodes is dependent on the S1PR1/CD69

axis, and S1P upregulates adhesion molecules crucial for T cell

recruitment (54). Both S1PR1 and S1PR4 exhibit chemotactic

effects on T cells (70). While S1P facilitates T cell movement, it

also inhibits PMA-induced T cell proliferation in vitro (71).

S1P is known to facilitate cancer progression through several

mechanisms (72–74). Elevated S1P concentrations have been

observed in various cancer types, such as breast, gastric, and

pancreatic cancers, where levels within tumor tissues consistently

surpass those in adjacent non-tumor tissues (75–78). Recent studies

have demonstrated a key role for sphingolipid metabolic pathways in

liver regeneration, hepatocellular carcinoma (HCC) progression, and

treatment (79, 80). Previous research has identified S1P as the pivotal

element connecting chronic inflammation to cancer progression,

particularly in colitis-associated cancers (81). It plays a central role in

the NF-kB-regulated production of IL-6 and the sustained activation of
STAT3, which, in turn, elevates S1PR1 expression (82). This S1P/

S1PR1/STAT3 signaling axis establishes a feed-forward loop that

exacerbates chronic inflammation, thus contributing to disease

progression. Furthermore, the production of S1P by cancer cells at

high levels enhances the tumor microenvironment, reinforcing the

connection between cancer and inflammation (83). Sphingolipids play

a crucial role in regulating inflammation and extracellular matrix

dynamics in the tumor microenvironment (84). S1P can activate

various signaling pathways in immune cells (85), endothelial cells

(86), and fibroblasts (87, 88), affecting the secretion of cytokines,

chemokines, and growth factors that regulate inflammation (89, 90).
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In addition, S1P interacts with its receptor S1PR1-5, coordinating a

multifaceted regulatory network and affecting the dynamic balance of

cytotoxic T cells, Tregs, Th17 cells, and NK cells (89), thus affecting

tumor progression and the efficacy of immunotherapy by regulating

the tumor immune microenvironment.

ACER2 has been identified as a transcriptional target of p53,

ACER2 activation by p53 increases reactive oxygen species (ROS)

production, thereby mediating the DNA damage response (29, 91).

In various cancer cell lines, ACER2 overexpression influences key

processes such as cellular proliferation, DNA damage response,

programmed cell death, and autophagy (29). Notably, ectopic

expression of ACER2 exhibits a dual effect on tumor cell

dynamics, promoting both proliferation and apoptosis. Xu et al.

demonstrated that ACER2 enhances the synthesis of S1P, which is

associated with cell proliferation and survival; however, excessive

ACER2 levels may lead to cell cycle arrest due to sphingosine

accumulation (27). Additionally, ACER2 levels show a negative

correlation with several well-characterized immune checkpoint

inhibitors, which may hinder the re-activation of tumor-specific

cytotoxic T lymphocytes responsible for targeting and eliminating

cancer cells (92, 93).
3 ACER2 in GI cancers

Lipids de novo transformed and biosynthesized by the intestinal

microbiome have important structural and signaling functions, which

can affect host cells through metabolic and immune pathways (94).

The host can directly sense microbial-derived lipids, thereby

regulating innate and adaptive immune pathways and regulating

metabolic pathways (95). Mammalian sphingolipid signaling is

essential for many inflammatory and cell survival pathways

and plays an important role in many metabolic and inflammatory

diseases (96). Changes in membrane phospholipid chemistry can lead

to increased intestinal permeability, allowing bacteria to spread in the

host, resulting in many pathological consequences (97). In addition,

microbial-derived SP deficiency is associated with inflammatory

bowel disease (IBD) (94). Sphingolipids are an integral part of

tumor lipid metabolism, which significantly influences cancer

progression, metastasis, and drug resistance (98, 99). In addition,

the metabolic pathways of sphingolipids, which include the synthesis

and degradation of these complex molecules, are tightly linked

to several key signaling pathways that drive the carcinogenic

process (72, 100). For example, the balance between intracellular

ceramide, ceramide-1-phosphate (C1P), sphingosine, S1P, and

glycosphingolipids can determine the balance between cell death

and survival, thus significantly affecting tumor progression and

treatment outcomes (72, 100).
3.1 ACER2 and colorectal cancer

The development of colorectal cancer (CRC) is accompanied

with complicated alterations of the metabolism of sphingolipids in

cancer tissue (101). Mazzei et al. reported that dietary SM modulates

the inflammatory response in the early stages of azoxymethane
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(AOM)/dextran sulfate sodium (DSS)-induced colon cancer by

activating peroxisome proliferator-activated receptor g (PPAR-g)
(102). Sphingolipid metabolism forms a network of metabolically

related bioactive lipid mediators. The critical role of S1P signaling in

gastrointestinal tumors has been highlighted in previous research

(103). Sph can be phosphorylated by SPHK 1 and SPHK 2 in

enterocytes to form S1P, which can inhibit apoptosis, promote

proliferation and angiogenesis, and induce inflammatory signaling

by activating the nuclear factor kB (NF-kB) and STAT3 pathways

(70, 84). The epithelial STAT3-S1P axis is thought to influence tumor

progression by modulating the recruitment of distinct immune cell

populations. Proinflammatory cytokines, such as IL-6, secreted by

infiltrating inflammatory cells, initiate STAT3 activation within

epithelial cells. Beyond supporting pathways that control cell

survival and proliferation, epithelial STAT3 also activates the

SphK-S1P-S1PR cascade, which further amplifies epithelial STAT3

activation by (1) facilitating the recruitment of inflammatory cells,

including CD8+ T cells and regulatory T cells (Tregs), and (2)

reinforcing the positive feedback loop mediated by S1PR-STAT3

signaling in epithelial cells. This self-sustaining loop drives persistent

STAT3 activation in epithelial cells, ultimately contributing to their

malignant transformation (104).

Besides, previous studies have shown that the SphK1/S1P pathway

mediates the arachidonic acid (AA) cascade (105), especially inducible

COX-2 and its product, the inflammatory mediator PGE2, which is

associated with colon cancer (1, 106, 107). SphK1 is involved in acute

colitis (108), intestinal polyp formation (103), and colon carcinogenesis

(109). SphK2 may also be involved in DSS-induced acute colitis and

AOM/DSS-induced colitis-driven colon carcinogenesis (110, 111).
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Besides, The increase in S1P/Cer ratio is related to the increased

tumor cells survival, growth, and progression in colon cancer (112).

ACER2 plays a key role in SphK/S1P signaling-mediated colon

inflammation and cancer development. Besides, studies have

shown that ACER2 activity can increase the levels of Sph and

S1P while reducing the levels of Cer, and this activity has been

shown to be involved in the p53-mediated DNA damage response

and the regulation of cell cycle arrest and cell senescence in colon

cancer cells (31).
3.3 ACER2 and GC

ACER2 has also been implicated in gastric cancer. miRNAs can

interact with 3′-UTR, 5′-UTR, coding sequences and gene promoters

to regulate gene expression; the most common is to target 3′-UTR to

inhibit gene expression (113). miR-196a-5p is associated with the

progression from chronic atrophic gastritis to gastric cancer (GC)

and promotes the malignant behavior of GC cells by directly targeting

the 3’UTR of ACER2 mRNA, reducing its expression (114). The

suppression of ACER2 expression leads to an imbalance between

sphingosine and S1P levels, promoting cell proliferation (114). When

cells express low levels of ACER2, the proliferative effects of S1P can

offset the antiproliferative effects of low levels of Sph, thereby

promoting cell proliferation, whereas in cells expressing high levels

of ACER2, the apoptotic effects of high levels of Sph can override the

anti-apoptotic effects of S1P, leading to PCD (31). Additionally,

sphingolipids, including ceramide and S1P, play a role in viral

infections such as Epstein-Barr virus (EBV), which is associated
FIGURE 1

Mechanisms of ACER2 that facilitates GI cancers progression.
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with GC. Recent studies suggest that ceramide promotes the lytic

reactivation of EBV in GC, further highlighting the complex interplay

between sphingolipid metabolism and viral oncogenesis in GC (115).
3.4 ACER2 and HCC

ACER2 has been implicated in hepatocellular carcinoma (HCC)

as well. In mice, MmACER2 was identified as CRG-L1, a gene

linked to liver cancer, and its expression was elevated in

hepatocellular carcinoma within a mouse model induced by

diethylnitrosamine, a known carcinogen (2). This upregulation

was observed across three stages—quiescent, regenerating, and

neoplastic liver—when compared to normal liver tissue (116).

Similarly, HsACER2 showed increased expression in HCC tumors

and cell lines relative to non-tumor tissue in both patients and the

non-tumorigenic human hepatocyte line QSG-7701. The

upregulation of HsACER2 contributed to enhanced proliferation

of HCC tumor cells in vitro, stimulated HCC growth in xenograft

models, and promoted both migration and invasion of HCC (117).

The activity of haCER2 was found to be upregulated in HepG2

human hepatoma cells under conditions of serum deprivation. This

increase resulted from elevated haCER2mRNA levels, driven bymRNA

transcription rather than mRNA stability (118). The p38 MAPK/AP-1

signaling pathway was implicated in the upregulation of haCER2

mRNA during serum deprivation, providing a possible mechanism

for haCER2 elevation in human HCC (118). Notably, elevated haCER2

expression triggered sphingosine-induced growth arrest, while its lower

expression favored S1P-driven cell proliferation (27). Thus, the

regulation of haCER2 likely plays a crucial role in determining cell

fate by modulating the balance between ceramide/sphingosine and S1P

levels.Moreover, ACER2 facilitates HCC cell proliferation, invasion, and

migration through mechanisms involving sphingomyelin

phosphodiesterase acid-like 3B (SMPDL3B) (117) (Figure 1).
4 Conclusion

ACER2 plays a pivotal role in regulating sphingolipid

metabolism, influencing key processes such as cell proliferation,

apoptosis, and immune modulation. Its dysregulation has been

implicated in a range of gastrointestinal cancers, including CRC,

GC, and liver cancer. By modulating the balance between pro-

apoptotic ceramide, pro-survival sphingosine, and S1P, ACER2

contributes to both the promotion and suppression of cancer

progression, depending on the context of its expression and

regulation (117, 119).

The involvement of ACER2 in sphingolipid metabolism positions

it as a promising therapeutic target in GI cancers (120), particularly in
Frontiers in Immunology 05
cancers where its expression is dysregulated. Future research focusing

on the precise mechanisms by which ACER2 contributes to tumor

progression and immune modulation will provide valuable insights

into novel treatment strategies for GI cancers.
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