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Melittin as a therapeutic agent
for rheumatoid arthritis:
mechanistic insights, advanced
delivery systems, and
future perspectives
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Aaushi Pareek1, Simran Chaudhary1, Yashumati Ratan1,
Vasso Apostolopoulos2 and Anil Chuturgoon3*

1Department of Pharmacy, Banasthali Vidyapith, Banasthali, India, 2School of Health and Biomedical
Sciences, RMIT University, Melbourne, VIC, Australia, 3Discipline of Medical Biochemistry, School of
Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
Rheumatoid arthritis (RA), a condition characterized by joint deterioration through the

action ofmatrixmetalloproteinases (MMPs), is prevalent worldwide. Bee venom (BV) has

traditionally been used in Chinesemedicine for pain, arthritis, rheumatism, skin diseases,

etc. BV is enrichedwith active substances, notablymelittin and phospholipase A2 (PLA2),

offering significant therapeutic potential. Hence, the review summarizes current insights

into BV’s composition, antiarthritic mechanism and pharmacological benefits, focusing

on melittin. Constituting 50-60% of BV, melittin notably downregulates nuclear factor

Kappa B (NF-kB) activity, inhibits MMP-1 and MMP-8, and diminishes tumor necrosis

factor (TNF-a), all of which contribute to the mitigation of type 2 collagen degradation.

Despite its potential, melittin exhibits hemolytic activity and can significantly affect cell

membranes, limiting its application, which poses a challenge to its therapeutic use. To

overcome these challenges, delivery techniques utilizing nanocarriers andmodifications

in amino acid sequencing have been developed. Recent advancements in delivery

systems, including nanocarriers, transdermal patches, and nanoemulsions, aim to

minimize toxicity, expanding its therapeutic utility for RA. This article explores these

novel strategies, underlining the evolving role of melittin in RA management.
KEYWORDS
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1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease affecting up

to 1% of the population in developed countries. Environmental factors, genetic

predisposition, and smoking are significant contributors to the development of RA (1).

RA prevalence is higher in industrialized regions, likely due to demographic factors.
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According to the WHO, in 2019, RA impacted around 18 million

people globally, with 70% of cases occurring in women and 55% in

individuals over the age of 55 (2). Of those affected, 13 million

experienced moderate to severe symptoms and benefited from

rehabilitation efforts (3).

In recent decades, the incidence of RA has increased

significantly, and this trend is expected to continue (4). Research

highlights a considerably higher prevalence of RA in women

compared to men (5). The etiology of RA is complex, involving

interactions between environmental factors, the microbiome,

mucosal health, and host immune function (6). Typically, the

disease initiates in the mucosal tissues, where various

inflammatory cytokines, immune cells, and signaling pathways

become involved. This process eventually leads to interactions

between the mucosal immune system and dysregulated

microbiota, which then migrate to the synovium and joints (1, 7).

This chronic condition is characterized by inflammation of the

synovial membrane, leading to joint damage, swelling, stiffness,

pain, tissue degradation, deformity, and instability. The disease

usually progresses symmetrically (8–10). Key factors driving

inflammation in RA include tumor necrosis factor (TNF-a),
interleukin-6 (IL-6), and other cytokines (10, 11). The immune

response in RA is triggered by cytokines and chemokines, which

further activate B and T-cells, macrophages, and monocytes,

leading to excessive swelling (12, 13). Currently, nonsteroidal

anti-inflammatory drugs (NSAIDs) (13), glucocorticoids (14), and

disease-modifying anti-rheumatic drug therapy (DMARDs) (8, 10,

15) are the first line of treatment for RA therapeutics (Figure 1).
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However, NSAIDs may lead to gastrointestinal bleeding and other

adverse effects, while DMARDs can cause immune suppression,

increasing the risk of infections (12, 16, 17). Recent advancements

in RA therapy have introduced biologic agents targeting TNF-a and

interleukins (ILs) (18–21). These biologics inhibit specific immune

components, such as CXC chemokine ligand inhibitors (22, 23),

anti-B-cell agents (24–26), and T-cell co-stimulation blockers (27).

Combination therapies that include biologics and methotrexate are

also commonly used (28–30). Additionally, synthetic agents

targeting Janus-activated kinase (JAK) inhibitors and cell

therapies utilizing mesenchymal stem cells (MSCs) have been

incorporated into RA treatment protocols (29–31). Biologics,

although targeted and effective, are often expensive, making them

inaccessible for many patients (17, 32).

Despite these treatment advancements, many RA patients face

significant side effects and limited efficacy from existing therapies,

leading to suboptimal treatment outcomes and continued

discomfort (32, 33). In response to these challenges, researchers

are exploring alternative therapies, including medicinal plants and

animal-derived drugs, to provide more effective relief from this

autoimmune disorder (17, 34–39). One of the traditionally used

animal-derived therapies is bee venom (BV), which has been used

in China for centuries to treat inflammation and pain, a practice

known as ‘Apitherapy’ (40, 41). Apitherapy involves the use of bee

products for the treatment or prevention of disease. BV is

particularly noted for its anti-inflammatory properties, primarily

due to its main active component, melittin (42). The therapeutic

efficacy of BV in managing rheumatism and arthritis is thought to
FIGURE 1

Current strategies for treatment of Rheumatoid arthritis. NSAIDs, nonsteroidal anti-inflammatory drugs; DMARDs, disease-modifying anti-rheumatic
drug therapy; TNF, tumor necrosis factor; IL, interleukin; CXCL, CXC chemokine ligand; CD, cluster of differentiation.
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begin with the activation of adrenal glands that produce cortisol.

Recent studies have documented various pathways through which

BV and its components exert anti-inflammatory or antiarthritic

effects (43, 44). Melittin, a small protein consisting of 26 amino acid

residues, appears to downregulate phospholipase A2 (PLA2),

cyclooxygenase (COX-2), and TNF-a expression while reducing

levels of IL-1b, IL-6, nitric oxide (NO), and reactive oxygen species

(ROS) (45).
2 Pathophysiology of
rheumatoid arthritis

RA is primarily characterized by hyperplasia and inflammation

of the synovium, leading to progressive destruction of cartilage and

bone. This condition is associated with a range of systemic

complications, including cardiovascular, pulmonary, and

psychological disorders (46). RA typically stems from a

breakdown in immune tolerance, producing a symmetric pattern

of synovial inflammation. This breakdown often results from

complex interactions between environmental factors, smoking,

and genetic predispositions, triggering the production of

autoantibodies against citrullinated antigens—a hallmark of RA

(Figure 2) (47, 48).

RA is classified into two major subtypes based on the presence

or absence of anti-citrullinated protein antibodies (ACPAs),
Frontiers in Immunology 03
detectable in around 67% of patients and serving as a key

diagnostic marker (49). ACPAs production is typically triggered

by environmental factors and epigenetic changes, which often

involve a combination of genetic and environmental influences

(47). Likely trigger sites for RA include the lungs and gut, where

interactions initiate autoantibody production against citrullinated

peptides, marking the onset of self-protein citrullination. Lung

exposure to infectious agents like Porphyromonas, Epstein-Barr

virus, and gingivitis, along with noxious agents, dietary factors,

and the gut microbiome, also contribute to ACPA generation (50).

Citrullination is catalyzed by the calcium-dependent enzyme

protein arginine deaminases (PAD), converting neutral arginine

into a polar citrulline residues in granulocytes and macrophages in

RA patients (50). An abnormal antibody response produces ACPAs

targeting various citrullinated proteins, including histones, type 2

collagen, Epstein-Barr nuclear antigen 1, a-enolase, vimentin, and

fibronectin, contributing to the systemic nature of RA (50).

The activation of major histocompatibility complex (MHC)

Class II-dependent T-cells by citrullinated neoantigens promotes B-

cells production of more ACPAs and the activation of inflammatory

mediators like TNF-a, IL-1b, IL-6, and NF-kB, leading to pannus

formation—a thickened synovial layer that invades and destroys

cartilage and bone. This stage is typically characterized by a loss of

immune tolerance (Figure 3) (50, 51).

Understanding the detailed pathophysiology of RA is critical for

developing targeted therapies to manage and potentially alter

disease progression. By elucidating these mechanisms, researchers
FIGURE 2

Risk factors responsible for rheumatoid arthritis include interactions with environmental factors, smoking, and genetic predispositions, leading to the
production of autoantibodies against citrullinated antigens.
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can identify novel therapeutic targets and improve treatment

strategies for RA.
3 Bee venom

BV is synthesized within the venom gland located in the bee’s

abdominal cavity (52, 53). This complex mixture contains at least 18

active components, including active peptides, enzymes, amino

acids, proteins, phospholipids, sugars, and other non-peptide

elements (Table 1) (54, 55). Studies demonstrated the therapeutic

potential of BV, highlighting its anti-atherosclerotic, antiarthritic,

antimicrobial, and immunosuppressive activities, as well as its

cytotoxic effects against cancer cells (56).

BV has been used as a therapeutic agent in Korea and Eastern Asia

since ancient times, even before the common era, where it was

administered through injections or live bee stings to treat various

conditions such as back pain, tumors, arthritis, and multiple

sclerosis (44).
3.1 Basic components of bee venom

BV is primarily composed of melittin, a protein that constitutes

approximately 55% to 60% of its dry weight. Another significant

component is the mast cell degranulation peptide (MCD), also
Frontiers in Immunology 04
known as peptide 401, which accounts for about 2% to 3% of BV’s

weight (56).
3.2 Physical properties of bee venom

BV is a translucent liquid with a pH range of 4.5 to 5.5,

characterized by an unpleasant taste and odor. It is insoluble in

ammonium sulfate and ethanol but is soluble in water (57).
4 Melittin

Melittin is the key component of BV, comprising up to 52% of

its dry mass. It is a basic peptide with a molecular weight of 2846.5

Da and the chemical formula C131 H229 N39 O31, consisting of 26

amino acids (58, 59) (Figure 4).

Melittin is responsible for multiple effects, including anti-

inflammatory, antibacterial, and antiviral effects, in various cell

types. As a basic peptide, melittin acts as a natural detergent with

high membrane surface tension, disrupting the structure of the

phospholipid bilayer by forming pores and aggregates in both

synthetic and natural membranes (62). In addition to causing

morphological changes in membranes, melittin stimulates various

enzymes such as adenylate cyclase, protein kinase, G-protein, and

phospholipase C and D (63). Structurally, melittin forms a bent rod

shape with two a-helical segments connected by a coiled segment
FIGURE 3

Pathophysiology of rheumatoid arthritis. Foreign antigens that activate B and T-cells, macrophages, and other inflammatory mediators (TNF-a, IL-1b,
IL-6), leading to pannus formation and subsequent joint destruction.
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containing a proline residue, enabling it to penetrate cell

membranes (64).

At low concentrations, melittin exists as a monomer that can

lyse cells, but it forms tetramers at concentrations typically found in

BV. The pain associated with melittin is due to the depolarization of

nerve endings by these tetramers. When administered

intravenously, the cytolytic peptides in melittin target all lipid

membranes, leading to systemic toxicity (65).
4.1 Different sources of melittin

While BV from honeybees is the primary source of melittin, it is

also found in various other species, including certain insects,

bacteria, amphibians, and reptiles (Figure 5) (66).
Frontiers in Immunology 05
4.2 Various pharmacological properties
of melittin

Melittin exhibits various pharmacological properties, including

anti-cancer, antimicrobial (anti-fungal, anti-protozoal, antiviral,

antibacterial), antiarthritic, anti-diabetic, and anti-inflammatory

activities (67–70). It disrupts cancer cell membranes through

endocytosis, increasing membrane permeability and intracellular

Ca²+, leading to apoptosis (67, 68).

Melittin has demonstrated antimicrobial activity against various

pathogens (69, 71). For instance, melittin has shown efficacy in

inhibiting Mycoplasma gallisepticum infection, particularly in

plasmid isolates carrying the melittin gene (72). Additionally, the

BV peptide lasioglossins, known for their DNA-binding capabilities

and membrane interactions, exhibit even stronger antimicrobial

effects (73). In vivo studies have shown that Melittin administration

reduces TNF-a and IL-1b levels, as well as the infiltration of

inflammatory cells in mouse skin following a Dermatobacillus

acne injection (74, 75).

Melittin-loaded nanoparticles have demonstrated the ability to

destroy the human immunodeficiency virus (HIV) without harming

nearby healthy cells (59, 76). Melittin also interacts with the herpes

simplex virus-1 (HSV-1), blocking its replication and reducing HIV-1

expression. Moreover, PLA2, another component of BV, may serve as

an adjunctive antiviral agent in HIV treatment (77, 78).

Melittin has been demonstrated to enhance insulin synthesis by

reducing the inflammatory response of the pancreatic islets (79). By

depolarizing the membrane of pancreatic islets, melittin facilitates

the opening of Ca²+ channels, allowing calcium ions to enter more

easily and triggering B-cells to produce insulin (55, 80–82). The

antiarthritic effect of BV was associated with a decrease in COX-2

and PLA2 expression, as well as a lower level of IL-1, IL-6, TNF-a,
ROS, and NO. This occurs through a strong protein-protein

interaction (PPI) that alters the actions of IKKb and IKKa,
restricting the release of IkBb and IkBa, which are essential for

the translocation of the p50 subunit of NF-kB. As a result, the

binding ability of NF-kB to DNA is reduced, leading to decreased
FIGURE 4

Sequence of 26 amino acid residues in melittin, a component of Bee venom. Melittin is synthesized as an inactive precursor within a bee’s venom gland
known as “pre-pro melittin”, which consists of 70 amino acids. The active form of melittin exhibits polar characteristics, with the last six amino acids being
hydrophilic and the first 20 amino acids (starting from the N-terminus) being hydrophobic (60). This arrangement of amino acids contributes to its unique
three-dimensional structure and amphoteric nature, with a +6 charge at physiological pH (including a +2 charge at the C-terminal and a +4 charge at the
N-terminal region). Due to this specific arrangement, melittin exhibits hemolytic activity (61).
TABLE 1 Composition of Bee Venom.

Class of molecules Components % of dry BV

Proteins and peptides

Melittin 0-50

Apamin 1-3

Mast cell
degranulation

peptide
1-2

Adolapin 1

Phospholipids NA 5

Volatile components NA 4-8

Sugar Glucose and fructose 2

Amino acids
Aminobutyric acid,
a-amino acids

2

Amines Histamine 0.5-2

Enzymes

Phospholipase A2 10-12

Hyaluronidase 1-3

a-glucosidase 0.6-1
NA, not available.
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expression of proinflammatory genes (83, 84). The anti-

inflammatory effects of melittin across various disease models at

different therapeutic doses are summarized in Table 2.
4.3 mechanism of the antiarthritic effect
of melittin

The therapeutic potential of BV, particularly its key

component melittin, has been extensively studied in both in

vitro and in vivo models, revealing multiple anti-inflammatory

and immunomodulatory mechanisms.

Nam et al. (100) demonstrated that the aqueous phase of BV

(molecular weight <20 kDa) contains components with significant

anti-inflammatory properties. In vitro studies identified that various

BV extracts, including n-hexane, ethyl acetate, and the aqueous

phase derived from Apis mellifera, exhibit a potent inhibitory effect

on COX-2 activity while sparing COX-1. The aqueous partition was

further subdivided based on molecular weight into three fractions:

BV1 (>20 kDa), BV2 (10–20 kDa), and BV3 (<10 kDa). Of these,

BV2 and BV3 fractions showed the most pronounced inhibition of

COX-2 activity while avoiding cytotoxicity, indicating the presence

of specific moieties responsible for suppressing proinflammatory

cytokine production (TNF-a and IL-1b).
Further assessments in RAW 264.7 murine macrophage cell

lines and synoviocytes from RA patients revealed similar anti-
Frontiers in Immunology 06
inflammatory effects of BV and melittin. Dose-dependent studies

in macrophage models showed significant reductions in tissue

inflammation, edema, and osteophyte formation with BV and

melittin therapy at concentrations as low as 0.1–5 μg/kg,

highlighting its therapeutic efficacy (90).

BV and melittin also effectively inhibit the production of nitric

oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated RAW

264.7 cells without cytotoxic effects. This inhibition parallels the

effects observed with indomethacin, a conventional COX-2

inhibitor, and underscores BV’s capability to attenuate

inflammatory mediators within synoviocytes of RA patients

(84, 90).

Melittin’s mechanism of action extends to the suppression of

NF-kb activity, achieved by inhibiting IkB kinases (IKKa and

IKKb), reducing Ikb phosphorylation, and preventing p50

translocation into the nucleus (84). These molecular actions

culminate in decreased expression of proinflammatory genes,

such as those encoding COX-2 and inducible nitric oxide

synthase (iNOS) (Figure 6). Surface plasmon resonance analyses

provide direct evidence of melittin’s interaction with these critical

upstream signaling molecules, with dissociation constants of 4.6 ×

10-6 M (IKKa), 1.34 × 10-9 M (IKKb), and 1.01 × 10-9 M (p50),

highlighting its specificity and potency (90, 91). This strong PPI

alters the actions of IKKb and IKKa, restricting the release of IkBb
and IkBa, which are essential for p50 translocation, thereby

reducing NF-kB’s ability to bind DNA.
FIGURE 5

Exploring Diverse Origins: Sources of Melittin Beyond Honey Bees. A. baumannii, Acinetobacter baumanni; A. bereziniae, Acinetobacter bereziniae; B.
xylanisolvens, Bacteroides xylanisolvens; C. qasimii, Cyclobacterium qasimii; E coli, Escherichia coli; L. blandensis, Leeuwenhoekiella blandensis; P. batumici,
Pseudomonas batumici; P. fluorescens, Pseudomonas fluorescens; P. maltophilia Pseudomonas maltophilia; R. solanacearum, Ralstonia solanacearum; S.
typhi, Salmonella typhi; S. maltophilia, Stenotrophomonas maltophilia; T. nitratireducens, Thioalkalivibrio nitratireducens; X. maltophilia, Xanthomonas
maltophilia; Z. profunda, Zunongwangia profunda.
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TABLE 2 Therapeutic dose of melittin for anti-inflammatory effect for different disease models.

Disease
model

Route of
administration

Dose Animal/cell line used Inferences drawn Reference

Atherosclerosis NA 2 μg/ml (melittin)
Human vascular smooth muscle cells were

stimulated with TNF-a. In vitro
↓ Expression of 1L-1b, TNF-a, &

NF-кB
(85)

Atherosclerosis NA
0.1-1μg/ml
(melittin)

Macrophages derived from the human
monocyte cell line THP-1 were cultured.

In vitro

↓ IL-1b, TNF-a and NF-kB activation
↓ Phosphorylation of EGFR and ERK
↓ Expression of NF-kB in the nucleus

(86)

Atherosclerosis IP
0.1mg/Kg
(melittin)

C57/BL6 mice, male
In vivo

↑ Serum HDL-C level
↓ IL-1b, TNF-a

↓ VCAM-1, ICAM-1 expression
↓ fibronectin, TGF-b1 expression

(86)

Neuro-
inflammation

NA
0.5-2μg/ml
(melittin)

BV2 microglia.
In vitro

↓ TNF-a, IL-1b, IL-6, PGE2
┴ COX-2

┴ NO, iNOS
↓ NF-кB activation

Block IкBa degradation

(87)

Acne vulgaris NA
0.1-1μg/ml
(melittin)

Human THP-1 monocytic cell
In vitro

↓ IKK, NF-кB, p38 phosphorylation,
swelling

┴ TNF-a, IL-1b, IL-8 and apoptosis
┴ cleavage of caspase 3, 8

(88)

Amyotrophic
lateral sclerosis

SC
0.1μg/g

3 times a week
(melittin)

Mouse
(hSOD1G93A transgenic)

In vivo

↓ lba-1, CD14 (lungs)
↓ CD14 and COX-2 (spleen)

↑ pERK and Bcl2
(89)

Arthritis NA
5, 10μg/ml
(melittin)

RAW
264.7 mouse macrophases;

Synoviocytes obtained from RA patient.
In vitro

Melittin binds to IKKa & IKKb
┴ TNF-a, IKKb

┴ NF-кB activation and nuclear
translocation of p50 subunit.

┴ LPS-induced COX-2, NO, iNOS,
and PGE2

(90)

Arthritis NA
0.5, 5μg/ml
(melittin)

RAW
264, THP-1 human cell;

Synoviocytes obtained from RA patient.
In vitro

┴ LPS and SNP-induced JNK
activation
┴TNF-a

JNK inhibitor suppressed inhibitory
effect of melittin on NF-kB activation
┴ LPS and SNP-induced NO, and

PGE2 production

(91)

Arthritis SC
20μg/kg,
(melittin)

Wistar albino male rats
In vivo

↓ TNF-a, IL-6, IL-1b, TOL and OSI (92)

Gouty arthritis
Intra-articular
(Tibiotarsal)

0.5mg/kg (BV)
Adult male Sprague Dawley rats

In vivo

↓ TNF-a, IL-1b, IL-6,
COX-2, iNOS and chemokines (MIP-

1a, MIP-1b, MCP-1, GRO-a,
MIP-2a)

(93)

Arthritis SC

2, 4, 20 mg/kg,
each day for a
period of 15
days (BV)

Male Wistar albino rats In vivo
┴ Enzymatic activity of PLA2
┴ TNF-a, IL-1b, IL-6, TGF-b1

(94)

Peri
arthritis

hemeroscapularis
IM

0.0025mg/kg,
once per day for

15 days
(BV)

Human patients
In vivo

↓ IL-1b, TNF-a,
↑ IL-10

improvement in motor function
and mobility

(95)

Arthritis IP 60mg/kg/day (BV) Adult male Wistar rats, In vivo
↓ TNF-a, IL-1b,
↓ NF-кB signaling

(96)

Gastric
ulceration

IP
2mg/kg for 7 days

(BV)
Adult male

Sprague-Dawley rats, In vivo

↓ Ulcer index
↓ cytokine levels

↓caspase-3 expression
↓ tissue eosinophil levels

(97)

(Continued)
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The therapeutic effect of melittin has been further corroborated

by studies showing its ability to reduce TNF-a, NO, and ROS levels

—key mediators in inflammatory arthritis. These effects collectively

contribute to its capacity to alleviate joint destruction and systemic

inflammation (92–94, 101–103).

The potential protective mechanism of melittin against the

inflammatory response is illustrated in Figure 6.

The inhibitory effects of melittin and BV on c-Jun N-terminal

kinases (JNK) signaling were observed at concentrations of 5 μg/mL
Frontiers in Immunology 08
and within a range of 0.1–5 μg/mL, respectively. These effects were

further validated by the use of SP600215, a specific JNK signal

inhibitor, which suppressed the anti-inflammatory actions of

melittin and BV. While other signaling pathways, such as p38

MAP kinase and ERK, may also be modulated depending on the cell

type and stimulus, the specific inhibition of JNK signals appears to

be a pivotal mechanism in reducing NF-kB activity and

inflammatory mediator production. These findings demonstrate

that melittin and BV exert their anti-inflammatory effects through
TABLE 2 Continued

Disease
model

Route of
administration

Dose Animal/cell line used Inferences drawn Reference

Cholangiopathy IP
0.1mg/kg
(melittin)

C57BL/6 male mice
In vivo

↓ serum alkaline phosphatase,
bilirubin

↓ TNF-a, IL-6, apoptosis
↓ NF-кB signaling, TGF-b1

expression
┴ liver fibrosis

(98)

Liver
inflammation

NA
0.5-2μg/ml
(melittin)

Mouse hepatocyte cell line AML12, In vitro
┴ apoptotic pathway

┴ activation of
bcl-2, bax, NF-kB activation

(99)
TNF-a, tumor necrosis factor-a; IL, interleukin; NF-кB, nuclear factor kappa beta; EGFR, epidermal growth factor receptors; ERK, extracellular signal-regulated kinase; PGE2, prostaglandin E2;
NO, nitric oxide; iNOS, inducible nitric oxide synthase; IKK, IkB kinase; CD, cluster of differentiation; COX, cyclooxygenase; JNK, c-Jun N-terminal kinases; GRO-a, growth-regulated gene-a;
SNP, sodium nitroprusside; TGF-b1, Transforming growth factor beta 1; TOL, total oxidant level; OSI, oxidative stress index; LPS, lipopolysaccharide; VCAM, vascular cell adhesion molecule,
ICAM, intercellular adhesion molecule; MIP, macrophage inflammatory protein; bcl-2, B-cell lymphoma protein-2; bax, B-cell lymphoma protein- associated X; NA, not available. Symbol: ↑
increased; ↓ suppression; ┴ inhibition.
FIGURE 6

Mechanisms of melittin’s anti-inflammatory action in rheumatoid arthritis. melittin regulates TLR2, TLR4, CD14, NEMO, and PDGFRb signaling
pathways. Melittin blocks IKKs to prevent the release of IkB, thereby inducing NF-kB inactivation. It also decreases the activation of p38, ERK1/2,
PLCg1, and AKT, as well as the translocation of NF-kB into the nucleus, thereby reducing the inflammatory mediators (IL-1b, IL-6, TNF-a, NO, PGE2,
ROS) in the liver, aorta, joints, skin, and neural tissue. NF-kB, nuclear factor-kB; IkB, inhibitor of NF-kB; IKK, IkB kinase; NEMO, NF-kB essential
modulator; TNF-a, tumor necrosis factor; IL, interleukin; NO, nitric oxide; PGE2, prostaglandin E2; ERK1/2, extracellular signal-regulated protein
kinases 1 and 2; CD, cluster of differentiation; TLR, toll-like receptor; PDGFR-b, platelet-derived growth factor receptor-b; PLCg1, phospholipase Cg1;
Akt, protein kinase B.
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a dual mechanism, targeting both NF-kB and JNK pathways. This

dual inhibition contributes to the suppression of pro-inflammatory

mediators, including NO and PGE2, underscoring the therapeutic

potential of melittin and BV in managing RA and other

inflammatory conditions (90, 91).

Synthetic melittin has been shown to bind to PLA2 and inhibit

the enzymatic activity of secretory PLA2 (sPLA2) in synovial fluid

taken from RA patients. This suggests that BV or its components

may have a therapeutic role in disrupting key inflammatory

enzymes, making the downregulation of genes that prevent

inflammation crucial for its therapeutic efficacy (103, 104).

Yin et al. (105) conducted microarray analyses to investigate the

global gene expression patterns in human chondrocyte-like cells

exposed to BV. Their study revealed significant downregulation of

key genes associated with inflammation, including the IL-6, matrix

metalloproteinase-15 (MMP-15), caspase-6 and TNF-a ligand.

These findings highlight BV’s ability to modulate inflammatory

pathways at the transcriptional level, providing molecular evidence

for its anti-inflammatory properties. The inhibition of these genes

reflects BV’s potential to regulate critical processes involved in joint

inflammation and destruction, further supporting its therapeutic

utility in rheumatoid arthritis.

This transcriptional regulation complements the previously

described suppression of pro-inflammatory mediators, such as

NO, PGE2, and ROS, and the inhibition of NF-kB and JNK

signaling pathways. Together, these molecular mechanisms

underline melittin’s role in mitigating the systemic and localized

inflammatory responses characteristic of RA. Moreover, the

modulation of IL-6, MMP-15, and TNF-a ligands by BV adds

another dimension to its therapeutic promise, targeting not only

downstream inflammatory mediators but also upstream regulators

of inflammation.

Additionally, BV-induced apoptosis in rheumatoid synovial

fibroblasts has been shown to play a critical role in mitigating

synovial hyperplasia, a hallmark of RA. By activating caspase-3 and

modulating the balance between BAX and BCL-2 expression, BV

promotes apoptosis and inhibits the proliferation of synovial cells,

thereby alleviating the pathological effects of RA on joint tissues. This

apoptotic mechanism not only reduces synovial cell density but also

addresses one of the core drivers of joint destruction and chronic

inflammation in RA (106). The dual action of melittin in targeting both

inflammatory mediators and hyperplastic synovial cells highlights its

potential as a multifaceted therapeutic agent for managing RA.

The collective evidence from these studies establishes melittin

and BV as promising candidates for the development of novel RA

treatments, particularly in cases where conventional therapies fail or

cause significant side effects.
5 Melittin Formulations

5.1 Melittin transdermal delivery via
polymeric microneedle for treatment of RA

Transdermal drug delivery systems offer a promising alternative

for the treatment of RA, aiming to bypass the limitations associated
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with oral and injectable administration. Among these, melittin-

loaded hyaluronic acid (HA) polymeric microneedles (Mel-HA-

MN) represent a novel approach to enhance the localized and

efficient delivery of melittin, a bioactive peptide known for its anti-

inflammatory and immunomodulatory properties (107).

Importantly, the microneedle delivery system significantly

modulated the immune response in rodent models of adjuvant-

induced arthritis (AIA). These Mel-HA-MN have shown potential

in elevating regulatory CD4+ T cells and reducing levels of

proinflammatory cytokines (TNF-a and IL-17), which may be

linked to the modulation of T cells and cytokine activity (107, 108).

Mechanical characterization of the microneedles revealed a

slight reduction in stress capacity upon melittin loading, with HA

microneedles decreasing from 58 MPa to 38 MPa and Mel-HA-MN

from 30 MPa to 27 MPa. Despite this reduction, the microneedles

retained sufficient strength for effective skin penetration. The

therapeutic efficacy of Mel-HA-MN was evaluated using the rat

adjuvant-induced arthritis (AIA) model, where the microneedles’

penetration ability was tested by applying the patch on the rat’s

abdominal skin (107).

Results demonstrated that Mel-HA-MN effectively penetrated

the skin to a depth of approximately 200 μm. This depth ensures

adequate delivery of melittin into the dermal layer, where it exerts

its therapeutic effects. The therapeutic potential of Mel-HA-MN

was further validated in AIA rodent models, where repeated

applications of the microneedle patch successfully reduced paw

swelling, maintained body weight and preserved cartilage integrity.

By the end of the treatment, the paw thickness of treated animals

decreased to less than half of that observed in the untreated control

group, and clinical scores were significantly improved, matching the

efficacy of subcutaneous melittin administration (107).

A key innovation in this approach is the incorporation of

methacrylate-modified HA (MeHA), enabling sustained release of

melittin. This modification prolonged therapeutic action and

reduced administration frequency, highlighting its potential for

long-term management of RA. The ability to tune drug release

profiles adds an element offlexibility to this delivery method, paving

the way for personalized treatment regimens.

The results of these studies emphasize the clinical relevance of

Mel-HA-MN as a targeted, non-invasive treatment strategy for RA

(107). By overcoming the challenges of direct administration, such

as systemic toxicity and patient compliance issues (109), this

technology holds s ignificant promise for improving

RA management.
5.2 Nanoemulsions of bee venom

Nanoemulsions containing BV have been developed and

studied for their potential to reduce inflammation in animal

models of RA. Research suggests that melittin’s antiarthritic

effects can be enhanced through water-in-oi l (W/O)

nanoemulsion formulations containing BV (BV-NEs), which

incorporate a surfactant mixture and an oil phase. These

formulations have been tested on collagen-induced arthritis (CIA)

in male Wistar rats (110).
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A skin permeation test was conducted by applying BV-NE for

up to 12 hours, revealing increased permeability with higher BV

content in the formulations. Studies showed a significant decrease

in serum levels of TNF-a and IL-17 from day 14 of the treatment,

with further reductions observed on day 21. This demonstrates that

nanoemulsions loaded with BV effectively reduce serum levels of IL-

17 and TNF-a, indicating a modulation of both adaptive and innate

immune responses following two weeks of topical treatment (110).

By encapsulating melittin in a nanoemulsion, BV-NEs improve

the bioavailability and stability of the peptide while allowing for a

controlled and sustained release. This not only enhances

therapeutic efficacy but also reduces the risk of systemic side

effects, making BV-NEs a safer alternative to traditional systemic

therapies. In conclusion, nanoemulsions of bee venom represent an

innovative and effective delivery system for the treatment of RA.
5.3 Incorporation of bee venom gel via
micro-needling

In this study, BV gel was combined with a transdermal drug

delivery system utilizing micro-needling to provide a precise and

effective treatment option for RA. This approach leverages the ability

of microneedles to create microchannels in the skin, facilitating the

penetration and localized action of BV’s active components. The

experiment involved inducing acute gouty inflammation in rats using

monosodium urate crystal (MUC) and acute inflammation in mice

using LPS. The anti-inflammatory effects were assessed by evaluating

the permeability of the prepared microneedle gel.

A direct correlation was observed between the percutaneous

absorption of the prepared microneedle gel and the reduction in

NO levels in both the MUC and LPS-induced inflammation models.

The BV gel was prepared using carboxymethylcellulose sodium,

a colorless, odorless, translucent material, as the gel matrix, along

with antioxidants such as thiourea, sodium thiosulfate, glucose, and

stabilizer. In patch skin tests, it was observed that melittin

successfully penetrates the stratum corneum with the assistance of

microneedles. Notably, the stability of melittin within the gel

preparation remained intact after the addition of 0.1% stabilizer,

maintaining its stability for up to 6 months. The study found that

applying a force of 10 N with a 750 μm microneedle for 3 minutes

produced the greatest anti-inflammatory effect (111).

The approach provides a localized and minimally invasive

alternative to conventional treatments, ensuring targeted delivery

while minimizing systemic exposure and associated risks.
6 Challenges with melittin as a
therapeutic agent

Safety concerns have been one of the primary challenges

associated with the therapeutic use of BV, particularly melittin.

Despite numerous reports of adverse reactions, no comprehensive

systematic analyses on safety in clinical practice have been

conducted to date. The key issue with melittin is its potential to
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well as its ability to act as an allergen, inducing IgE-mediated

responses that can lead to allergic reactions in several patients (112).

Melittin exhibits hemolytic activity and possesses cytotoxic and

genotoxic effects (113, 114). It can disrupt lipid bilayers by acting as

a natural surfactant, interacting with phospholipids, and integrating

into red blood cell (RBC) membranes. This interaction with plasma

membranes results in various effects, including the disruption of

phospholipid packaging in the lipid bilayer, the formation of

channels and pores, the aggregation of membrane proteins, and

the induction of spontaneous cell lysis. When administered in high

doses, melittin can cause itching, local reactions, and pain.

However, at lower concentrations, it may exhibit beneficial anti-

inflammatory effects, primarily due to the inhibition of PLA2 (115).

Nonetheless, melittin’s administration appears to have cytotoxic

effects on normal human cells, potentially raising mRNA levels of

oxidative stress and apoptosis-related genes (58).

To address these challenges, several strategies have been

explored to minimize the adverse effects of melittin while

retaining its therapeutic potential. Asthana et al. (116)

demonstrated that melittin ’s hemolytic activity can be

significantly reduced by substituting alanine in the leucine zipper

motif. Additionally, Rayalin et al. (117) found that a melittin fusion

protein with glutathione S-transferase exhibits low toxicity and

retains anti-inflammatory properties.

The development of delivery techniques utilizing nanocarriers

has shown promise in safely delivering melittin to specific lesions

while minimizing harm to non-targeted cells. For example, Gui and

colleagues (118) designed a polyelectrolyte-based nano-complex

system using flash nanocomplexation technology. This system

forms strong interactions between negatively charged dextran

sulfate and positively charged melittin, resulting in decreased

acute toxicity and enhanced pathological indicators, thereby

increasing melittin’s therapeutic potential (118).

Investigating the co-treatment of PLA2 and melittin could be

worthwhile, as they may complement each other well. Additionally,

combining melittin with other natural products, such as curcumin

or resveratrol, may provide synergistic effects and further reduce

toxicity (119–121).
7 Conclusion and future aspect

BV is a complex biological mixture containing various bioactive

components, such as peptides (notably melittin and PLA2),

phospholipids, proteins, amino acids, enzymes, carbohydrates,

minerals, and small amounts of volatile components. Historically

used in traditional Chinese medicine tomanage a range of conditions,

like pain, arthritis, rheumatism, and skin diseases. BV and its

components continue to gain attention for their therapeutic

potential. Among these components, melittin has emerged as a

particularly potent agent with significant anti-inflammatory effects.

Its mechanism includes the inhibition of NF-kB activity by

preventing IkB phosphorylation, which ultimately suppresses the

expression of proinflammatory genes central to RA pathophysiology.
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While existing RA treatments, such as NSAIDs, DMARDs, and

biologics, offer varying degrees of symptom control, they often have

limitations, including side effects, high costs, and limited efficacy for

some patients. In this context, melittin offers a novel and promising

approach. However, its cytotoxic potential presents challenges

requiring further research to enhance its safety profile. The review

highlights recent advancements in the formulation of melittin, such

as transdermal patches, microneedle-delivered gels, and

nanoemulsion-based topical applications, which may enhance its

therapeutic delivery and minimize adverse effects.

Future research should focus on a deeper understanding of the

molecular and cellular mechanisms underlying melittin’s

antiarthritic activity. Continued work is essential to refine its

delivery systems and assess its efficacy and safety across broader

animal models, especially primates, to approximate human clinical

conditions. Sustainable and standardized methods of BV extraction

will also be essential to ensure consistent and reliable production.

Future studies should prioritize to investigate the key components

of BV, particularly melittin and PLA2, to gain a deeper understanding

of their physicochemical properties and enhance their therapeutic

potential. Additionally, exploring complementary or alternative

compounds—such as apamin, mast cell degranulating peptide,

curcumin, and resveratrol—either individually or in combination

with melittin could mitigate cytotoxicity while enhancing therapeutic

efficacy. By addressing these challenges, optimizing combination

therapies, and refining delivery system, melittin and other BV

components may ultimately offer safer, more effective and accessible

options for RA management and other inflammatory conditions.

These efforts have the potential to expand treatment strategies and

improve patient outcomes, presenting BV as a versatile foundation for

future therapeutic advancements.
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