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Tumor immune escape has become a research hotspot in the field of cancer

immunotherapy. Tumor-associated macrophages (TAMs) are the key

component of tumor microenvironment, which play a pivotal role in tumor

immune escape by regulating the immunity checkpoints, inhibiting the activity of

T lymphocytes and natural killer (NK) cells, andmodulating proportion of different

T cells. Stanniocalcin-1(STC1)is ubiquitously expressed in human body, which is

proven to involve with tumor progression and clinical prognosis. Recently, STC1

is implicated in tumor microenvironment as a phagocytosis checkpoint, as well

as regulates the immunity via macrophages. In the review, we discussed the role

of STC1 and TAMs in tumor immunity and their crosstalk, hoping to provide

references for the research of STC1 in tumor immunotherapy.
KEYWORDS
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1 Introduction

Tumor is one of the leading causes of death worldwide. In 2022, there were an

estimated 20 million cases of cancer diagnosed and 9.7 million deaths due to cancer

globally, which severely threatens human life and health (1). Traditional treatments for

cancer include surgery, radiotherapy, and chemotherapy. However, these options, alone or

in combination, are not effective and there is a pressing need for therapeutic progress. In

recent years, molecular targeted therapy and immunotherapy have gradually attracted

researchers’ interest in the field of oncology. Unfortunately, in clinical practice, only

approximately 20%-40% of patients could benefit from immunotherapy, and the majority

of patients would appear drug resistance and adverse drug reactions (2). “Tumor immune

escape” is considered as the main reason for the immunotherapy failure, tumor cells evade

the attack of immune system by decreasing tumor immunogenicity, regulating the

infiltration of immune cells, interfering with immune checkpoints, destroying
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the recognit ion function of immune cel ls , recruit ing

immunosuppressive cells, etc (3). Accordingly, the research and

identification of underlying genes and molecules involved in tumor

immune escape is of great significance to decrease drug resistance

and improve the efficacy of immunotherapy.

Tumor progression is the crosstalk between cancer cells and

their living environment–the tumor microenvironment (TME),

which consists of immune cells, blood vessels, fibroblasts, and

mesenchymal stromal cells, etc (4). Hence, TME greatly

influences the efficacy of immunotherapy (5). As the key

component of TME, macrophages are recruited around solid

tumors via tumor cell-derived chemokines, thus are named as

tumor-associated macrophages (TAMs) (6). It has been found

that high TAMs infiltration in tumors is typically associated with

poor prognosis and tumor progression, suggesting that TAMs

correlate with tumorigenesis and development (7, 8). Reportedly,

TAMs can be involved in tumor immune escape by regulating PD-

1/PD-L1 axis (9, 10), inhibiting the activity of T lymphocytes and

natural killer (NK) cells (11), as well as modulating the conversion

of T cells into regulatory T cells (Tregs) (12). In conclusion, TAMs

play a pivotal role in tumor immune surveillance and immune

escape, so the discovery of underlying molecular mechanisms

regulating TAMs function is of great significance for tumor

immunotherapy strategies.

Stanniocalcin-1 (STC-1), a glycoprotein hormone first

identified in bony fish, relatives to calcium and phosphorus

metabolism (13). STC1 is ubiquitously expressed in human body,

encompassing the brain, thyroid, spleen, thymus, parathyroid

glands, lungs, heart, and skeletal muscle, and acts through

autocrine and paracrine (14). So far, multiple experimental

studies have demonstrated that STC1 affected cancer cell

proliferation (15), migration (16), metastasis (17), apoptosis (18),

stem cell properties (19), epithelial-mesenchymal transition (EMT)

(20), etc. Moreover, a number of clinical studies have validated that

STC1 is aberrantly expressed in diverse tumor tissues and

associated with patients prognosis (13, 21, 22). In addition, STC1

is involved in many cancer-related signaling pathways, such as

notch1-sex determining region Y-box 2 (Notch1-SOX2) (23),

extracellular signal-regulated kinases1/2 (ERK1/2) (24), nuclear

factor-kappaB (NF-ΚB) (17) and jun-N-terminal kinase (JNK)

(25) signaling pathways, etc. In brief, STC1 is associated with

multiple physiological and pathophysiological processes of

tumorigenesis and progression.

In recent years, some studies have found that STC1 is

implicated in tumor microenvironment as a phagocytosis

checkpoint. In detail, STC1 participates in tumor immunity by

affecting the TME, participating in the EMT, and interfering the

phagocytic signals. Moreover, multiple researches have

demonstrated that STC1 serves as a regulator of tumor immunity

affecting differentiation, activation, inflammatory response, and

antigen presentation of macrophages. In the review, we

introduced biological function and expression pattern of STC1,

discussed the role of STC1 and TAMs in tumor immunity, explored

how STC1 regulates the function of macrophages. In addition, we

proposed the future development directions and prospects for
Frontiers in Immunology 02
immunotherapy, hoping to provide references for the research of

STC1 in tumor immunotherapy.
2 Biological function and expression
pattern of STC1

2.1 Structure and molecular characteristics
of STC1

The STC family consists of STC1 and STC2, and STC1 is a

glycoprotein hormone that was first discovered in bony fish. In

1996, STC1 is shown to exist in mammals and there is 73%

homology of STC1 amino acid sequences between human and

bony fish (26). In human, the STC1 gene is consisted with four

exons with a 5’UTR rich in CAG trinucleotide repeats (27) and

locates on the short arm of chromosome 8p11.2-p21. Meanwhile,

STC1 protein is a homologous dimer glycoprotein containing 11

conserved cysteine residues, composed of 247 amino acids, with a

molecular weight of 56 kDa (28). STC1 is ubiquitously distributed

in brain, thyroid, spleen, thymus, parathyroid gland, lung, heart,

skeletal muscle, kidney, pancreas, small intestine, colon, placenta,

ovary, testis and prostate, etc (14). The widespread expression of

STC1 indicates that it acts through autocrine and paracrine. STC1 is

considered as a regulator of calcium and phosphorus metabolism

and associated with tumor progression and metastasis (29, 30).

What’s more, its localization in the thymus and spleen reveals that it

may make a difference in immune and inflammatory processes (10).

STC1 is secreted to extracellular environment in vivo (31), and

binds to protein on the cell membrane (32), followed by

internalization and targeting to the inner mitochondrial

membrane (33, 34). There is no clear consensus on the receptor

of STC1 at present, but STC1 can play a regulatory role in the

occurrence and development of cancer through signaling pathways

such as Notch1-SOX2 (23), ERK1/2 (24), NF-Κb (17) and JNK (25)

signaling pathways, etc.
2.2 Expression of STC1 in tumor cells

Emerging evidences have demonstrated that STC1 is

abnormally expressed in tumor tissues and is associated with

tumor cell proliferation, migration, apoptosis and disease

prognosis, such as non-small cell lung cancer, renal cell

carcinoma, leukemia, lung adenocarcinoma, glioma, colon cancer,

prostate cancer, ovarian cancer, etc.

A meta-analysis involving 16 articles and 2,942 participants

found that high expression of STC1 was significantly associated

with poor prognosis, especially for digestive (HR: 1.73; 95% CI:

1.36–2.20) and nervous system tumors (HR: 2.60; 95% CI: 1.29–

2.25) (35). Chromosome 8p deficiency disorder usually appears in

colorectal cancer. By analyzing gene expression on chromosome 8p

in 44 patients, a total of 13 genes located in 8p21-22 2Mb region

were identified, including STC1, may trigger the progression and

metastasis of colorectal cancer. In ovarian cancer, Liu et al. (36)
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found that the expression level of STC1 protein increased. Silencing

STC1 expression by siRNA showed that STC1 could promote cell

proliferation, migration and colony formation. What’s more, STC1

could increase the growth of xenograft tumors. Mechanically, this

may be because STC1 could increase the expression of cell cycle

proteins (cyclin A, cyclin B1, cyclin-dependent kinase 2, and a short

cyclin E isoform) to promote G1 into S phase; and upregulate

antiapoptotic proteins (B-cell lymphoma 2, B-cell lymphoma-extra

large) expression. Consistent with ovarian cancer, in lung

adenocarcinoma (15) and clear renal cell carcinoma (20), high
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expression of STC1 had also been shown to regulate the levels of cell

cycle proteins and apoptotic proteins, thereby facilitating cell

proliferation. However, in breast cancer, the expression and

prognostic value of STC1 are different in distinct subtypes. In

triple negative breast cancer (TNBC), the expression level of

STC1 is higher than that in normal tissues, and is associated with

poor prognosis (17). In hormone receptor-positive breast cancer,

high expression of STC1 is associated with good prognosis (28). In

human epidermal growth factor receptor 2+ (HER2+) breast cancer,

high STC1 expression was not associated with prognosis (37).
TABLE 1 Expression and function of STC1 in tumors.

Tumor type Detected
methods

Sample
sizes

Expression Function References

Prostate cancer IHC 22 High expression Promote growth and metastasis (80)

Colorectal cancer qRT-PCR 20 High expression Promotes migration and invasion,
associated with poor

postoperative prognosis

(16)

Renal cell carcinoma qRT-PCR,
WB, IHC

48 High expression Promotes growth, proliferation and EMT,
associated with Fuhrman tumor grade and

TNM stage

(20)

Laryngeal squamous cell carcinoma qRT-PCR 62 High expression Associated with advanced clinical stage (81)

Ovarian cancer IHC 342 High expression Increase cell adhesion, invision,
proliferation and migration, colony

formation, and promote the growth of
transplanted tumor

(40, 82)

Lung cancer Non-small cell
lung cancer

qRT-PCR 65 High expression Associated with advanced clinical stage and
histological subtype

(83)

Lung
adenocarcinoma

ELISA, IHC 88 High expression Increase cell proliferation, promote G1/S
transition in the cell cycle, inhibit apoptosis

(15)

Breast cancer ER+/TAM+ IHC 541 High expression Associated with prognosis (84)

ER-/TAM- IHC 300 Low expression Associated with prognosis (84)

TNBC qRT-PCR cells High expression Associated with RFS、OS,
promote metastasis

(17)

All subtypes IHC 137 High expression Promote tumor growth and drug resistance (85)

Hepatocellular carcinoma qRT-PCR,
IHC,

WB, ELISA

125 High expression Promote metastasis, promote stemness, and
positively correlate with tumor size

(19, 25)

Cervical cancer qRT-
PCR, IHC

15 Low expression Inhibit cell proliferation, migration
and invasion

(86)

Leukemia ELISA, IHC 20 High expression Promotes chemotherapy resistance, a
marker of MRD, associated with prognosis

(87)

Gastric cancer IHC, ELISA 83 High expression Associated with lymph node metastasis and
advanced clinical stage

(88)

Glioma qRT-
PCR, IHC

80 High expression Associated with high pathological grade (89)

Thyroid cancer IHC 100 High expression Associated with cancer differentiation (90)

Esophageal squamous cell carcinoma qRT-PCR 15 High expression Associated with advanced T stage
and prognosis

(22)

Bladder cancer IHC 63 High expression Associated with the stage and poor
prognosis of bladder cancer

(39)
EMT, epithelial-mesenchymal transition; ER, Estrogen receptor; TAM+, tamoxifen positively; TAM-, tamoxifen negatively; TNBC, triple negative breast cancer; RFS, relapse-free survival; OS,
overall survival; MRD, minimal residual disease.
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In summary, the crosstalk between STC1 expression and

prognosis is different across diverse tumor types (Table 1).

Usually, STC1 is highly expressed in most tumors and is

associated with poor prognosis. However, in some highly

heterogeneous tumors, such as breast cancer, STC1 may be

differentially expressed in different tumor subtypes and sizes,

which may be affected by the copy number variations, gene

expression profile of different tumor subtypes. Moreover, some

studies have indicated that in gynecological malignancies, the loss of

STC1 function may impact normal physiological functions, which

possibly leads to the low expression of STC1 in tumor tissues. And

the expression level of STC1 fluctuates throughout the entire

menstrual cycle of women, the changes in calcium metabolism at

different age stages in women also affect the level of STC1 (38). In

the future, more clinical samples and comprehensive analysis are

needed to explore the expression of STC1 in multiple tumor tissues

in well-stratified disease groups. In addition, clarifying the

mechanism and causes of differential expression of STC1 will help

us understand the role and value of STC1 in tumor immunity.
2.3 STC1 involved in tumor immunity

It is clear that STC1 regulates tumor immunity by influencing

TME, participating in EMT and interfering with phagocytosis

signals. By searching TCGA database, Sun et al. (39) found that

STC1 was positively correlated with the expression of immune

checkpoints, such as PD-L1 (k=0.29), PD-L2 (k=0.39), OX40L

(k=0.32), TIM3 (k=0.31), FOXP3 (k=0.24), CTLA4 (k=0.23).

Moreover, this study found that the high expression of STC1 was

correlated with the high level of immune cells in TME,

encompassing TAMs, CD4+ T cells, CD8+ T cells, and total T

cells, indicating that STC1 was associated with immune checkpoints

and multiple immune cells infiltration. That is, STC1 exhibits key

functions in tumor immunity by regulating the level of immune

cells in TME. STC1 has higher expression in cancer stroma and

cancer associated fibroblasts (CAFs) than normal stroma and

normal fibroblasts (NFs) (40). By detecting the levels of EMT

markers fibronectin, vimentin and slug, it was found that human

recombinant STC1 (rhSTC1) promoted EMT thus triggering the

proliferation and metastasis of ovarian cancer cells via Akt

phosphorylation. While monoclonal antibody STC1 (STC1 Ab)

could reverse the above effects. By constructing STC1 over-

expression cell to further explore its mechanism, it was found

that STC1 secreted by cancer cell promoted the transformation

from NFs into CAFs, but detailed mechanisms were not be clarified

(40). In this way, STC1 participate in tumor immunity. In 2021,

STC1 was reported to be involved in tumor immunity as a

phagocytic checkpoint. Specifically, STC1 could damage the

phagocytosis of antigen presenting cells (APC) and the activation

of T cells by capturing calreticulin (CRT), thereby blocking the “eat

me” signal of tumor cells and mediating tumor immune escape.

And it was found that CRT interacted with STC1 through protein

disulfide isomerase associated 3 (PDIA3) by STC1-FLAG

immunoprecipitation (IP) (41). Using an in vitro cell co-culture
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(CAR-T) cells, tumors cells and macrophages, Zhang et al. found

human mesenchymal stem cell (hMSCs) could suppress the efficacy

of CD19 CAR-T therapy by reducing the proportion of CD8+ T

cells, increasing the proportion of CD4+ T cells and Treg cells, and

promoting IDO and PD-L1 levels, while STC1 knockdown could

eliminate these effects. Compared with hMSCsshctrl, hMSCsshSTC1

significantly decreased the expression level of IDO and PD-L1

protein by more than 50%. Moreover, hMSCshSTC1 combined

with CD19 CAR-T cells therapy showed a curative effect in a

xenograft model with tumors closely disappeared at day 38. In a

word, the stimulatory signals appearing in the process of CAR-T

treatment enabled hMSCs to secrete STC1, and exerted

immunosuppressor function (12). In summary, STC1 affects

tumor immunity by regulating immune checkpoints, affecting

phagocytosis signals, impacting T cell immune response, and

participating in EMT.
3 Tumor-associated macrophages
participate in tumor immune escape

3.1 TAMs and tumor immune escape

TAMs contains two subtypes, the M1 type of classical activation

pathway and the M2 type of alternate activation pathway (42). As

shown in Figure 1, M1-type macrophages are stimulated by

lipopolysaccharide (LPS), tumor necrosis factor-a (TNF-a) and

interferon-gamma (IFN-g), and secrete pro-inflammatory cytokines

(IL-6, IL-12, IL-1b and TNF-a) and chemokine ligands (CCL2,

CCL5, CXCL9, CXCL10 and CXCL11), which have pro-

inflammatory and anti-tumor effects. Its common markers are

CD86, CD64, CD80, CD16, CD120b, TLR2 and STAT1. While

M2-type macrophages are stimulated by IL-4, IL-10 and

transforming growth factor-beta (TGF-Β), and secrete IL-4/10,

TGF-Β, VEGF and exosomes. Its common surface markers are

arginase, CD36, CD206, CD266 and CD163, which have anti-

inflammatory and pro-tumor effects (43). What’s more, cellular

heterogeneity and unique subtypes of TAMs have been widely

discovered recently with the development of high-dimensional flow

cytometry and transcriptomic profiling (44). Generally, TAMs are

mainly M1-type in the early stage of tumor development, which exert

phagocytic effects on tumor cells and exhibit anti-tumor function.

However, under the influence of TME, M1-type TAMs are gradually

polarized into M2-type TAMs, which exhibit immunosuppressive

impacts and part ic ipate in the format ion of tumor

immunosuppressive microenvironment (45). Compared with the

tumor center, M2-type TAMs infiltration at the tumor invasive

margin increased and was associated with low survival rate,

indicating that TAMs distribution also had a certain spatial

heterogeneity (46). In addition, the distribution of TAMs varies

among different types of tumors, possibly due to differences in

tumor immunosuppressive status, aggressiveness, and gene

expression profiles (47). In a word, the phenotype and function of

TAMs may be significantly different across tumor types and different
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stages of tumor development. The time-space heterogeneity

determines the specific role of TAM in TME to a large extent.

Tumor immune escape exerts key effects on unresponsive

chemotherapy, immune therapy ineffective, poor prognosis, etc.

The main ways of tumor cell immune escape are (1): tumor

immunogenicity decreased; (2) the maturation of dendritic cells

(DCs) was inhibited; (3) T lymphocytes activity was inhibited; (4) T

lymphocytes migration and infiltration were inhibited; (5) the

recognition function of immune cells was inhibited; (6) increased

expression of immune checkpoint; (7) immunosuppressive cells

were recruited (48). According to substantial evidences, TAMs play

a pivotal role in tumor immune escape by regulating the

recruitment and function of immune cells, promoting tumor

antigen recognition disorders, regulating the secretion of

immunosuppressive factors, and interfering with immune

checkpoints via different mechanisms through various cytokines

and pathways (Figure 2).
3.2 TAMs regulate recruitment and
function of immune cells

T cells play a key role of immune response, they are mainly

classified into cytotoxic T cells, helper T cells and regulatory T cells.

Among them, CD8+ cytotoxic T cells (CTL) mainly recognize

antigen peptides presented by major histocompatibility complex

(MHC) class I molecules and directly kill tumor cells. Whereas
Frontiers in Immunology 05
CD4+ T helper cells usually recognize MHC class II antigens and

indirectly help clear tumor cells by secreting cytokines such as IL-2

and IFN-g that enhance phagocytes and other T cells; Tregs prevent

overimmunity, inhibit the role of cytotoxic T cells in a variety of

tumors, and are generally believed to be associated with tumor

immune escape (49). It has been reported that Fas ligand (FasL) on

TAMs would bind to Fas receptor on immune cells, subsequently

promoting the expression of caspase 3 and caspase 8, further

directly regulating immune cells apoptosis, therefore, TAMs

exhibit immunosuppression function (50).

In TME, TAMs recruit immunosuppressive cells and facilitate

the depletion of cytotoxic T cells, thereby serving as a mediator in

promoting immune escape. The infiltration of M2-type TAMs

and Tregs is increased in nasopharyngeal carcinoma, and high

infiltration level is associated with poor prognosis. Mechanistically,

nasopharyngeal carcinoma cells induced polarization of M2-type

TAMs by secreting TGF-Β1 and IL-10. Subsequently, M2-type

TAMs induced Tregs migration by secreting CCL22, CCL17,

CXCL12, and fostered Tregs transformation by secreting TGF-Β

and IL-2, which led to the recruitment of Tregs and the immune

escape of nasopharyngeal carcinoma cells (51). In addition, using

CD4+ Foxp3+ Treg and monocytes co-culture system, it was found

that the expression of CD206 and CD163 increased through IL-10,

IL-13 and IL-4 secreted by Tregs (52). Exosomes are endogenous

extracellular vesicles with a diameter of 30-100 nm, they are the

mediators of intercellular communication (53). As reported by

Yang et al. (54), exosomes derived from M2-type TAMs increased
FIGURE 1

The polarization and subpopulation differentiation of macrophages. (By Figdraw.). M0 TAMs are induced from monocytes by granulocyte
macrophage colony-stimulating factor (GM-CSF) and phorbol 12-myristate 13-acetate (PMA). M0 TAMs are stimulated and induced into different
subtypes under cytokines. M1-type macrophages are stimulated by LPS, TNF-a and IFN-g, and secrete pro-inflammatory cytokines (IL-6, IL-12, IL-1b
and TNF-a) and chemokine ligands (CCL2, CCL5, CXCL9, CXCL10 and CXCL11). Its markers include CD86 and CD64, etc, which have pro-
inflammatory and anti-tumor effects. While M2-type macrophages are stimulated by IL-4, IL-10 and TGF-Β, and secrete IL-4/10, TGF-Β, VEGF and
exosomes. Its surface markers include CD36, CD206 and CD163, etc, which have anti-inflammatory and pro-tumor effects.
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microRNA-21 (miR-21) expression and decreased paternally

expressed gene 3 (PEG3), subsequently increased the expression

of Bcl-2, MMP-2 and MMP-9, reduced the proliferation and

cytotoxic activity of CTL. It also enhanced Ki67 and PCNA

expression, as well as the volume of tumors by downregulating

the proportion of CTL, eventually inhibited the apoptosis of glioma

cells, mediating immune escape. In addition, Nixon et al. (55) found

that interferon regulatory factor-8 (IRF8) drives antigen presenting

function of TAMs, induced the expression of PD-1 on CTL, thus

leading to the depletion of CTL, weakening the immune response

and forming an immunosuppressive environment. In summary,

TAMs participate in tumor immune escape by regulating the

recruitment and function of immune cells.

TAMs induce dysrecognition of tumor antigens. Tumor cells

evade T cell recognition by removing, reducing, and transforming

MHC-I molecules on their surface, resulting in tumor immune

escape (48). It was found that the exosome LINC01232 antigen

from M2-type TAMs promoted the transcription of NBR1 by

binding to E2F2, and NBR1 binds to MHC-I protein, mediating

the increased degradation of MHC-I in the autophagolysosome,

eventually decreased the expression of MHC-I on the surface of

tumor cells. In this way, tumor cells protected themselves from the

immune attack of CTL, thus immune escape occurred (56). The

surface of TAMs also express MHC-II, which presented tumor

antigens to CD4+ T cells (57). Wu et al. (58) found that podoplanin

(PDPN), a mucin-like transmembrane glycoprotein, could promote

the polarization of M2-type TAMs through the secretion of
Frontiers in Immunology 06
exosomes. Additionally, PDPN could reduce the expression of

MHC-II on the surface of macrophages through the tumor

progression locus2/Erk/MHC class II transactivator (TPL2/Erk/

CIITA) pathway and impair the antigen presentating ability. In

turn, it affected the activity of CD4+ T cells and promoted the

immune escape of glioblastoma. Therefore, TAMs induced tumor

antigen recognition barriers by affecting MHC molecules on the

surface of tumor cells, and promoted the occurrence of tumor

immune escape.
3.3 TAMs regulate the secretion of
immunosuppressive cytokines

Tumor immunosuppressive state would not have been possible

by the recruitment of immunosuppressive cells in TME alone, but

rather with the affect of immunosuppressive factors. IL-10 is a kind

of immunosuppressive cytokine in TME promotes the polarization

of M2-type TAMs, and in turn M2-type TAMs secrete more IL-10.

A recent study have proved that microRNA let-7d targeted with IL-

10 and inhibited the polarization of M2-type TAMs. That is, let-7d

inhibited the crosstalk between M2-type TAMs and IL-10, thereby

preventing immune escape in renal cell carcinoma (59). It is clear

that IL-6 regulates macrophages, T cells and other immune cells, it

has closely connection with tumor immunosuppressive

microenvironment. Ma et al. (9) found that the exosome miR-

1555p derived from TAMs promoted the secretion of IL-6 by

down- egulating the expression of ZC3H12B in colon cancer cells

both in vivo and in vitro. Subsequently, IL-6 affects the response of

T cells, leading to immune escape of colon cancer and tumor

progression. Similarly, in colorectal cancer, TAMs secreted the

immunosuppressive factor TGF-Β, promoted the expression of

hypoxia-inducible factor 1a (HIF-1a) and then increased tribbles

pseudokinase 3 (TR1B3), activated the Β-catenin/Wnt signaling

pathway, enhanced the expression of PD-L1 on the cell membrane

surface, and played a role in cell invasion and tumor immunity (10).

In addition, M2-type TAMs are also involved in chemotherapy

resistance through the secretion of immunosuppressive cytokines.

In the lung cancer mouse model, M2-type TAMs could accumulate

in well-differentiated tumor vascular sites, and promote tumor

vascular reconstruction and recurrence by secreting vascular

endothelial growth factor-A (VEGF-A) (60). Therefore, TAMs

modulate the secretion of immunosuppressive cytokines to

promote tumor immune escape.
3.4 TAMs interfere with
immune checkpoints

Immune checkpoint is one of the targets of immunotherapy,

including PD-1/PD-L1, CTLA-4, etc. PD-1 expresses on the surface

of immune cells such as CD8+ T cells and CD4+ T cells, while PD-

L1 expresses on the surface of APCs such as tumor cells and TAMs.

The binding of the PD-1 and PD-L1 inhibits the cytotoxicity of

immune cells and mediates immune escape. Immune checkpoint

inhibitors can block these immune checkpoint ligands, so that
FIGURE 2

Tumor-associated macrophages (TAMs) participate in tumor
immune escape. TAMs participate in tumor immune escape through
multiple pathways. Firstly, TAMs regulate the recruitment and
function of immune cells via CCL22, CCL17, CXCL12, TGF-Β, IL-12,
miR-12/PEG3 and IRF-8; Secondly, TAMs promote tumor antigen
recognition disorders via LINC01232/E2F2/NBR1/MHC-I and TPL2/
Erk/CIITA; Moreover, TAMs regulate the secretion of
immunosuppressive factors via IL-6, IL-10, TGF-Β, VEGF-A, and
interfere with immune checkpoints via p65/STAT3-CSN5 and
CD30L/CD30.
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immune cell activity can be restored and immune escape can be

suppressed. In recent years, accumulating evidences have shown

that TAMs affected tumor immunity by interfering with the

expression of immune checkpoints. Liu et al. (61) found that CC

motif chemokine ligand 5 (CCL5) secreted by TAMs induced

upregulation of PD-L1 protein in colon cancer cells through p65/

signal transducer and activator of transcription 3/COP9

signalosome 5 (p65/STAT3-CSN5) pathway, which enabled colon

cancer cells to evade immune surveillance. On the other hand,

inhibition of CTL mediated cytotoxicity promotes cellular immune

escape and ultimately accelerated the development of colon cancer.

Wang et al. (62) found that CD30L/CD30 signal increased the

expression of PD-L1 on the cell membrane of TAMs. Meanwhile,

PD-L1 on TAMs increased its binding to PD-1 on the surface of

effector CD8+ T cells and CD4+ T cells, so it weakened the immune

attack of CD8+ T cells and CD4+ T cells, and then mediated

immune escape of colon cancer. In addition, in gastric cancer,

TAMs-derived exosomes also mediated immune escape of gastric

cancer cells by promoting PD-L1 expression in cancer cells (63).

Therefore, interference with the expression of immune checkpoints

is also a crucial way for TAMs to participate in tumor

immune escape.
4 STC1 regulates
macrophage function

4.1 STC1 regulates macrophage
polarization and
subpopulation differentiation

The polarization of macrophages plays a crucial role in

inflammatory response and tumor immunity. Studies have shown

that STC1 was secreted by CAFs and suppressed macrophage

differentiation by binding to glucose-regulated protein 94

(GRP94), suggesting that STC1 exhibited an essential influence on

tumor macrophages differentiation and participated in tumor

immunity (64). Human acute monocytic leukemia THP-1 cells

are generally used to induce M0, M1 and M2 macrophages. To

explore the relationship between STC1 and TAMs differentiation,

Leung et al. (65) induced THP-1 cells into M0 cells via phorbol 12-

myristate 13-acetate (PMA), further induced M0 into M1-type

macrophages via LPS/IFN-g, and induced M0 into M2-type

macrophages via IL-4/IL-3. It was found that the expression of

STC1 increased in differentiated M0, M1 and M2 macrophages,

among them, the level of STC1 is highest in M1-type macrophages.

Additionally, using siRNASTC1 interference, this study investigated

the effect of downregulation of STC1 gene in macrophages on the

migration of hepatocellular carcinoma cells Hep3B. The results

showed that the decrease of STC1 expression promoted the

expression of TBC1 domain family member 3 (TBC1D3), led to

the decrease of STAT phosphorylation level, and further inhibited

the proliferation and migration of hepatocellular carcinoma in vitro.

Different from previous studies, M1-type macrophages tend to have

pro-inflammatory effects, while STC1 tends to have anti-
Frontiers in Immunology 07
inflammatory effects. This paradoxical effect in this study may be

due to the fact that STC1 negatively regulated the inflammatory

response as an endogenous anti-inflammatory mediator and

avoided the continuous activation of immune cells. In the

myocardial infarction mouse model, Arezoo et al. (66) explored

the impact of STC1 on the differentiation of monocytes/

macrophages. The release of stimuli such as pathogen-associated

molecular patterns (PAMPs), damage-associated molecular

patterns (DAMPs) and chemokines was elevated due to tissue

injuring, these stimulants promoted the differentiation of

monocytes and migration to the injured tissues. The addition of

rhSTC1 decreased the expression of CD14 and the response to

inflammatory stimuli, thus alleviated the continuous detrimental

inflammatory response. A recent study found that STC1 promoted

the immunosuppressive microenvironment by facilitating the

polarization and infiltration of M2-type TAMs. By mechanism,

STC1 activated Yes-associated protein (YAP) and promoted the

secretion of CCL2, which induced the polarization of M2-type

TAMs. Subsequently, M2-type TAMs secreted VEGF-A, which in

turn increased the expression of STC1 by Akt signaling pathway.

And the increase of YAP brought higher expression of PD-L1 on the

melanoma cells, which decrease the interaction between

macrophages and tumor cells (67). Taken together, these studies

confirmed that STC1 served a role in the differentiation of

macrophage subsets. It was also able to influence tumor

proliferation and migration, but the role of STC1 in macrophage

subpopulation differentiation needs more researches to confirm.
4.2 STC1 regulates macrophage activation
and inflammatory response

Macrophages participate in the inflammatory response through the

production of superoxide, inflammasome Nod-like receptor protein 3

(NLRP3), Nod-likenreceptor containing a caspase activating and

recruitment domain 4 (NLRC4), IL-1Β and other pathways, and

studies have shown that STC1 can modulate these processes. The

function of macrophages is affected by mitochondrial superoxide, and

uncoupling protein 2 (UCP2) plays a major role in this process. Studies

have found that STC1 can be internalized by macrophages and

localized in mitochondria within 10 minutes, and STC1 induced the

expression of UCP2 in macrophages, thereby weakening the influence

of LPS on the generation of superoxide in macrophages. In general,

STC1 exerted an impact on macrophage inflammation and immune

response by regulating the generation of superoxide in macrophages

(68). Mesenchymal stem cells (MSCs) are a class of stem cells with

multi-differentiation potential and self-replication ability. JOO YOUN

OH et al. (69) found that hMSCs derived from bone marrow reduced

mitochondrial reactive oxygen species (ROS) of macrophages by

secreting STC1, thus inhibited the activation of macrophage

inflammasome NLRP3. What’s more, STC1 secreted by adipose-

derived mesenchymal stem cells (ASCs) inhibited inflammasome

NLRC4, alleviated the activation of caspase-1 and the secretion of IL-

1Β and IL-18, thus regulated the inflammation response of

macrophages (70). Similarly, Yoojin Seo et al. (71) found that the
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expression level of STC1 in tonsillar derived MSCs (TMSCs) was

higher than that of other MSCs. Inhibition of STC1 could completely

eliminate the influence of TMSCs on ROS, and further weaken the

inhibition effect of TMSCs on IL-1Β production inmacrophages. These

results have established that STC1 regulated the anti-inflammatory

effect of macrophages through ROS pathway (71). To elucidate the

mechanism of alveolar macrophages in acute respiratory distress

syndrome, Xia et al. (72) co-cultured LPS-stimulated alveolar

macrophages with human umbilical mesenchymal stem cells

(HUMSC), it is found that the level of STC1, PI3K, AKT and

mTOR increased, and IL-10 secreted by macrophages also elevated.

Then, by knocking down STC1 gene and inhibiting mTOR with

rapamycin, it was demonstrated that HUMSC secreted STC1,

regulated the secretion of IL-10 by alveolar macrophages through

PI3K/AKT/mTOR pathway. In conclusion, STC1 affects the

inflammatory response of macrophages.
4.3 STC1 affects the phagocytosis activity
and antigen presentation of macrophages

In 2004, researchers discovered that STC1 mapped to

macrophages, it also reduced intracellular calcium levels, inhibited

macrophages binding with chemotactic protein-1 (MCP-1) and

stromal cell derived factor-1a (SDF-1a) on the monocytes, thereby

affected the chemotaxis and response of a macrophages to antigens

(13). Besides, endothelium greatly influenced the migration of

macrophages from the circulation to impaired tissues, STC1 kept

the tight junctions among endothelial cells by blocking TNF-a or

IL-1Β on the cells, ultimately inhibited the transendothelial

migration of macrophages (73, 74). In other words, STC1 was

capable of inducing hypofunction or defect of macrophages such as

migration and response to antigens, thus leading to tumor immune

escape. In 2021, STC1 was reported to be a phagocytic checkpoint.

Specifically, STC1 decreased the “eat me” signal by down-regulating

the expression of CRT on the membrane of cancer cells, affecting

the recognition of cancer cells by antigen presenting cells such as

TAMs and DCs, and further interfered with the specific recognition

of T cells. That is, STC1 can drive the function of macrophages

antigen presentation by influencing phagocytosis signals (75).

Ferroptosis tends to occur in the injured endomentosis, large

peritoneal macrophages (LPMs) will migrate to the uteri to

against ferroptotic amonocytes/macrophages, which promotes

anti-inflammatory response. It has been reported that MSCs

facilitated the efferocytosis of LPMs, and STC1 showed an

essential function in this process. By using rhSTC1 and

siRNASTC1, Wang et al. (76) found MSCs-derived STC1

promoted the migration of LPMs to injured uteri, further

accelerated the phagocytosis activity of LPMs. Collectively, STC1

can affect the phagocytic activity and antigen presentation of TAMs.
5 Discussion

TAMs play a critical role in tumor immunity and exert various

influences on the proliferation, migration, invasion and metastasis
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of cancer cells. STC1 has been widely studied as a phagocytosis

checkpoint in recent years. From various researches, it has been

proved that STC1 makes differences on the infiltration and function

of different aspects of macrophages (Figure 3). However, in TME,

how STC1 affects the functions of TAMs, such as whether STC1

reshapes the macrophage by metabolic pathway, glucose, lipid or

amino acid, it still needs more experiments to explore. To be certain,

current studies have confirmed that STC1 has a pro-cancer effect, so

the design and development of STC1-targeted drugs are crucial for

immunotherapy. There are currently no clinical trials of drugs

targeting STC1, but some preclinical studies have found that

targeting STC1 can slow tumor progression. For example, STC1

had been proved as a target gene for miR-146b-5p (77), and

sevoflurane could upregulate the expression of miR-146b-5p and

downregulate the expression of STC1 to suppress tumor growth

(78); Choi et al. (79) found STC1 was the target gene of miR-606 by

using the miRNA target prediction program and miR-606 mimics

transfection, and it inhibited tumor growth and metastasis in vivo.

In this way, the possible directions of STC1 in tumor therapy are as

follows (1): Elucidate the three-dimensional structure of STC1,

identify its receptor, and conduct a comprehensive study on its

downstream signaling pathway; (2) Clarify the prediction value of

STC1 in different tumors through multiple clinical studies, and

explore the application of STC1 gene detection serve as a biomarker

for tumor diagnosis, prevention and treatment; (3) Develop

monoclonal antibodies against STC1 to block the action of STC1

and inhibit immune escape; (4) Develop small molecule compounds

that mimic STC1 siRNA to reduce the expression level of STC1 in

vivo, thereby inhibiting tumor. In addition, based on the effects of

STC1 on TAMs, drugs that inhibit STC1 and TAMs, block the

crosstalk between STC1 and TAMs should be an underlying

direction of immunotherapy. Meanwhile, combination of STC1

inhibitor and TAMs inhibitor can be studied to achieve better

immunotherapy effects. However, based on the regulation of

calcium and phosphorus by STC1, safety problems targeting

STC1 should be considered, and further researches are required

to insure above approaches can bring clinical benefits for cancer.

In summary, tumor immunotherapy has manifested

unprecedented success for cancer patients by enhancing the body

immunity level to achieve the objective of killing tumor cells, whereas

in clinical practice, only 20%-40% of patients can benefit from

immunotherapy (2), “immune escape” phenomenon is considered

to be the crucial reason for the failure of immunotherapy. Specifically,

the reasons of tumor immune escape contains reducing the

autoimmunogenicity, inhibiting the maturation and infiltration of

immune cells, destroying the recognition function of immune cells,

recruiting immunosuppressive cells, and interfering with immune

checkpoints. STC1 is a glycoprotein hormone associated with

metabolism of calcium and phosphorus, and a large number of

studies have elucidated that STC1 is involved in the occurrence and

development of tumors. It was demonstrated that STC1 could act by

influencing TME, participating in EMT and interfering with

phagocytosis signals. Additionally, TAMs also show its ability in

tumor immune escape by promoting tumor antigen recognition

disorder, regulating the recruitment and function of immune cells,

regulating the secretion of immunosuppressive factors, and
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interfering with immune checkpoints. In 2021, STC1 was shown to

act as a phagocytic checkpoint and a TAMs function regulator, as well

as participate in tumor immune escape, suggesting the interaction

between STC1 and TAMs. In the future, more studies are needed to

explore the relationship between STC1 and TAMs, and develop

corresponding drugs to optimize the therapeutic effect of tumors.

With the further studies on the crosstalk between STC1 and TAMs in

the TME, may have the potential to makes STC1 to become a novel

biomarker, which can improve the accuracy of early diagnosis of

tumors and determine tumor metastasis. Hence, these strategies will

help achieve a better anti-tumor potency of immunotherapy.
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FIGURE 3

The relationship between Stanniocalcin-1 (STC-1) and macrophages. (By Figdraw.). STC1 is secreted by MSCs and targeting to the inner
mitochondrial membrane and tumor cells also express STC1. The proteins such as CRT, MCP-1, SDF-1a on the tumor cells binds to ligands on the
TAMs, thus affect antigen presenting function and phagocytosis of TAMs. STC1 promotes PI3K/Akt/mTOR pathway and subsequently facilitates TAMs
secreting IL-10. What’s more, STC1 have influences on TAMs via inflammasome NLRP3, NLRC4 and UCP2.
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Glossary

PD-1 programmed death-1 receptor
Frontiers in Immunol
PD-L1 programmed death-1 receptor ligand 1
CTLA-4 cytotoxic T lymphocyte-associated antigen-4
IDO indoleamine-2,3-dioxygenase
TME tumor microenvironment
TAMs tumor-associated macrophages
NK cells natural killer cells
Tregs regulatory T cells
STC1 Stanniocalcin-1
EMT epithelial-mesenchymal transition
Notch1-SOX2 notch1-sex determining region Y-box 2
ERK1/2 extracellular signalregulatedkinases1/2
NF-ΚB Nuclear Factor-kappaB
JNK and Jun-N-terminal kinase
TNBC triple negative breast cancer
HER2+ human epidermal growth factor receptor 2+
CAFs cancer associated fibroblasts
NFs normal fibroblasts
rhSTC1 human recombinant STC1
STC1 Ab monoclonal antibody STC1
APC antigen presenting cells
CRT calreticulin
PD1A3 protein disulfide isomerase associated 3
IP immunoprecipitation
CAR-T chimeric antigen receptor T-cell immunotherapy
hMSCs human mesenchymal stem cells
LPS lipopolysaccharide
TNF-a tumor necrosis factor-a
IFN-g interferon-gamma
CCL CC motif chemokine ligand
CXCL C-X-C motif chemokine ligand
DCs dendritic cells
ogy 12
CTL CD8+ cytotoxic T cells
MHC major histocompatibility complex
FasL Fas ligand
TGF-Β transforming growth factor-beta
miR-21/PEG3 microRNA-21/paternally expressed gene 3
IRF8 interferon regulatory factor-8
PDPN podoplanin
TPL2/Erk/CIITA tumor progression locus2/Erk/MHC class II

transactivator
HIF-1a hypoxia-inducible factor 1a
TR1B3 tribbles pseudokinase 3
VEGF-A vascular endothelial growth factor-A
p65/STAT3-CSN5 p65/Signal transducer and activator of Transcription

3/COP9 signalosome 5
GRP94 glucose-regulated protein 94
PMA phorbol 12-myristate 13-acetate
TBC1D3 TBC1 domain family member 3
PAMPs pathogen-associated molecular patterns
DAMPs damage-associated molecular patterns
YAP Yes-associated protein
NLRP3 Nod-like receptor protein 3
NLRC4 Nod-liken receptor containing a caspase activating

and recruitment domain 4
UCP2 uncoupling protein 2
MSCs mesenchymal stem cells
ROS reactive oxygen species
ASCs adipose-derived mesenchymal stem cells
TMSCs tonsillar derived MSCs
HUMSC human umbilical mesenchymal stem cells
MCP-1 chemotactic protein-1
SDF-1a stromal cellderived factor-1a
LPMs large peritoneal macrophages.
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